
A FAST METHOD FOR COMPUTING THE OUTPUT OF RANK ORDER FILTERS

WITHIN ARBITRARILY SHAPED WINDOWS

Paul Murray and Stephen Marshall

Department of Electronic and Electrical Engineering, University of Strathclyde

Royal College Building, 204 George Street, G1 1XW, Glasgow, Scotland

phone: + 44 (0) 141 548 2205, fax: +44 (0) 141 552 2487, email: paul.murray@strath.ac.uk

web: www.strath.ac.uk/eee/research/cesip/

ABSTRACT

Rank order filters are used in a multitude of image process-

ing tasks. Their application can range from simple pre-

processing tasks which aim to reduce/remove noise, to more

complex problems where such filters can be used to detect

and segment image features. There is, therefore, a need to

develop fast algorithms to compute the output of this class of

filter. A number of methods for efficiently computing the

output of specific rank order filters have been proposed [1].

For example, numerous fast algorithms exist that can be

used for calculating the output of the median filter. Fast al-

gorithms for calculating morphological erosions and dila-

tions - which are also a special case of the more general

rank order filter - have also been proposed. In this paper we

present an extension of a recently introduced method for

computing fast morphological operators to the more general

case of rank order filters. Using our method, we are able to

efficiently compute any rank, using any arbitrarily shaped

window, such that it is possible to quickly compute the out-

put of any rank order filter. We demonstrate the usefulness

and efficiency of our technique by implementing a fast

method for computing a recent generalisation of the mor-

phological Hit-or-Miss Transform which makes it more ro-

bust in the presence of noise. We also compare the speed and

efficiency of this routine with similar techniques that have

been proposed in the literature.

1. INTRODUCTION

Rank order filters are a set of non-linear filters that are

commonly used in image processing to solve a number of

problems ranging from simple noise removal to more com-

plex tasks such as object recognition. The output of a rank

order filter, of rank k, at a point p in an image, may be com-

puted in two steps. First, we must sort into ascending order,

the image pixels that are coincident with a window, B, when

it is centred on a point, p, as it scans the image. The value

assigned to point p in the output image is then the value of

the kth order statistic of the image pixels that are coincident

with B when it is centred on p. For example, let

1 2, ... nx x x represent a set of arbitrary pixel intensities that

are coincident with some window, B, where ()n Card B=

i.e. the cardinality of the set B. If we sort these values in

ascending order such that,

(1) (2) ()... nx x x≤ ≤ ≤ ,

then ()kx represents the kth order statistic [2]. The output

of, ,B kζ a rank order filter, of rank k with window B, when

centred at a point p, is the value ()kx . For a point p, in an

image f, the output of the rank order filter may be computed

using,

{ }, () () th order statistic () .B k
b B

f p k f p bζ
∈

  = + 

Perhaps the best known and most commonly used rank

order filter is the median filter which is often used as a pre-

processing step in image analysis to remove/reduce noise

while preserving edges. Over the years this operator has re-

ceived a lot of attention and various techniques which exploit

the redundancy that exists when computing the median of a

set of pixels that coincide with a sliding window have been

proposed for reducing the execution time of this filter, [2],

[3] and [4]. In [3], Huang et al. present an efficient technique

for computing the output of a median filter. The authors ex-

ploit the fact that when calculating the output of this filter

using a sliding window, only a small number of the values

that are considered in the calculation of the median actually

change as the window moves from the current pixel to its

neighbour. This means that instead of re-sorting every value

in the window, we only need to consider the pixels that exit

the window and the new pixels that enter it as it is translated

from a pixel, p, to its neighbour before calculating the new

median. This leads to an increase in speed which is further

enhanced by a novel histogram technique that is used to sort

the values that are coincident with the window and efficiently

locate the median value. The authors describe and demon-

strate their method using square and rectangular windows,

and although it proves very effective and efficient, no tech-

nique is provided for the case that the window is of an arbi-

trary shape.

