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ABSTRACT 

This work presents a series of sparse signal modeling algo-

rithms implemented in a typical CELP coder in order to 

compare their performances at a reasonable computational 

load. New algorithms are proposed, based on cyclic and 

parallel use of a fast implementation of the optimized ortho-

gonal matching pursuit algorithm, i.e. the recursive mod-

ified Gram – Schmidt algorithm. These algorithms yield a 

statistically significant reduction of signal approximation 

error at a controllable computational complexity. 

1. INTRODUCTION 

The idea of CELP coder emerged in the early 80’s [1], when 

the possibilities of real time implementation were limited. 

The analysis-by-synthesis algorithms had to be simplified  to 

enable successful implementations and setup of international 

standards. Most of these standards (e.g. [2]) appeared in the 

90’s but nowadays the technical progress in microprocessors 

and programmable devices enables implementation of much 

more complex speech coding algorithms. On the other hand, 

in the last decade rapid development of sparse approxima-

tion and compressive sensing techniques is observed, yield-

ing the complementary matching pursuit [9], [20], cyclic 

matching pursuit [11], least angle regression [10], basis pur-

suit [14], subspace pursuit and many other algorithms (ref. 

[8] to[18]).  

The aim of this paper is to take up the challenge of compar-

ing some of the sparse approximation algorithms and to pro-

pose new ones which may be implemented in a typical 

CELP coder. The CELP coder used for testing is the G.723.1 

coder [2], [21] with the algebraic code excited linear predic-

tion algorithm replaced by a series of sparse signal model-

ling algorithms.  

This paper is organized as follows: In Sect.2 the problem is 

posed and the notation is introduced. In Sect.3 the selected 

sparse approximation algorithms are overviewed and new 

algorithms are proposed, in particular the multi – recursive 

modified Gram - Schmidt algorithm. In Sect.4 the results of 

simulations are presented and in Sect.5 they are briefly 

summed up. 

2. SIGNAL MODELING IN CELP CODERS 

The CELP coder (Fig.1) may be regarded as a multistage 

vector quantizer with filtered codebooks.  

 

Fig.1. Generic scheme of the CELP coder 

The N-dimensional vector of the perceptual speech signal 

tx  is modeled using the filtered vectors issued from two 

codebooks (the adaptive one and the constant one) so as to 

minimize the error 2*2 | || || || | tt xxe  . The linear predictive 

filter H(z) is used for filtering of the signal issued from both 

codebooks, which may be described as Hxxt  0
* , 

where 0x is the zero input response, and H is the lower tri-

angular Toeplitz matrix built on the impulse response of 

H(z). The perceptual signal model may be described as 

pct xxxx  0
* , where cc Hx   is the signal issued 

from the constant codebook and pp Hx   is the signal 

issued from the adaptive codebook (long term prediction). 

Assuming that the long term prediction signal is known (in 

this paper we do not optimize this stage of signal modeling), 

the error energy may be rewritten as follows: 
2*2

0
2 | || || || || || | xxxxxxe cpt  , where pt xxxx  0  

- the target signal and cxx *  - its model.  

Having the codebook ],,,[ 21 LcccC  , consisting of L N-

dimensional vectors, the excitation signal c  is usually ob-

tained with the use of one of the two approaches. Both may 

be described with the formula gCc  , but in the multi-

pulse or classical CELP coders g  is a L-dimensional vector 

of gains, K<N of which are nonzero, and in ACELP coders 

the nonzero gains are quantized using 2-level symmetrical 

quantizer (i.e. only two gain values, g , are allowed). In 

this paper only the first approach will be analyzed, the opti-

mization of the ACELP scheme will be left for future re-

search. By filtering of the excitation signal c , the target 

signal model cxx *  is obtained: gFgHCHx c  * , 
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where ],,,[ 21 LfffHCF  - the filtered codebook. 

The aim of the modeling procedure is to minimize the error 

while keeping the degree of sparsity equal to K, i.e. only K 

gains may have nonzero values:  

 KggFx 
0

2

2
,min   (1) 

There are three tasks associated with the problem (1): 

1. Construction of the codebook C – in the multipulse coders 

it is the unit matrix, in CELP coders it may be stochastic or 

calculated using the training speech data. In fact, any code-

book containing normalized vectors uniformly distributed in 

N-dimensional space yields similar results. 

