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ABSTRACT 

Rank order filters are used in a multitude of image process-

ing tasks. Their application can range from simple pre-

processing tasks which aim to reduce/remove noise, to more 

complex problems where such filters can be used to detect 

and segment image features. There is, therefore, a need to 

develop fast algorithms to compute the output of this class of 

filter. A number of methods for efficiently computing the 

output of specific rank order filters have been proposed [1]. 

For example, numerous fast algorithms exist that can be 

used for calculating the output of the median filter. Fast al-

gorithms for calculating morphological erosions and dila-

tions - which are also a special case of the more general 

rank order filter - have also been proposed. In this paper we 

present an extension of a recently introduced method for 

computing fast morphological operators to the more general 

case of rank order filters. Using our method, we are able to 

efficiently compute any rank, using any arbitrarily shaped 

window, such that it is possible to quickly compute the out-

put of any rank order filter. We demonstrate the usefulness 

and efficiency of our technique by implementing a fast 

method for computing a recent generalisation of the mor-

phological Hit-or-Miss Transform which makes it more ro-

bust in the presence of noise. We also compare the speed and 

efficiency of this routine with similar techniques that have 

been proposed in the literature.     

1. INTRODUCTION 

Rank order filters are a set of non-linear filters that are 

commonly used in image processing to solve a number of 

problems ranging from simple noise removal to more com-

plex tasks such as object recognition. The output of a rank 

order filter, of rank k, at a point p in an image, may be com-

puted in two steps. First, we must sort into ascending order, 

the image pixels that are coincident with a window, B, when 

it is centred on a point, p, as it scans the image. The value 

assigned to point p in the output image is then the value of 

the kth order statistic of the image pixels that are coincident 

with B when it is centred on p. For example, let 

1 2, ... nx x x represent a set of arbitrary pixel intensities that 

are coincident with some window, B, where ( )n Card B=  

i.e. the cardinality of the set B. If we sort these values in 

ascending order such that, 

 

 
(1) (2) ( )... nx x x≤ ≤ ≤ , 

then ( )kx represents the kth order statistic [2]. The output 

of, ,B kζ  a rank order filter, of rank k with window B, when 

centred at a point p, is the value ( )kx . For a point p, in an 

image f, the output of the rank order filter may be computed 

using,  

 

{ }, ( ) ( ) th order statistic ( ) .B k
b B

f p k f p bζ
∈

  = + 
 

 

Perhaps the best known and most commonly used rank 

order filter is the median filter which is often used as a pre-

processing step in image analysis to remove/reduce noise 

while preserving edges. Over the years this operator has re-

ceived a lot of attention and various techniques which exploit 

the redundancy that exists when computing the median of a 

set of pixels that coincide with a sliding window have been 

proposed for reducing the execution time of this filter, [2], 

[3] and [4]. In [3], Huang et al. present an efficient technique 

for computing the output of a median filter. The authors ex-

ploit the fact that when calculating the output of this filter 

using a sliding window, only a small number of the values 

that are considered in the calculation of the median actually 

change as the window moves from the current pixel to its 

neighbour. This means that instead of re-sorting every value 

in the window, we only need to consider the pixels that exit 

the window and the new pixels that enter it as it is translated 

from a pixel, p, to its neighbour before calculating the new 

median. This leads to an increase in speed which is further 

enhanced by a novel histogram technique that is used to sort 

the values that are coincident with the window and efficiently 

locate the median value. The authors describe and demon-

strate their method using square and rectangular windows, 

and although it proves very effective and efficient, no tech-

nique is provided for the case that the window is of an arbi-

trary shape.  

Standard morphological erosions and dilations are also a 

special case of rank order filters. This is discussed in [4] 

where it is shown that the minimum rank filter, where k = 1, 

using a window B, is equivalent to an erosion, Bε , and the 
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maximum rank filter, where k = n, using B, is equivalent to a 

dilation, 
Bδ . That is, 

 
,1B Bε ζ=  

and             
,B B nδ ζ= . 

 

In [1], Van Droogenbroeck and Talbot use a technique 

that is similar to the one used in [3] to compute fast erosions 

and dilations by searching the histogram for the minimum or 

maximum rank respectively instead of the median. The major 

contribution of this work however lies in the fact that the 

authors extend the techniques proposed in [3] such that it is 

possible to compute the output of the max/min filters using 

any arbitrarily shaped window. This is of particular impor-

tance for morphological operations where the shape of the 

structuring element (window) used to process an image is 

critical.   