Standard morphological erosions and dilations are also a

special case of rank order filters. This is discussed in [4]

where it is shown that the minimum rank filter, where k = 1,

using a window B, is equivalent to an erosion, Bε , and the

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 1668

maximum rank filter, where k = n, using B, is equivalent to a

dilation,
Bδ . That is,

,1B Bε ζ=

and
,B B nδ ζ= .

In [1], Van Droogenbroeck and Talbot use a technique

that is similar to the one used in [3] to compute fast erosions

and dilations by searching the histogram for the minimum or

maximum rank respectively instead of the median. The major

contribution of this work however lies in the fact that the

authors extend the techniques proposed in [3] such that it is

possible to compute the output of the max/min filters using

any arbitrarily shaped window. This is of particular impor-

tance for morphological operations where the shape of the

structuring element (window) used to process an image is

critical.

More recently, [5] introduced a technique which always

outperforms the method proposed in [1] when erosions and

dilations are performed. Although the fastest known method

for calculating morphological applications is the one pre-

sented in [5], the authors state explicitly that their method

cannot be extended to the implementation of general rank

order filters.

In this paper, we extend the method described in [1] -

which demonstrates fast computation of max (dilation) and

min filters (erosion) - such that it is possible to compute the

output of any rank order filter. In addition to this, we provide

in Section 2, a mathematical formulation that can be used to

calculate the so called “critical points” of a sliding window

which is not given in [1]. We also demonstrate the usefulness

of our extension by using these fast rank order filters to im-

plement an extremely efficient Percentage Occupancy Hit-or-

Miss Transform (POHMT) [6] as described in Section 3. The

POHMT is a recently introduced extension the Hit-or-Miss

Transform (HMT) that is robust to noise and other distortions

that exist in digital images. Since this transform may be im-

plemented using rank order filters as explained in Section 3,

it is an ideal application to demonstrate the usefulness and

efficiency of the method proposed here. Finally, we compare

the efficiency of our routine with an optimised method for

calculating rank order filters to show that our technique is

faster.

2. A FAST METHOD FOR COMPUTING THE

OUTPUT OF AN ARBITRALILY SHAPED RANK

ORDER FILTER

In this section, we provide a concise description of the

methods proposed in [1] and [3] for efficiently calculating

the output of max, min and median filters before showing

how we have extended these in order to quickly compute the

output of any arbitrarily shaped rank order filter.

In [1], Van Droogenbroeck and Talbot use a sorting tech-

nique that is similar to the one used by Huang et al. in [3] to

sort the pixels that coincide with the window, B. The method

calculates a histogram of the image pixels that are coincident

with the window as it scans the image. It is then possible to

find the min/max

10 20 15 10

20 10 15 10

20 15 10 10

10 20 15 10

20 10 15 10

20 15 10 10

(c)

(b)(a)

(d)

10 15 20
0

1

2

3

4

5

6
Histogram of pixels coincident with window

Intensity

F
re
q
u
e
n
c
y

10 15 20
0

1

2

3

4

5

6
Intermediate Histogram

Intensity

F
re
q
u
e
n
c
y

10 15 20
0

1

2

3

4

5

6
Histogram of pixels coincident with window after updating

Intensity

F
re
q
u
e
n
c
y

med

med

Figure 1 - Illustration of the histogram method used to calculate the

median filter. (a) Arbitrary pixel values coincident with a 3x3 win-

dow before (red) and after translation (blue). Shaded area - pixels

that do not change as window is translated. (b) Histogram of pixels

in red window, median = 15. (c) Histogram of pixels that remain in

the window after those leaving it have been subtracted. (d) Histo-

gram with new values in blue window added, new median = 10.

from the sorted values in this histogram in order to calculate

the output of an erosion/dilation respectively at each image

pixel. However, instead of generating a new histogram for

each translation of the window in the image, the histogram is

simply updated by removing the values that exit the window

and adding those that enter it as it is translated from pixel, p,

to its neighbour. Updating the histogram is achieved by dec-

rementing the count in the bins that correspond to the values

exiting the window and incrementing the count in the bins

corresponding to the values entering it. The min/max value is

easily located using this technique since the pixels are al-

ready sorted in the histogram.

