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ABSTRACT
This article deals with the Non-Orthogonal Joint Diago-

nalization of few matrices of large size: a difficult problem
that is not solved by existing methods. The proposed algo-
rithm combines, on the one hand, the efficiency provided by
the Givens and hyperbolic rotations parametrization of the
mixing matrix and, on the other hand, the stability guaran-
teed by the minimization of the complete off-diagonal norm.
The stability and the quadratic convergence of the algorithm
are illustrated by numerical simulations in situations where
other techniques are slow or even non-convergent. The im-
provement is reached at the price of a moderate increase of
the computational complexity.

1. INTRODUCTION

Many Blind Source Separation (BSS) methods are based on a
step of Joint Diagonalization (JD) of a set of symmetric ma-
trices. This set contains for instance fourth-order cumulants
matrices like in JADE [1, 2] or time delayed covariance ma-
trices like in SOBI [4] according to the expected properties
of the mixed sources like for instance: mutual independence
and non-Gaussianity, decorrelation and spectral difference, or
decorrelation and a difference of the variance temporal pro-
files.

The Joint Diagonalization problem consists of comput-
ing the N -by-N non-singular mixing matrix A given a set of
K symmetric N -by-N matrices M , {M1,M2, . . . ,MK}
sharing the same structure

Mk = ADkA
T (1)

where Dk are diagonal matrices and 1 ≤ k ≤ K. An equiv-
alent objective is to compute the inverse of the mixing ma-
trix, denoted B , A−1, called the separation matrix because
BMkB

T = Dk. In practical applications, the Mk are esti-
mated, the model (1) is only approximately true then the JD
can only be approximately achieved.

The JD is said to be orthogonal (OJD) when the mixing
matrixA to be estimated is required to be orthogonal. This or-
thogonality constraint normalizes and simplifies the JD prob-
lem but is generally based on a second-order pre-whitening
step that is always approximate and this unavoidable pre-
whitening error cannot be corrected a posteriori by the OJD
step, which limits the estimation accuracy of the mixing ma-
trix. Consequently many authors proposed Non-Orthogonal

Joint Diagonalization (NOJD) algorithms to avoid this bias.
NOJD algorithms are designed for dealing with sets of pos-
itive definite matrices [5], sets containing at least one pos-
itive matrix [6, 7, 9, 13] and also general sets of matrices
[8, 10, 15]. In this paper, the last problem is adressed i.e.
no assumption of definite positiveness of any matrix ofM is
needed.

This paper aims at building fast BSS methods (small K)
for high dimensional applications (large N ) which are very
difficult contexts of Non-Orthogonal Joint Diagonalization.
As a matter of fact the difficulty of the NOJD depends firstly
on the diversity of the diagonal matrices Dk which is related
to the unicity of the mixing matrix, and secondly on the con-
ditionning of the mixing matrix which can make the solution
very sensitive to noise. The influence of the Dk can be mea-
sured by a positive index lower than 1 called the modulus
of uniqueness (see [12]). The closer to 1 is this modulus of
uniqueness the more difficult is the NOJD problem. Here we
will consider small sets of matrices of large size with modu-
lus of uniqueness larger than 0.95, i.e. K = 10 matrices of
size 100-by-100, and up to 0.99999995, i.e. K = 2 matrices
of size 100-by-100.

It is generally believed that the Generalized EigenValue
Decomposition (GEVD) of 2 matrices provides a joint diago-
nalizer, but this is not true in general. The sufficient condition
given in [18] p. 461 for instance is not always verified. The
proposed algorithm is therefore one of the few available solu-
tions of this difficult problem.

In the following section, we introduce the notations and
describe shortly the already published J-Di algorithm [14, 15].
The proposed modification of the J-Di algorithm, called J-
Di+, is derived in the third section and its performance com-
pared with the existing J-Di and FFDiag [8] algorithms in
Section IV.