More recently, [5] introduced a technique which always 

outperforms the method proposed in [1] when erosions and 

dilations are performed. Although the fastest known method 

for calculating morphological applications is the one pre-

sented in [5], the authors state explicitly that their method 

cannot be extended to the implementation of general rank 

order filters. 

In this paper, we extend the method described in [1] -

which demonstrates fast computation of max (dilation) and 

min filters (erosion) - such that it is possible to compute the 

output of any rank order filter. In addition to this, we provide 

in Section 2, a mathematical formulation that can be used to 

calculate the so called “critical points” of a sliding window 

which is not given in [1]. We also demonstrate the usefulness 

of our extension by using these fast rank order filters to im-

plement an extremely efficient Percentage Occupancy Hit-or-

Miss Transform (POHMT) [6] as described in Section 3. The 

POHMT is a recently introduced extension the Hit-or-Miss 

Transform (HMT) that is robust to noise and other distortions 

that exist in digital images. Since this transform may be im-

plemented using rank order filters as explained in Section 3, 

it is an ideal application to demonstrate the usefulness and 

efficiency of the method proposed here. Finally, we compare 

the efficiency of our routine with an optimised method for 

calculating rank order filters to show that our technique is 

faster.      

2. A FAST METHOD FOR COMPUTING THE 

OUTPUT OF AN ARBITRALILY SHAPED RANK 

ORDER FILTER 

In this section, we provide a concise description of the 

methods proposed in [1] and [3] for efficiently calculating 

the output of max, min and median filters before showing 

how we have extended these in order to quickly compute the 

output of any arbitrarily shaped rank order filter.  

In [1], Van Droogenbroeck and Talbot use a sorting tech-

nique that is similar to the one used by Huang et al. in [3] to 

sort the pixels that coincide with the window, B. The method 

calculates a histogram of the image pixels that are coincident 

with the window as it scans the image. It is then possible to 

find the min/max  

10    20    15    10

20    10    15    10

20    15    10    10

10    20    15    10

20    10    15    10

20    15    10    10

(c)

(b)(a)

(d)

10 15 20
0

1

2

3

4

5

6
Histogram of pixels coincident with window

Intensity

F
re
q
u
e
n
c
y

10 15 20
0

1

2

3

4

5

6
Intermediate Histogram

Intensity

F
re
q
u
e
n
c
y

10 15 20
0

1

2

3

4

5

6
Histogram of pixels coincident with window after updating

Intensity

F
re
q
u
e
n
c
y

med

med

 

Figure 1 - Illustration of the histogram method used to calculate the 

median filter. (a) Arbitrary pixel values coincident with a 3x3 win-

dow before (red) and after translation (blue). Shaded area - pixels 

that do not change as window is translated. (b) Histogram of pixels 

in red window, median = 15. (c) Histogram of pixels that remain in 

the window after those leaving it have been subtracted. (d) Histo-

gram with new values in blue window added, new median = 10.  

from the sorted values in this histogram in order to calculate 

the output of an erosion/dilation respectively at each image 

pixel. However, instead of generating a new histogram for 

each translation of the window in the image, the histogram is 

simply updated by removing the values that exit the window 

and adding those that enter it as it is translated from pixel, p, 

to its neighbour.  Updating the histogram is achieved by dec-

rementing the count in the bins that correspond to the values 

exiting the window and incrementing the count in the bins 

corresponding to the values entering it. The min/max value is 

easily located using this technique since the pixels are al-

ready sorted in the histogram.  

The authors point out in [1], that it is not always neces-

sary to consult the histogram when searching for the maxi-

mum or minimum rank. In the case of erosion (similarly for 

dilation) it is only required to search for a new minimum if a 

value entering the window during translation is lower than 

the current minimum, or if the count in the histogram bin 

corresponding to the current minimum reaches zero. For this 

reason, the authors keep a record of the minimum value 

which is read for each translation of the window. A new 

minimum is only sought if one of the previous mentioned 

situations occurs.  

Although the histogram must be searched and consulted 

much more frequently in the case of the median filter pro-

posed by Huang et al. in [3], it is possible to save time by 

correctly directing the search. This is achieved by keeping a 

count of the number of pixels in the histogram that have in-

tensity lower than the median. It is then possible to use this 

count to decide whether we must search up or down the his-

togram to find the new median. Let the count of pixels that 

have a grey level value less than the median be denoted c.  If 

c is greater than the rank k corresponding to the median 

(window size / 2) we must look to the left (lower values 

within the histogram) of the current median to find the new 

one. If c is not greater than the rank k corresponding to the 

median then the new median may either: remain unchanged; 

or, if not, we must search to the right  
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Figure 2 - Illustration of the critical points in the window. (Top) red 

window centred at (p). (Bottom) Blue window – red window trans-

lated 1 pixel right centred at point (p+1). (Right) Critical points of 

the window (red = BL and blue = BE) and the points that remain in 

the window (green) following a single pixel translation to the right. 