The authors point out in [1], that it is not always neces-

sary to consult the histogram when searching for the maxi-

mum or minimum rank. In the case of erosion (similarly for

dilation) it is only required to search for a new minimum if a

value entering the window during translation is lower than

the current minimum, or if the count in the histogram bin

corresponding to the current minimum reaches zero. For this

reason, the authors keep a record of the minimum value

which is read for each translation of the window. A new

minimum is only sought if one of the previous mentioned

situations occurs.

Although the histogram must be searched and consulted

much more frequently in the case of the median filter pro-

posed by Huang et al. in [3], it is possible to save time by

correctly directing the search. This is achieved by keeping a

count of the number of pixels in the histogram that have in-

tensity lower than the median. It is then possible to use this

count to decide whether we must search up or down the his-

togram to find the new median. Let the count of pixels that

have a grey level value less than the median be denoted c. If

c is greater than the rank k corresponding to the median

(window size / 2) we must look to the left (lower values

within the histogram) of the current median to find the new

one. If c is not greater than the rank k corresponding to the

median then the new median may either: remain unchanged;

or, if not, we must search to the right

1669

LB

EB

These pixels remain in the window

when it is translated 1 pixel to the right

X

X

X

Figure 2 - Illustration of the critical points in the window. (Top) red

window centred at (p). (Bottom) Blue window – red window trans-

lated 1 pixel right centred at point (p+1). (Right) Critical points of

the window (red = BL and blue = BE) and the points that remain in

the window (green) following a single pixel translation to the right.

(higher values within the histogram) of the current median to

find the new one.

We demonstrate in Figure 1, the property of the overlap-

ping window that is exploited to efficiently update the histo-

gram and show by example how to calculate the value of the

median using a 3x3 square window. It is more appropriate to

demonstrate the calculation of the median rather than erosion

or dilation since it facilitates the explanation of our extension

of this operator such that we can calculate the outputs of any

rank order filter.

Since the shape of a structuring element is extremely

important for morphological operations, Van Droogenbroeck

and Talbot [1], have extended the method proposed Huang et

al. in [3] such that it is possible to compute fast erosions and

dilations with any arbitrary window. Take for example the

square window used in Figure 1. The only pixels which need

to be updated in the histogram are those that are not included

in the intersection (shown in grey region of window in Figure

1) of the window and its translation as it moves from one

pixel to its neighbour. This concept is further illustrated in

Figure 2 where the pixels leaving the window are denoted BL

and those entering it are denoted BE. These points are called

the “critical points” in [1] and may be computed for any win-

dow, initially centred at some point p, using,

 ()() \ () (1)LB B p B p B p= +∩ (1)

 and ()(1) \ () (1)EB B p B p B p= + +∩ (2)

Given (1) and (2) it is possible to compute the critical

points for any arbitrarily shaped window and store these in

memory. For each translation of the arbitrary window, we

remove from the histogram the value of those pixels which

coincide with the points BL and add to the histogram the val-

ues in the image that coincide with the points of BE.

By combining the techniques demonstrated in Figures 1

and 2, it is possible to extend the methods described previ-

ously such that we can compute the output of any rank order

filter defined by any arbitrarily shaped window. By using the

method of computing the critical points of the window and

using these to update the histogram, we can then search for

any rank, 1 k n≤ ≤ , using the method described for calcu-

lating the median filter as demonstrated in Figure 1. That is,

by generating a histogram of the image pixels coincident

with the window and updating this histogram with the pixels

coincident with the critical points as the window moves, we

can exploit the redundancy associated with re-sorting these

values. Then, by keeping a count of the number of grey lev-

els that are lower than the intensity of the pixel in any rank k,

we can quickly compute the output of any rank order filter

defined by any arbitrary window B.