2. THE J-DI ALGORITHM

2.1. An Optimization on the Linear Special Group
The NOJD of a set M of symmetric N -by-N matrices
M1,M2, . . . ,MK can be achieved by successive multiplica-
tions of Givens and hyperbolic rotations 1 in a Jacobi-like
framework [18]. Both rotations have a determinant equal to
1 therefore this algorithm called J-Di performs an optimiza-
tion in the linear special group (matrices of determinant equal

1This parametrization has also been proposed for solving the joint eigen-
value decomposition problem [16, 17].
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to 1). By comparison, the JADE (and SOBI) optimization is
achieved in the orthogonal special group (orthogonal matrices
of determinant equal to 1), which is a sub-group of the linear
special group. In this sense, J-Di is an Non-Orthogonal ex-
tension of the Jacobi-like OJD algorithm [1, 2] used in JADE
(and SOBI).

Every matrix Mk ofM is diagonalized by repeating the
following iteration for every 1 ≤ i, j ≤ N and 1 ≤ k ≤ K

M ′k , H(φ, i, j)TG(θ, i, j)TMk G(θ, i, j)H(φ, i, j) (2)

and

A′ , AG(θ, i, j)H(φ, i, j)−1 = AG(θ, i, j)H(−φ, i, j)
(3)

where M ′k (resp. A′) denotes the updated Mk (resp. A) ma-
trix, G(θ, i, j) denotes the classical N -by-N Givens rotation
of angle θ and indices i, j

G(θ, i, j) ,


Ii−1

... 0
... 0

· · · cos θ · · · − sin θ · · ·

0
... Ij−i−1

... 0
· · · sin θ · · · cos θ · · ·

0
... 0

... IN−j


(4)

and H(φ, i, j) is the corresponding hyperbolic rotation

H(φ, i, j) ,


Ii−1

... 0
... 0

· · · coshφ · · · sinhφ · · ·

0
... Ij−i−1

... 0
· · · sinhφ · · · coshφ · · ·

0
... 0

... IN−j


(5)

The N(N − 1)/2 iterations over all the (i, j) for 1 ≤ i < j ≤
N are called a sweep. Several sweeps are generally necessary
to reach the convergence.

2.2. Computation of the optimal angles for given i, j

The last problem to solve is now to compute the optimal an-
gles θ and φ to diagonalize simultaneously all the Mk. The
J-Di algorithm computes the angles that minimize only the
sum of the squared i, j entries of the Mk, denoted Mk[i, j],
for all the k between 1 and K, i.e.

J(θ, φ, i, j) ,
k=K∑
k=1

(M ′k[i, j])
2 (6)

One must note that this minimization of J(θ, φ, i, j) is not
equivalent to the minimization of a global criterion like the
norm of all the off-diagonal Mk entries because the hyper-
bolic rotations H(φ, i, j) are not orthogonal matrices. Never-
theless, such a partial minimization of the off-diagonal norm
generally yields a very efficient diagonalization ofM as it is
illustrated in [15].

The main interest of the Givens/hyperbolic parametriza-
tion is that the trigonometric and hyperbolic function that ap-
pears at the power 4 (quartic) in J(θ, φ, i, j) can be trans-
formed into an easy to optimize quadratic form involving the
double angles 2θ and 2φ. As a matter of fact, after some ma-
nipulations on Eq. 2, one can see that

M ′1[i, j]
...

M ′k[i, j]
...

M ′K [i, j]

 = Cv(θ, φ) (7)

with

v(θ, φ) ,

(
sinh(2φ)

− sin(2θ) cosh(2φ)
cos(2θ) cosh(2φ)

)
(8)

and

C ,



M1[i,i]+M1[j,j]
2

M1[i,i]−M1[j,j]
2 M1[i, j]

...
...

...
Mk[i,i]+Mk[j,j]

2
Mk[i,i]−Mk[j,j]

2 Mk[i, j]
...

...
...

MK [i,i]+MK [j,j]
2

MK [i,i]−MK [j,j]
2 MK [i, j]


(9)

Finally the J-Di criterion J(θ, φ, i, j) is equal to quadratic
term

J(θ, φ, i, j) , v(θ, φ)TCTCv(θ, φ) (10)

where v(θ, φ) verifies the following quadratic constraint

v(θ, φ)Tdiag(−1, 1, 1)v(θ, φ) = 1 (11)

The global minimum is reached when v(θ, φ) is the general-
ized eigenvector of (CTC, diag(−1, 1, 1)) of minimal posi-
tive eigenvalue (see [15] for more details).