(higher values within the histogram) of the current median to 

find the new one. 

We demonstrate in Figure 1, the property of the overlap-

ping window that is exploited to efficiently update the histo-

gram and show by example how to calculate the value of the  

median using a 3x3 square window. It is more appropriate to 

demonstrate the calculation of the median rather than erosion 

or dilation since it facilitates the explanation of our extension 

of this operator such that we can calculate the outputs of any 

rank order filter.     

Since the shape of a structuring element is extremely 

important for morphological operations, Van Droogenbroeck 

and Talbot [1], have extended the method proposed Huang et 

al. in [3] such that it is possible to compute fast erosions and 

dilations with any arbitrary window. Take for example the 

square window used in Figure 1. The only pixels which need 

to be updated in the histogram are those that are not included 

in the intersection (shown in grey region of window in Figure 

1) of the window and its translation as it moves from one 

pixel to its neighbour. This concept is further illustrated in 

Figure 2 where the pixels leaving the window are denoted BL 

and those entering it are denoted BE. These points are called 

the “critical points” in [1] and may be computed for any win-

dow, initially centred at some point p, using, 

 

          ( )( ) \ ( ) ( 1)LB B p B p B p= +∩   (1) 

  and     ( )( 1) \ ( ) ( 1)EB B p B p B p= + +∩   (2) 

 

Given (1) and (2) it is possible to compute the critical 

points for any arbitrarily shaped window and store these in 

memory. For each translation of the arbitrary window, we 

remove from the histogram the value of those pixels which 

coincide with the points BL and add to the histogram the val-

ues in the image that coincide with the points of BE. 

By combining the techniques demonstrated in Figures 1 

and 2, it is possible to extend the methods described previ-

ously such that we can compute the output of any rank order 

filter defined by any arbitrarily shaped window. By using the 

method of computing the critical points of the window and 

using these to update the histogram, we can then search for 

any rank, 1 k n≤ ≤ , using the method described for calcu-

lating the median filter as demonstrated in Figure 1. That is, 

by generating a histogram of the image pixels coincident 

with the window and updating this histogram with the pixels 

coincident with the critical points as the window moves, we 

can exploit the redundancy associated with re-sorting these 

values. Then, by keeping a count of the number of grey lev-

els that are lower than the intensity of the pixel in any rank k, 

we can quickly compute the output of any rank order filter 

defined by any arbitrary window B. 

This can be further generalised if the rank is specified as 

a percentage, where we would search for the P % rank, al-

lowing the rank to be specified independently of the size and 

shape of the window. Regardless of the size or shape of the 

window it is possible to identify the kth rank using,  

 

 
floor ( ) .

100

P
k Card B

 = × 
 

 (3) 

 

Using (3) it is then possible to compute the output of any 

rank order filter where for example a dilation would be im-

plemented when P=100%. Specifying the rank in this way is 

particularly useful when implementing the POHMT as de-

scribed in Section 3.  

3. A PERCENTAGE OCCUPANCY HIT-OR-MISS 

TRANSFORM IMPLEMENTED USING RANK 

ORDER FILTERS 

We demonstrate here, the benefits of extending the method 

proposed in [1] to the more general case of computing rank 

order filters by using our extension described in Section 2 to 

implement a fast POHMT. The POHMT is a recent exten-

sion of the well known morphological HMT [4] which re-

laxes the fitting criteria of the structuring elements (SEs) 

such that it is robust when image data is noisy or otherwise 

distorted. We provide a brief description of the POHMT 

here, where the interested reader is referred to [6] for a fuller 

explanation. 