This can be further generalised if the rank is specified as

a percentage, where we would search for the P % rank, al-

lowing the rank to be specified independently of the size and

shape of the window. Regardless of the size or shape of the

window it is possible to identify the kth rank using,

floor () .

100

P
k Card B

 = × 
 

 (3)

Using (3) it is then possible to compute the output of any

rank order filter where for example a dilation would be im-

plemented when P=100%. Specifying the rank in this way is

particularly useful when implementing the POHMT as de-

scribed in Section 3.

3. A PERCENTAGE OCCUPANCY HIT-OR-MISS

TRANSFORM IMPLEMENTED USING RANK

ORDER FILTERS

We demonstrate here, the benefits of extending the method

proposed in [1] to the more general case of computing rank

order filters by using our extension described in Section 2 to

implement a fast POHMT. The POHMT is a recent exten-

sion of the well known morphological HMT [4] which re-

laxes the fitting criteria of the structuring elements (SEs)

such that it is robust when image data is noisy or otherwise

distorted. We provide a brief description of the POHMT

here, where the interested reader is referred to [6] for a fuller

explanation.

The HMT of a binary image X is the intersection of an

erosion of X and an erosion of the complement of X by a

complementary pair of SEs BFG and BBG respectively where

X, BFG and BBG are sets in 2D space,
2E = ℤ . BFG and BBG

are defined relative to a common origin in E where the

composite SE
FG BGB B B= ∪ and

FG BGB B∩ = ∅ . That is,

{ }() | () , () ,
c

B FG x BG xHMT X x E B X B X= ∈ ⊆ ⊆

where () { }|
x

B b x b B= + ∈ . A feature is detected by the HMT

if there is at least one point x E∈ such that the foreground

SE (BFG)x is included in X whilst the background SE (BBG)x

is simultaneously included in its complement, \cX E X= ,

see [4]. To remain consistent with the literature, we define

the notation used here. Let E represent a two dimensional

digital space (2E = ℤ) and E
T be the set of all grey level

functions from a subspace of E to T where { },T = ∪ +∞ −∞ℝ

or { },T = ∪ +∞ −∞ℤ such that T is a complete lattice with

1670

respect to the order “≤ ”. Let E
I T∈ , denote a greyscale im-

age, andB E∈ denote a flat SE.

The POHMT generalises the HMT by allowing partial

fitting of a composite SE such that objects of interest can be

detected in an image despite the presence of noise. Instead

of using traditional erosions and dilations which require a

perfect match between image features and the SEs, the

POHMT considers the extent to which a composite SE, B,

“fits” the image as it is raised through all grey levels, t T∈ ,

when its origin is coincident with a point x E∈ , x E∀ ∈ . A

point x E∈ is marked in the output of the POHMT if - when

the origin of the SE is coincident with x E∈ - P %, (where P

is set prior to running the POHMT using a design tool that

was introduced in [6]) of the points
FGB B∈ are beneath or at

the same level as the signal, while simultaneously, P % of the

points in
BGB B∈ are strictly above the signal. If, when the

origin of B is coincident with a point x E∈ , there is at least

one level t T∈ for which this condition is satisfied, we

deem that the composite SE is P % occupied in the image

and this point is marked in the output of the transform. We

may calculate the extent to which BFG and BBG are occupied

x E∀ ∈ and t T∀ ∈ , using,

 (){ }
(),

|
100

x t

FG FG FG

FG

FG

Card b B I x b t
PO

Card B

 ∈ + ≥
= × 
  

 (4)

 and (){ }
(),

|
100

x t

BG BG BG

BG

BG

Card b B I x b t
PO

Card B

 ∈ + <
= × 

  

 (5)

The output of the POHMT may then be calculated by

substituting (4) and (5) into,

[]

{ }
, ,

2 -1 if max min ,
() .