2. Filtering – the classical predictors yielding the minimum 

energy of prediction error (min of L2 norm) are usually used 

for construction of the filter H(z), but recently the sparse pre-

dictors were proposed [12,13], which enhance sparsity of the 

residual signal. Thus, better signal models are obtained using 

a small number of vectors (K).  

3. Codebook search – this problem exists for any codebook C 

and any filter H and will be considered in this paper. Sparse 

approximation algorithms will be tested, but it must be no-

ticed that the problem is not really sparse, i.e. K=N vectors 

are necessary to obtain 0| || | 2e . 

3. SPARSE APPROXIMATION ALGORITHMS 

3.1 The matching pursuit and relative algorithms 

The problem (1) is NP-hard, so its optimal solution requires  

exhaustive search of all K-combinations of L codebook vec-

tors. The number of such combinations is  LK , which in 

typical applications is definitely prohibitive. Therefore, sub-

optimal approaches are used, particularly the greedy algo-

rithms, in which the codebook vectors are selected one by 

one and cannot be removed. In the matching pursuit (MP) 

algorithm successive projections of the error vector on the 

nearest (according to angle criterion) codebook vector are 

made. The MP algorithm has been discussed as one of poss-

ible solutions to the problem of the excitation signal genera-

tion in multipulse predictive coders ([5,6]), in [3] it has been 

applied to audio coding. Having the target signal x  and the 

filtered codebook F, the squared norms 2| || | jj f , and 

the scalar products (correlations) jTjj fxfx  ,1  are 

calculated. The first vector )1(jf  is then selected, which 

maximizes jj  /)( 2
1 , i.e. the squared norm of the ortho-

gonal projection of x  on jf . The optimal gain associated 

with this vector equals )1()1(
11 / jjg   and the error vector 

)1(
11

jfgxe   is orthogonal to )1(jf . The correlations 

 jj fe ,12  are updated using the formulas 

)1()1(
1112 / jjjjj r   , )1()1(

1 /, jjjj ffr  . 

Thus, the second iteration is prepared, in which the vector 
)2(jf  is chosen, maximizing jj  /)( 2

2 , etc. In K steps a 

sequence of vectors and gains is obtained, but the error vec-

tor Ke is not orthogonal to the subspace spanned by the se-

lected vectors. The optimal gains corresponding to the se-

lected vectors may be recalculated using the formula 

xAAAg TT 1)(  , where ],,[ )()1( Kjj ffA   is a matrix 

consisting only of the selected vectors (if they are distinct).  

If this gain updating is made at the end of any iteration of 

the matching pursuit algorithm, then we obtain the ortho-

gonal matching pursuit algorithm (OMP), which has been 

widely used in the multipulse and CELP coders [5,6,7], then 

adapted to audio coding [4]. However, this approach does 

not exhibit the local optimality property, because vector 
)(kjf , selected in the k-th step (according to the minimum 

angle criterion) is not necessarily the best vector, minimiz-

ing the projection error of the target vector on a subspace 

spanned by the vectors  },,,{ )()2()1( kjjj fff  .  

In order to assure the locally optimal selection, the codebook 

should be orthogonalized with respect to the previously cho-

sen k-1 vectors before selecting the k-th one. Thus, we ob-

tain the optimized orthogonal matching pursuit algorithm 

(OOMP), suggested for the multipulse coders [6], then ap-

plied in a CELP coder [7], finally formalized in [8]. The 

successive codebook orthogonalization is a time consuming 

task, but there is a fast OOMP implementation, which has 

been proposed under the name of Recursive Modified 

Gram-Schmidt (RMGS) algorithm [7,19]. This implemen-

tation consists in a virtual codebook orthogonalization, i.e. 