This technique compares favorably with other NOJD
methods in many contexts. But we observed lack of conver-
gence in several very difficult NOJD situations; mainly when
M contains few large matrices, like K = 3 to 4 matrices of
size N = 50 or 100 for instance. The goal of the following
section is to propose a modification of the J-Di criterion to
deal with these hard NOJD contexts not covered by existing
methods.

3. MINIMIZATION OF THE COMPLETE
OFF-DIAGONAL NORM

A natural solution to guarantee the convergence, at least to
a local minimum, of our NOJD algorithm is to minimize the
complete off-diagonal norm of the matrices of M. We pro-
pose to modify the J-Di criterion J(θ, φ, i, j) in Eq. 6 to min-
imize exactly the off-diagonal norm at each (i, j) iteration of
the Jacobi scheme. It means in particular that we will have
to take into account not only the M ′k[i, j] entries but also all
the other entries of the i-th and j-th rows and columns of the
Mk matrices. As a matter of fact, the Givens and hyperbolic
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rotations in Eq. 2 only modify the two i, j rows and the two
i, j columns of the Mk matrices.

Consequently, the modified criterion to be minimized is

L(θ, φ, i, j) ,
k=K∑
k=1

(M ′k[i, j])
2

+

k=K∑
k=1

n=N∑
n=1
n 6=i,j

(M ′k[n, i])
2

+

k=K∑
k=1

n=N∑
n=1
n 6=i,j

(M ′k[n, j])
2

(12)

3.1. Minimization of the new criterion
Let’s first define the vectors uk and vk (resp. u′k and v′k) equal
to the i-th and j-th columns of Mk (resp. M ′k) excluding the
[i, i], [j, i], [i, j] and [j, j] entries, i.e.

uk ,



Mk[1, i]
...

Mk[i− 1, i]
Mk[i+ 1, i]

...
Mk[j − 1, i]
Mk[j + 1, i]

...
Mk[N, i]


, vk ,



Mk[1, j]
...

Mk[i− 1, j]
Mk[i+ 1, j]

...
Mk[j − 1, j]
Mk[j + 1, j]

...
Mk[N, j]


(13)

Then one can show that the update in Eq. 2 is equivalent to

u′
1
Tu′

1+v′
1
T v′

1

2
...

u′
k
Tu′

k+v′
k
T v′

k

2
...

u′
K

Tu′
K+v′

K
T v′

K

2


= Fw(θ, φ) (14)

with

w(θ, φ) ,

(
cosh(2φ)

− sin(2θ) sinh(2φ)
cos(2θ) sinh(2φ)

)
(15)

and

F ,



uT
1 u1+vT

1 v1
2

uT
1 u1−vT

1 v1
2 uT1 v1

...
...

...
uT
k uk+vT

k vk
2

uT
k uk−vT

k vk
2 uTk vk

...
...

...
uT
KuK+vT

KvK
2

uT
KuK−vT

KvK
2 uTKvK


(16)

Once again the power 2 of the trigonometric and hyperbolic
functions can be reduced to 1 by considering the double an-
gles 2θ and 2φ.

Finally, the new criterion is the sum of the J-Di criterion
J(θ, φ, i, j) that is quadratic in v(θ, φ) plus a new term that is
linear in w(θ, φ)

L(θ, φ, i, j) , v(θ, φ)TCTCv(θ, φ) + fTw(θ, φ) (17)

where

fT , 2

k=K∑
k=1

F (k, :) (18)

which have to be minimized under the constraint[
v(θ, φ)T

w(θ, φ)T

]
diag(−1, 1, 1) [v(θ, φ) w(θ, φ)] = diag(1,−1)

(19)
We already know how to minimize the J-Di quadratic term,
it is also easy to minimize the new linear term alone but
we haven’t found an analytic expression of θ and φ that
minimizes L(θ, φ, i, j) in spite of the obvious relationship
between v(θ, φ) and w(θ, φ). We propose to optimize
L(θ, φ, i, j) using several Newton iterations initialized at the
J-Di minimum. More specifically, a fixed number of Newton
iterations is used in the following simulations. An analytical
expression possibly exists and would be more elegant but not
necessarily more efficient in terms of speed of convergence
or computational load which is what matters. As a matter of
fact, the dominant computational cost is the update in Eq. 2,
not the computation of θ and φ.