0 otherwise

x t x t

FG BG

n

FG BG
t T

B B B

PO PO P
POHMT x ∈

∈

   ≥  = 


∪

 (6)

A direct implementation of the POHMT which processes

the image in a single pass can be realised using (4), (5) and

(6). Ultimately, the POHMT relaxes the strict conditions of

the standard HMT by allowing the partial fitting of SEs

where the extent to which the SEs fit a feature in the image

may be measured using (4) and (5). A point x E∈ is then

marked in the output of the transform if t T∃ ∈ such that P %

of BFG fits the feature while P % of BBG fits its background.

 A common technique that can be used to relax the

strictness of morphological operators is to implement more

general rank order filters in place of traditional erosions and

dilations [4], [6]. Indeed, an equivalent and more efficient

implementation of the POHMT can be achieved using the

fast rank order filters described in Section 2. Instead of calcu-

lating POFG and POBG using (4) and (5) and subsequently the

output of the POHMT using (6) x E∀ ∈ and t T∀ ∈ , it is

equivalent to implement this transform using,

[]
,100 ,

2 -1 if () () () ()
() .

0 otherwise

FG P BG P

FG BG

n

B B

B B B

I x I x
POHMT x

ζ ζ
−

∈

    >    = 


∪

 (7)

It is clear from (7) that the POHMT may be calculated

using rank order filters where the parameter P in (6) may be

used to set the rank k for the filter. When implementing the

POHMT in this way, we look for places in an image where

the intensity in rank (100 – P) is greater for the elements of

BFG than the intensity in rank P for the elements of BBG. The

output of the POHMT contains marker pixels for all

x E∈ that are coincident with the origin of the SE when

this condition is satisfied.

We give an example here of how this may be imple-

mented. Say we determine for a particular image set, that P

should equal 75% for successful detection of the features

that we wish to locate in a noisy image. We can implement

the POHMT using rank order filters such that the image

pixel that is coincident with the origin of B is marked in the

output if the rank corresponding to (100 - 75)% of BFG is at

an intensity level greater than the level contained in the

rank corresponding to 75% in BBG. This is consistent with

the definition of the POHMT as given in (6).

4. EXPERIMENTAL RESULTS

We have implemented the technique described in Section 2

to measure the execution time of our generalised rank order

filters. In this section, we compare the speed of our C rou-

tine with an optimised Matlab function which calculates the

output of rank order filters using techniques described in [3]

and [7]. Further, to demonstrate the usefulness of this im-

plementation, we draw a comparison between the accuracy

and efficiency of a fast POHMT (implemented using the

rank order filters described here) with a similar technique

that is proposed in [8], which makes the HMT more robust

in the presence of noise. We show that our method achieves

the same results when processing the image data presented

in [8] but in a fraction of the time that is reported there.

We have measured the execution time of our routine

when processing a noisy 512 x 512, 8 bit, greyscale image

using an arbitrary window which increases in size. The num-

ber of elements in the window ranges from 289 points to

38809 points. We have computed the output of four rank

order filters where P = 1, P = 30, P = 50 and P = 100 and

have compared the execution time of our implementation and

the optimised Matlab routine for each window of increasing

size. The results of the comparison for each rank order filter

are shown in Figure 3. By reference of Figure 3, it is clear

that for all four rank order filters, and for all window sizes,

our implementation always outperforms the competing tech-

nique by a factor of around 2.

The method presented in [8] uses an extension of the

standard HMT to recognise so called “Low Surface Bright-

ness Galaxies” (LSBs) in a set of very noisy astronomical

1671

(a) (c)

(b) (d)

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 1

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 50

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 30

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 100

Matlab method

Proposed Method

Figure 3 - Speed comparison of our fast rank order filters with opti-

mised Matlab routine for increasing window size. (a) Minimum

filter, P = 1 (b) 30% filter, P = 30 (c) median filter, P = 50 (d)

Maximum filter, P = 100.

images. The authors state that an optimised implementation

(using heuristic techniques) of their routine takes on average

2 minutes to process one image.

