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ABSTRACT

This paper introduces a novel framework for tracking the TDOAs
of multiple sources whose acoustic activities overlap in time. As-
suming the number of sources to be known, multiple disjoint par-
ticle filters estimate the posterior kernel density of the propaga-
tion parameters. An approximated instantaneous kernel density
is provided through the Generalized State Coherence Transform,
which improves the source interference rejection across the dimen-
sions using a frequency-normalized non-linearity. Results obtained
from an experimental evaluation on synthetic data show that the
proposed framework enables localization and tracking of bidimen-
sional TDOAs for 7 competitive sources recorded under reverberant
conditions and with only 3 microphones.

1. INTRODUCTION

Accurate estimation of the time difference characterizing the ar-
rivals of acoustic waves at two microphones is a crucial step in many
speech related applications [1]. Recently, scenarios where several
audio sources are active at the same time have received an increas-
ing interest from the scientific community calling for effective solu-
tions for tracking of multiple targets, e.g. audio-video conferencing,
home automation, etc.. In the context of the Blind Source Separa-
tion (BSS) effective methods for localization of multiple sources
have been proposed as the Generalized State Coherence Transform
(GSCT) [2], which was also shown to be a robust solver for the
permutation problem of the frequency-domain BSS [3]. Observa-
tion vectors, describing the acoustic propagation of the sources,
are generated from the demixing matrices estimated by applying
a complex-valued Independent Component Analysis (ICA) to dif-
ferent frequency bins. By a non-linear integration of the multidi-
mensional phase coherence of the observed vectors, the GSCT gen-
erates multimodal and multivariate likelihoods where the maxima
correspond to the TDOA vectors that best fit the observed propa-
gation parameters of the sources. With a proper choice of the non-
linearity the GSCT approximates the kernel density estimation of
the multidimensional time-delay propagation [4]. However, as the
dimensionality increases an exhaustive search for the maxima in
the multivariate likelihoods becomes inefficient and computation-
ally infeasible. Furthermore, the GSCT is able to give an instanta-
neous picture of the acoustic propagation but cannot explicitly deal
with time-varying mixing conditions.

Sequential Bayesian methods and Particle Filters (PF) repre-
sent an effective solution to the acoustic tracking task by evaluating
the posterior probability density function (PDF) of the target state
based on all available measurements [5, 6]. Approaches combin-
ing BSS and PF have been recently presented in [7] and [8]. Fol-
lowing this direction, we propose a general framework for multiple
source tracking which combines the robustness of the GSCT with
the flexibility of PF approaches. Although the multimodal nature
of GSCT suggests the adoption of multidimensional state spaces,
sources are tracked in a disjoint fashion so that curse of dimension-
ality is avoided. A kernel-like measurement exclusion approach is
adopted to avoid the collapse of different filters on the same target.
The framework operates in the TDOA domain in order to define
a source tracking method which is as general as possible. In fact,
if the microphone geometry is known the source spatial locations
can be derived from the estimated TDOAs. On the other hand the
TDOA estimates can be used to approximate the mixing parameters
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of the sources and opportunely drive BSS algorithms. Note that in
this work we assume that the number of active sources is known and
focus instead on accuracy and robustness of tracking.

This paper is organized as follows. Section 2 describes the
GSCT technique while Section 3 introduces the sequential Bayesian
tracking and the adopted PF implementation. Section 4 describes
the experimental set up and the obtained results. Finally, Section 5
concludes the paper with final remarks and possible future research
directions.

2. GENERALIZED STATE COHERENCE TRANSFORM
AND FREQUENCY-DOMAIN BSS

Let us assume that N sources are recorded by an array of M elements
and indicate with A,,, the generic impulse response between the m-
th microphone and n-th source. The sampled signal acquired by
the m-th microphone is the result of the combination of the filtered
versions of all the signals emitted by the sources:
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where 1, (1) is the environmental noise, / denotes sample index and
* indicates convolution. By taking the Discrete Fourier Transform
(DFT) of the impulse responses we define the acoustic propagation
observation vector of the n-th source at the k-th frequency bin as:
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where H (k) is the M x N mixing matrix corresponding to the trans-
fer function between sources and microphones, a, and b, indicate
the microphone indexes of a generic p-th microphone pair and P is
the total number of used microphone pairs. The ratios in eq. 2 can
be modeled as:
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where f} is the real frequency corresponding to the k-th frequency
bin and A% (k) is the time-delay of the n-th source related to the
microphone pair p at the k-th bin, which is frequency invariant
in anechoic environments. If N = M an estimation of H(k) can
be obtained through a complex-valued ICA algorithm, indepen-
dently applied to the time-series of each frequency bin, resulting
from the Short-Time Fourier Transform (STFT) of the recorded
mixtures [9]. Taking the inverse of each ICA demixing matrix
W(k), a scaled and permuted estimation of H(k) is obtained as

Wl (k) = H(k)II(k)A(k), where TI(k) and A (k) are a generic
permutation and scaling matrices and H is the underlying mixing
matrix estimated by the ICA algorithm. Thanks to the scaling in-
variance, eq. 2 can be computed substituting W*I(k) in place of
H(k). Note that however, the permutation ambiguity is not solved.
In fact the T, computed through W~ (k) does not necessarily rep-
resent the acoustic propagation of the same source for each fre-
quency bin.
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In [2] it was shown that even if N > M (i.e. the separation prob-
lem is underdetermined) it may be assumed that the dominance of
the sources is sparse in the time-frequency domain. As a conse-
quence, different ICA adaptations may be run at each frequency bin
k and several time-segments to obtain a set of observation vectors
which gives a full description of the acoustic propagation of all the
sources. In this paper we focus only on the frequency sparseness
and consider the GSCT obtained using observations derived from
a single time-segment. As explained in the next session, temporal
redundancy will be exploited through the use of particle filtering.