processing does not apply to vectors, but only to their norms 

and correlations, which requires about KNL operations, as in 

the matching pursuit algorithm. This algorithm will be de-

scribed briefly because it is a base of a newly proposed M-

RMGS algorithm. The first step does not differ from the 

matching pursuit: squared norms of the original (not yet 

orthogonalized) codebook vectors 2
1 | || | jj f  and scalar 

products  jj fx,1  are calculated and the first vector 

)1(jf , which maximizes jj
1

2
1 /)(   is selected. In the next 

step, the whole codebook is virtually orthogonalized with 

respect to )1(jf  (i.e. )1(
)2(

jj
orth ff  ) by calculating the 

squared norms 
2

)2(2 | || |
j
orth

j
f  and correlations 

 j
orth

j
orth

j fxfe )2()2(12 ,,  in a recursive way: 

2
112 )( jjj r , )1(

1
)1(

1112 / jjjjj r   , where 

)1(
1

)1(
1 /, jjjj ffr  . Then the second (generally: the 

k-th) vector is selected, maximizing 

 
j
k

j
k

j
korth

j
kortk

j
korth

j
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f

fx

f

fe
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2

2
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and the virtual orthogonalization with respect to this vector 

(
)(
)(

kj
korthf ) is performed: 

22
)1(1 )(| || | j

k
j
k

j
korth

j
k rf      (3) 

)()(
)1(1 /, kj

k
kj

k
j
k

j
k

j
korth

j
k rfx     (4) 
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where )(
1

1

)()( /, kj
k

k

i

j
i

kj
i

kjjj
k rrffr 








 
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 (5) 

Note that the number of operations is only slightly increased 

as compared to the matching pursuit (the main difference is 

in eq. (5)) – there are still about KNL operations. 

3.2 The complementary matching pursuit algorithms 

The complementary approach consists in finding a sparse 

approximation of the minimum norm solution ming  of the 

underdetermined system gFx   [9]. This leads to the fol-

lowing problem: 

 Kggg  0
2
2min | || |,| || |min   (6) 

where FFFF TT 1)(   and xFFFg TT 1
min )(  . The 

sparse solution may be obtained using the MP, OMP or 

OOMP algorithms, thus we have the complementary 

matching pursuit (CMP), orthogonal complementary 

matching pursuit (OCMP) and optimized orthogonal 

complementary matching pursuit (OOCMP) algorithms. 

The matrix   is of LL  dimension, but the squared norms 

of its columns j , the correlations j
k  and the inner prod-

ucts j
kr  may be obtained out of the columns of the LN   - 

dimensional matrix FFFC T
F

1)(  [9,19]. 

3.3 The COSAMP and Subspace Pursuit (SP)  

The COSAMP and SP are non-greedy algorithms which tend 

to improve a given set of K codebook vectors by appending 

new ones (augmentation phase) and rejecting the other ones 

(optimization phase) [15,16]. The similar augmentation 

phase is also present in the stagewise orthogonal matching 

pursuit (StOMP) [17] and in the regularized orthogonal 

matching pursuit (ROMP) [18], but StOMP and ROMP are 

greedy, i.e. rejection of the selected vectors is not possible.  

The augmentation phase consists in calculation of the corre-

lations eFT , where e  is the error vector (in the first 

iteration xe  ). Then the codebook vectors (rows of TF ) 

yielding the largest absolute values of the correlations are 

selected (2K in COSAMP and K in SP) and merged with the 

K previous ones (in the first iteration there is no merging). In 

the optimization phase the optimal gains are calculated, 

which minimize the norm of the error vector 

( xAAAg TT 1)(  , where A is a matrix containing the set of 

codebook vectors obtained in the augmentation phase). Then 

K vectors are selected, yielding the maximum absolute val-

ues of gains and the error vector is updated. 

3.4 The algorithms based on L1 minimization 

In order to apply the convex optimization methods, the L0 

norm in problem (1) is replaced by the L1 norm. Various 

numerical methods may be used to solve this kind of prob-

lems. Some of them are greedy, e.g. the Least Angle Regres-

sion [10], consisting in minimization of the angle between 

the target vector x  and a weighted sum of codebook vectors. 