An example of two of these images is shown in Figure

4(a). Clearly, the data is extremely noisy and there are a

number of features in the image, in addition the LSB, which

we do not wish to detect. We show in Figure 4(b) the results

that we achieve when processing this image using the fast

POHMT. Note that in Figure 4(b) we have performed open-

ing by reconstruction using the original image and the marker

image produced by the POHMT purely for visualisation of

the result. Clearly, the only feature that has been marked in

the output of the transform is the LSB. Further, the average

time taken to process one image using our method is 15 sec-

onds which is a significant improvement on the 2 minutes

reported in [8].

5. CONCLUSIONS

We have presented here, a fast algorithm for computing the

output of any rank order filter within any arbitrary window.

Our technique is a more general version of the method pre-

sented in [1] that can be used to compute the output of any

rank order filter and is not limited to special cases such as

erosion and dilation. In addition to this extension, we pro-

vide a mathematical formulation which is missing in [1] that

can be used to calculate the so called critical points of the

window that must be used when updating the histogram to

avoid redundant computation.

We have compared the efficiency of our rank order fil-

ters with an optimised Matlab routine for calculating the

same. In all cases our method is faster and executes in around

half of the time taken by the competing technique. Further,

we have shown that by using our fast rank order filters to

implement a fast POHMT, we obtain similar results to those

presented in [8], in a fraction of the time that is quoted there.

(b)

(a)

Figure 4 - Example of the fast POHMT detecting features of interest

in very noisy data.. (a) Source images containing LSB and other

features. (b) Output of the fast POHMT followed by an opening by

reconstruction.

While the application of our more general algorithm for

calculating the output of arbitrarily shaped rank order filters

has been restricted to a fast implementation of the POHMT it

is possible to use this technique in a number of applications.

In fact, any image processing pipeline which uses median

filters, morphological operations or more general rank filters

to reduce noise or to achieve some other result could see a

significant reduction in processing time by implementing

these stages using the method proposed here.

REFERENCES

[1] M. Van Droogenbroeck, H. Talbot, “Fast computation of mor-

phological operations with arbitrary structuring elements,” J. Pat-

tern Recognition Lett., vol. 17, no. 14, pp. 1451-1460, 1996.

[2] I. Pitas and A. N. Venetsanopoulos, "Order statistics in digital

image processing", Proc. IEEE, vol. 80, no. 12, pp. 1893 - 1921,

1992.

[3] T.S. Huang, G.J. Yang, and G.Y. Tang, “A fast two dimensional

median filtering algorithm,” IEEE Trans. Acoustics, Speech and

Signal Processing, vol 27, no. 1, pp. 13-18, Feb 1979.

[4] P. Soille, Morphological Image Analysis: Principles and Appli-

cations, New York: Springer, 2003.

[5] E. Urbach and M.H.F Wilkinson, “Efficient 2-D Grayscale Mor-

phological Transforms with Arbitrary Flat Structuring Elements”,

IEEE Trans. Image Processing, Vol. 17, No.1, Jan. 2008

[6] P. Murray and S. Marshall, “A New Design Tool for Feature

Extraction in Noisy Images based on grayscale Hit-or-Miss Trans-

forms”, IEEE Trans. Image Processing, doi:

10.1109/TIP.2010.2103952

[7] Haralick, Robert M., and Linda G. Shapiro, Computer and Robot

Vision, Volume I, Addison-Wesley, 1992.

[8] B. Perret, S.Lefèvre, Ch.Collet, “A robust hit-or-miss transform

for template matching applied to very noisy astronomical images,”

J. Pattern Recognition, Vol. 42, no. 11, pp. 2470-2480, Nov. 2009.

1672