The HMT of a binary image X is the intersection of an 

erosion of X and an erosion of the complement of X by a 

complementary pair of SEs BFG and BBG respectively where 

X, BFG and BBG are sets in 2D space, 
2E = ℤ . BFG and BBG 

are defined relative to a common origin in E where the 

composite SE 
FG BGB B B= ∪  and

FG BGB B∩ = ∅ . That is, 

            

{ }( ) | ( ) , ( ) ,
c

B FG x BG xHMT X x E B X B X= ∈ ⊆ ⊆         

 

where ( ) { }|
x

B b x b B= + ∈ . A feature is detected by the HMT 

if there is at least one point x E∈  such that the foreground 

SE (BFG)x is included in X whilst the background SE (BBG)x 

is simultaneously included in its complement, \cX E X= , 

see [4].  To remain consistent with the literature, we define 

the notation used here. Let E represent a two dimensional 

digital space ( 2E = ℤ ) and E
T be the set of all grey level 

functions from a subspace of E to T where { },T = ∪ +∞ −∞ℝ  

or { },T = ∪ +∞ −∞ℤ  such that T is a complete lattice with 
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respect to the order “≤ ”. Let E
I T∈ , denote a greyscale im-

age, andB E∈ denote a flat SE. 

The POHMT generalises the HMT by allowing partial 

fitting of a composite SE such that objects of interest can be 

detected in an image despite the presence of noise. Instead 

of using traditional erosions and dilations which require a 

perfect match between image features and the SEs, the 

POHMT considers the extent to which a composite SE, B, 

“fits” the image as it is raised through all grey levels, t T∈ , 

when its origin is coincident with a point x E∈ , x E∀ ∈ . A 

point x E∈ is marked in the output of the POHMT if - when 

the origin of the SE is coincident with x E∈ - P %, (where P 

is set prior to running the POHMT using a design tool that 

was introduced in [6]) of the points 
FGB B∈ are beneath or at 

the same level as the signal, while simultaneously, P % of the 

points in 
BGB B∈ are strictly above the signal. If, when the 

origin of B is coincident with a point x E∈ , there is at least 

one level t T∈  for which this condition is satisfied, we 

deem that the composite SE is P % occupied in the image 

and this point is marked in the output of the transform. We 

may calculate the extent to which BFG and BBG are occupied 

x E∀ ∈ and t T∀ ∈ ,  using, 

 

 ( ){ }
( ),

|
100

x t

FG FG FG

FG

FG

Card b B I x b t
PO

Card B

 ∈ + ≥
= × 
  

     (4) 

                   

 and         ( ){ }
( ),

|
100

x t

BG BG BG

BG

BG

Card b B I x b t
PO

Card B

 ∈ + <
= × 

  

          (5) 

            

The output of the POHMT may then be calculated by 

substituting (4) and (5) into, 

 

 
[ ]

{ }
, ,

2 -1  if              max min ,  
( ) .

0       otherwise

x t x t

FG BG

n

FG BG
t T

B B B

PO PO P
POHMT x ∈

∈

   ≥  = 


∪

 (6) 

 

A direct implementation of the POHMT which processes 

the image in a single pass can be realised using (4), (5) and 

(6). Ultimately, the POHMT relaxes the strict conditions of 

the standard HMT by allowing the partial fitting of SEs 

where the extent to which the SEs fit a feature in the image 

may be measured using (4) and (5). A point x E∈ is then 

marked in the output of the transform if t T∃ ∈ such that P % 

of BFG fits the feature while P % of BBG fits its background. 

 A common technique that can be used to relax the 

strictness of morphological operators is to implement more 

general rank order filters in place of traditional erosions and 

dilations [4], [6]. Indeed, an equivalent and more efficient 

implementation of the POHMT can be achieved using the 

fast rank order filters described in Section 2. Instead of calcu-

lating POFG and POBG using (4) and (5) and subsequently the 

output of the POHMT using (6) x E∀ ∈ and t T∀ ∈ , it is  

equivalent to implement this transform using, 

 

[ ]
,100 ,

2 -1  if     ( ) ( ) ( ) ( )
( ) .

0       otherwise

FG P BG P

FG BG

n

B B

B B B

I x I x
POHMT x

ζ ζ
−

∈

    >    = 


∪

 (7) 

 

It is clear from (7) that the POHMT may be calculated 

using rank order filters where the parameter P in (6) may be 

used to set the rank k for the filter. When implementing the 

POHMT in this way, we look for places in an image where 

the intensity in rank (100 – P) is greater for the elements of 

BFG than the intensity in rank P for the elements of BBG. The 

output of the POHMT contains marker pixels for all 

x E∈ that are coincident with the origin of the SE when 

this condition is satisfied.  