These greedy algorithms do not give much better results than 

the basic MP algorithm (see e.g. [19]), therefore, the non-

greedy formulations are used. In this work the following 

problem is considered [14,12]:    

  221 | || || || |min gFxg    (7) 

The Basis Pursuit algorithm [22] has been used to solve (7), 

but there were problems in controlling the degree of sparsity 

0| || |g . The degree of sparsity depends on the value of the 

parameter , so many trials are necessary to obtain the de-

sired number of nonzero gains. In this work pruning is used 

in order to obtain exactly K nonzero gains and 10 trials are 

made, using different values of . 

3.5 The cyclic optimization 

The cyclic optimization, like COSAMP and SP, consists in 

substituting new codebook vectors for the previously chosen 

ones, but the substitution is made in a one by one manner 

and the subspace dimension K is kept constant. The cyclic 

MP algorithm was proposed in [11] and in [19] the cyclic 

optimization was combined with the OOMP and OOCMP 

algorithms. The algorithms described in [19] consist of an 

augmentation phase and an optimization phase. In the aug-

mentation phase the optimized orthogonal matching pursuit 

(OOMP or OOCMP, with the fast RMGS implementation) is 

applied. Thus the initial K-dimensional subspace is obtained. 

The cyclic optimization phase is always based on the OOMP 

(using the RMGS algorithm). In the main loop the codebook 

vectors Kif ij ,,2,1,)(   are, one by one, temporarily re-

moved from the subspace. The codebook vector (not belong-

ing to the reduced subspace) is searched, which, when ap-

pended to the K-1 remaining vectors, yields the best approx-

imation of the target vector x  (minimum norm of the pro-

jection error vector). Frequently, it is just the vector which 

has been removed and there is no substitution. The algo-

rithm stops if there are no substitutions in K consecutive 

trials, but it may be stopped at any moment if the number of 

operations attains a predefined value. Note that this algo-

rithm yields, in any case, no worse results than the algorithm 

used in the augmentation phase.  

3.6 The Multi-RMGS algorithm 

The idea of this algorithm is to compute, in a parallel way, 

not only one locally optimal sequence of codebook vectors, 

but M sequences, yielding small approximation error. The 

subspace dimension gradually increases from 1 to K, but the 

number of sequences is equal to M. If M=1, the M-RMGS 

algorithm is equivalent to the OOMP (with the fast RMGS 

implementation).  

At the first step the squared norms of the codebook vectors 
2

1 | || | jj f  and the scalar products  jj fx,1  are 

calculated. Then, codebook vectors are sorted according to 

the criterion jjj xe 1
2

1
22

1 /)(| || || || |  , which is the 

squared norm of the error vector. The first M vectors (indices 

),1(,),2,1(),1,1( Mjjj  ) start M sequences. For each se-

quence m=1,..,M the values ),1(
1

),1(
,1 /, mjmjjj
m ffr  , 

2
,11,2 )( j
m

jj
m r  and ),1(

1
),1(

1,11,2 / mjmjj
m

jj
m r    

are computed, as in the RMGS algorithm. The squared error 

norms 
2),1(

1,1 | || | mj
m e  are also retained for each sequence.  
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At the second step (generally, at the k-th step) there are al-

most ML possible sequences (to any of M sequences any of 

L-k+1 vectors may be appended), but only M of them are 

retained. The criterion is, of course, the squared norm of pro-

jection error: j
mk

j
mkmk

j
mk ,

2
,,1, /)(    . Thus, the best 

vectors ),(,),2,(),1,( Mkjkjkj   are selected, the corres-

ponding squared error norms are updated and the operations 

described with formulas (3),(4),(5) are performed for each 

sequence. The identical sequences (permutations of the same 

vector indices) are not allowed. They are easily recognized 

because they yield the same squared error value. Many se-

quences started at the first step do not survive, sometimes all 

sequences considered at the last step stem from the same 

vector chosen at the first step. At the last step the best se-

quence is selected.  

The results of the M-RMGS algorithm are not worse, in any 

case, than the results of the OOMP (RMGS) algorithm. The 

cyclic OOMP has the same property, but the advantage of 

the M-RMGS consists in its lower and constant computa-

tional complexity (about MKNL operations), while the num-

ber of iterations of the cyclic OOMP is variable. 