This new algorithm which minimizes L(θ, φ, i, j) defined
in Eq. 17 is called J-Di+.

3.2. Complexity

The costs of the J-Di [15] and FFDiag [8] sweeps are ap-
proximately 2KN3 flops mainly due to the update of M in
Eq. 2. The cost of the improved algorithm is higher because
the computation of the F matrix defined in Eq. 16 requires
3K(N − 2)×N(N − 1)/2 ≈ 3/2KN3 flops which is lower
but comparable to theM update. In summary the complexity
of the J-Di+ algorithm is less than 2 times higher than the J-Di
or FFDiag complexity but we will see in the next section that
this higher cost yields much better performance.

4. PERFORMANCE ANALYSIS BY NUMERICAL
SIMULATIONS

The performance of the original J-Di, FFDiag and the im-
proved J-Di+ algorithm are compared with sets of exactly di-
agonalizable matrices using the off-diagonal norm as index of
performance. This index is plotted as a function of the num-
ber of sweeps for 30 independent trials. The mixing matrix
A and the diagonal matrices Dk entries are independent and
normally distributed. The figures show the performance with
numbers K of matrices decreasing from situations where the
three algorithms converge (here we choose K = 10 because
larger K were investigated in [15]) until the lowest possible
value for NOJD, i.e. K = 2, where only the new algorithm
J-Di+ converges.
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Fig. 1. Convergence of the off-diagonal norm for 30 sets of
K = 10 matrices of size 100× 100, MoU ≈ 0.95

Fig. 2. Convergence of the off-diagonal norm for 30 sets of
K = 7 matrices of size 100× 100, MoU ≈ 0.98

The matrix size isN = 100 and the number of matricesK
decreases from K = 10 in Fig. 1, to K = 7 in Fig. 2, K = 5
in Fig. 3, K = 3 in Fig. 4 and finally K = 2 in Fig. 5. The
Modulus of Uniqueness (MoU) which measures the difficulty
of the NOJD increases when K decreases; its average value
is roughly equal to 0.95 for K = 10, 0.98 for K = 7, 0.995
for K = 5, 0.9999 for K = 3 and 0.99999995 for K = 2.

Fig. 3. Convergence of the off-diagonal norm for 30 sets of
K = 5 matrices of size 100× 100, MoU ≈ 0.995

Fig. 4. Convergence of the off-diagonal norm for 30 sets of
K = 3 matrices of size 100× 100, MoU ≈ 0.9999

J-Di converges like J-Di+ for K = 10, diverges in few
sweeps when K = 7, 5 or 3 and immediately if K = 2 (the
curves corresponding to J-Di are not visible in Fig. 5). FF-
Diag converges slowly (about 50 sweeps) untilK ≤ 5 and di-
verges for lower values of K. J-Di+ converges in every case
i.e. K = 10, 7, 5, 3 and 2 in less than 15 to 20 sweeps (25
when K = 2).
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Fig. 5. Convergence of the off-diagonal norm for 30 sets of
K = 2 matrices of size 100× 100, MoU ≈ 0.99999995

5. CONCLUSION

A new Non-Orthogonal Joint Diagonalization algorithm is
proposed that extends the range of application of the Non-
Orthogonal Joint Diagonalization and is of interest for build-
ing fast BSS methods for very high dimension applications.
The Jacobi-like iterations structure combining Givens and hy-
perbolic rotations of the J-Di algorithm [14, 15] is preserved
but the optimal Givens and hyperbolic angles computation is
modified to minimize all the off-diagonal entries of the matrix
set to be jointly diagonalized. The resulting algorithm is able
to deal with very difficult Joint Diagonalization problems like
few (i.e. down to 2) matrices of large size, which was not pos-
sible with existing methods. This improvement is illustrated
by numerical simulations. This extension of the Joint Diag-
onalization application domain is obtained at the price of an
increase of the computational complexity lower than a factor
two. But this complexity increase can be compensated by a
reduction of the size of the matrix set. These results should
be generalized by means of more extensive numerical simula-
tions and, if possible, a theoretical analysis of the convergence
speed.
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