We give an example here of how this may be imple-

mented. Say we determine for a particular image set, that P 

should equal 75% for successful detection of the features 

that we wish to locate in a noisy image. We can implement 

the POHMT using rank order filters such that the image 

pixel that is coincident with the origin of B is marked in the 

output if the rank corresponding to (100 - 75)% of BFG is at 

an intensity level greater than the level contained in the 

rank corresponding to 75% in BBG. This is consistent with 

the definition of the POHMT as given in (6).  

4. EXPERIMENTAL RESULTS 

We have implemented the technique described in Section 2  

to measure the execution time of our generalised rank order 

filters. In this section, we compare the speed of our C rou-

tine with an optimised Matlab function which calculates the 

output of rank order filters using techniques described in [3] 

and [7]. Further, to demonstrate the usefulness of this im-

plementation, we draw a comparison between the accuracy 

and efficiency of a fast POHMT (implemented using the 

rank order filters described here) with a similar technique 

that is proposed in [8], which makes the HMT more robust 

in the presence of noise. We show that our method achieves 

the same results when processing the image data presented 

in [8] but in a fraction of the time that is reported there.   

We have measured the execution time of our routine 

when processing a noisy 512 x 512, 8 bit, greyscale image 

using an arbitrary window which increases in size. The num-

ber of elements in the window ranges from 289 points to 

38809 points. We have computed the output of four rank 

order filters where P = 1, P = 30, P = 50 and P = 100 and 

have compared the execution time of our implementation and 

the optimised Matlab routine for each window of increasing 

size. The results of the comparison for each rank order filter 

are shown in Figure 3. By reference of Figure 3, it is clear 

that for all four rank order filters, and for all window sizes, 

our implementation always outperforms the competing tech-

nique by a factor of around 2.  

The method presented in [8] uses an extension of the 

standard HMT to recognise so called “Low Surface Bright-

ness Galaxies” (LSBs) in a set of very noisy astronomical  

1671



(a) (c)

(b) (d)

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 1

 

 

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 50

 

 

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 30

 

 

Matlab method

Proposed Method

0 1 2 3 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of elements in window

T
im

e
 (
s
e
c
o
n
d
s
)

Execution Time for increasing window when P = 100

 

 

Matlab method

Proposed Method

 

Figure 3 - Speed comparison of our fast rank order filters with opti-

mised Matlab routine for increasing window size. (a) Minimum 

filter, P = 1 (b) 30% filter, P = 30 (c) median filter, P = 50 (d) 

Maximum filter, P = 100. 

images. The authors state that an optimised implementation 

(using heuristic techniques) of their routine takes on average 

2 minutes to process one image. 

An example of two of these images is shown in Figure 

4(a). Clearly, the data is extremely noisy and there are a 

number of features in the image, in addition the LSB, which 

we do not wish to detect. We show in Figure 4(b) the results 

that we achieve when processing this image using the fast 

POHMT. Note that in Figure 4(b) we have performed open-

ing by reconstruction using the original image and the marker 

image produced by the POHMT purely for visualisation of 

the result. Clearly, the only feature that has been marked in 

the output of the transform is the LSB. Further, the average 

time taken to process one image using our method is 15 sec-

onds which is a significant improvement on the 2 minutes 

reported in [8]. 

5. CONCLUSIONS 

We have presented here, a fast algorithm for computing the 

output of any rank order filter within any arbitrary window. 

Our technique is a more general version of the method pre-

sented in [1] that can be used to compute the output of any 

rank order filter and is not limited to special cases such as 

erosion and dilation. In addition to this extension, we pro-

vide a mathematical formulation which is missing in [1] that 

can be used to calculate the so called critical points of the 

window that must be used when updating the histogram to 

avoid redundant computation. 

We have compared the efficiency of our rank order fil-

ters with an optimised Matlab routine for calculating the 

same. In all cases our method is faster and executes in around 

half of the time taken by the competing technique. Further, 

we have shown that by using our fast rank order filters to 

implement a fast POHMT, we obtain similar results to those 

presented in [8], in a fraction of the time that is quoted there. 

(b)

(a)

 

Figure 4 - Example of the fast POHMT detecting features of interest 

in very noisy data.. (a) Source images containing LSB and other 

features. (b) Output of the fast POHMT followed by an opening by 

reconstruction. 

While the application of our more general algorithm for 

calculating the output of arbitrarily shaped rank order filters 

has been restricted to a fast implementation of the POHMT it 

is possible to use this technique in a number of applications. 

In fact, any image processing pipeline which uses median 

filters, morphological operations or more general rank filters 

to reduce noise or to achieve some other result could see a 

significant reduction in processing time by implementing 

these stages using the method proposed here. 
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