4. TESTING 

The sparse approximation algorithms are usually compared 

using the synthetic signals, e.g. realizations of an uncorre-

lated or an AR random process [19,20]. In this work the 

tested algorithms are incorporated in the CELP coder and 

the real audio signals are used.  

 

Fig.2 The segmental SNR [dB] for the MP algorithm 

In the Matlab implementation of the G.723.1 coder [21] the 

ACELP modelling block has been removed and the de-

scribed above algorithms of codebook vectors indices 

( )(),...,1( Kjj ) and gains ( g ) calculation are implemented. 

The long and short time predictors, perceptual filters, frame 

and subframe (N=60) lengths are left unchanged, except of 

postfilters, which could affect the SNR values. Three unfil-

tered codebooks C are used: a unit matrix of dimension 

60x60 for the multipulse coder and two matrices of dimen-

sion 60x128 and 60x512 for the CELP coder. The CELP 

codebooks consist of the normalized vectors uniformly dis-

tributed on a 60-dimensional sphere. No gain quantization is 

applied in order to test only the vector selection algorithms.  

 

Fig.3. ][dBSNR  for the multipulse coder (codebook 60x60) 

 

Fig.4. ][dBSNR  for the CELP coder with the codebook 60x128 

 

Fig.5. ][dBSNR  for the CELP coder with the codebook 60x512 

Five audio files, containing male and female speech and a 

song are used for testing, thus we have obtained almost 2500 

N=60-dimensional segments (subframes). For each segment 

the SNRi [dB] is calculated and the mean value SNRseg is 

obtained. In Fig.2 the SNRseg values for the matching pur-

suit algorithm (MP) are shown for three above- mentioned 

codebooks and for different number (K) of codebook vectors 
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used for signal approximation. These results are used as a 

reference for testing the other algorithms. In the following 

tests, the SNRi values in each segment are compared with the 

corresponding values obtained for the MP algorithm, e.g. 

][)MP()OOMP()OOMP( dBSNRSNRSNR iii  . This is 

because the absolute SNRi values exhibit greater variance 

than the iSNR  values. Then the mean values (e.g. 

][)OOMP( dBSNR ) are calculated and the confidence in-

terval is evaluated. The results are presented in Fig. 3,4,5. 

Note that the confidence interval (at the confidence level of 

90%) is about 0.2 dB for small values of K and about 0.5 dB 

for K >30. 

The results may be summarized as follows:  

1. M-RMGS (here M=10) outperforms the other tested algo-

rithms for small K (e.g. 10) and larger codebooks (L=512).  

2. OCMP-c is the best at greater K (the results obtained for 

ARMA process [19] are thus confirmed). Its disadvantage is 

a higher computational load (many substitutions are neces-

sary to obtain these good results).  

3. Complementary algorithms (CMP, OCMP) perform very 

well if the problem is really sparse [9,19,20], because the 

matrix   (6) has nearly orthogonal columns, which facili-

tates finding the proper codebook vectors. For a non-sparse 

problem, they are interesting only for large K. 

4. SP and COSAMP are designed to deal with sparse prob-

lems, so in our testing they do not perform very well.  

5. As reported in [12,13], minimization of the L1 norm, 

when applied not only to gains (as in 7) but also to predic-

tion coefficients, yields very promising results. In our tests 

we use the classical predictor and we have obtained satisfac-

tory results only for greater K. 

6. Complexity analysis (excluding the newly proposed M-

RMGS) is given in [19]. For K=10 implementation of the 

MP, RMGS and M-RMGS (M=10) algorithm in the CELP 

coder requires 12.8, 14.7 and 159 Mflops for the 60x128 

codebook and 51.2, 58.1 and 636 Mflops for the 60x512 co-

debook, correspondingly. Thus the commonly used DSP de-

vices may be applied.  

5. CONCLUSIONS 

Development of microprocessors and programmable devices 

enables implementation of more complex speech coding 

algorithms. The proposed algorithms based on cyclic and 

parallel use of the fast optimized orthogonal matching pur-

suit algorithm (RMGS) offer a statistically significant im-

provement of the segmental SNR at a reasonable computa-

tional complexity. They may be used e.g. in the variable rate 

speech coders 
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