Once 1, have been estimated, a likelihood of multidimensional
TDOAs can be obtained through the GSCT as:

GSCT(T) =) ) g[D(Tu, c(k,T))] “)
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where g[-] is a generic non-linear decreasing monotonic function,
D(-,-) is a distance metric and c(k,T) is the ideal propagation
model defined as:

c(k,T) = [ 2PAT .. o= 2mhT] ®)

where T = [t!,---  7%] is the vector of time-delay parameters. Ac-
cording to eq. 4, GSCT has the shape of a kernel estimator and the
non-linearity g[-] may be optimized by a proper statistical model for
T, Assuming that the reverberation is diffuse and that the sound
propagating over the direct-path prevails, the ratios in eq. 2 may
be considered a transformed sample of normally distributed time-
delays, centered on the true TDOAs. Since the ratios describe the
acoustic propagation of multiple sources, the underlying distribu-
tion of the corresponding time-delays is expected to be multimodal.
If the distribution is approximated with a mixture of spherical Gaus-
sians of same variance, up to a scaling factor, a kernel density esti-
mation is obtained as:
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where #/ is the kernel bandwidth and T is the time-delay obser-
vation vector corresponding to T,;. Because of the phase wrap-
ping, T, can not be unambiguously determined by T,;. A way
to circumvent such ambiguity is to consider all the possible TDOA

vectors T, according to the inverse transformation of eq. 2, real-
izing then a mixture of wrapped Gaussian distributions [10]. How-
ever, the computation of the resulting likelihood becomes infeasi-
ble for P > 1 since the amount of the possible TDOA vectors T
dramatically increases with the number of phase wrappings (which
depends on the frequency and microphone spacing) [4]. It can be
shown [4] that f(T) is efficiently approximated in correspondence
of the modes of the distribution through the GSCT, when D(-,-) is
the Euclidean distance and g[] is a frequency-dependent Gaussian
kernel:
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One of the advantages introduced by eq. 7 compared with the
original frequency-independent non linearity proposed in [2] (i.e.
glx] = 1 —tanh[er - x] in eq. 4) is that the resulting likelihoods have
a smoother representation in the time-delay domain. Figure 1 pro-
vides a comparison between examples of bidimensional likelihoods
obtained for a real-world case of three sources and three micro-
phones whose spacing is 0.3 meters and for moderate reverberation
(i.e. Tgo = 300ms). It can be noted that the likelihood computed
with the original non-linearity in [2] has a very sparse and sharp
representation with three main maxima at points corresponding to
the time-delays of each source. On the other hand the GSCT com-
puted with eq. 7 has a much smoother representation and with less
artifacts. This is a desired characteristic for the likelihood function
in order to be successfully combined with a particle filtering ap-
proach. It is known that likelihoods very sharp and with many local
maxima do not marry well with a Bayesian framework.
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(a) GSCT computed as in [2] (b) GSCT computed as in eq. 7

Figure 1: Comparison between bidimensional GSCT likelihoods for
N=3,M=3and P =2.

In general the PDF of the time-delays may be approximated by
a sparse mixture of Gaussians, i.e. the Gaussian components related
to the propagation of different sources slightly overlap to each other.
According to this assumption if there is no spatial aliasing, with an
appropriate choice of the bandwidth the kernel is able to isolate the
contribute of state observations related to different sources. The
resulting likelihood is then expected to be equivalent to the sum
of the single distributions defined by each Gaussian. If the band-
width is overestimated the resolution of the kernel might be not
sufficiently high to isolate observation vectors related to different
sources. Specifically, the choice of the bandwidth becomes crucial
when P > 1 since the likelihood may be enhanced at point corre-
sponding to ghost locations, i.e. the cross points between the modes
of the density marginalised in each dimension.

The theoretical reasons for which the likelihood is enhanced in
these points lies in the interpretation of the statistical model con-
sidered for the underlying time-delays [4][11]. If there is no spatial
aliasing the time-delay propagation of each source is modeled by a
single Gaussian, whose variance depends on the reverberation and
the mean on the source location with respect to the microphones.
In these conditions the degree of sparseness of the Gaussian com-
ponents depends on the spatial diversity of the source location and
on the reverberation. In the presence of spatial aliasing, due to the
wrapping uncertainty, the time-delay density related to the propa-
gation of each individual source is equivalently represented by a
mixture of wrapped Gaussians [10] and eq. 7 would approximates
the wrapped kernel density. Consequently, the resulting variance of
each individual time-delay density is larger than the aliasing-free
case and the sparseness assumption, which is on the basis of the
successfulness of the kernel, does not hold anymore. In this case
the bandwidth needs to be reduced, theoretically till the limit case
where the kernel becomes an impulse centered in T. However, due
to the low data density, the smaller is the kernel the noisier is the
resulting likelihood.

An alternative way to tackle this problem is to improve eq. 7 in
order to explicitly take into account the interference problem that
occurs if the bandwidth is overestimated [11]. An effective im-
provement is obtained modifying eq. 7 as follows:
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In our recent contribution we proposed D(-,-) to be a generic re-
shaped y-norm in order to obtain a better reduction of the source
interference in the multidimensional space, consequently reducing
the likelihood at the ghost locations [11]. In this work we choose
D(-,-) to be the Chebyshev norm, i.e. ||c(k,T) — Tk||e, Which is
sufficient to give stable performance for the considered microphone
spacings. A more detailed analysis of the meaning of eq. 8 and of
its behavior in different conditions is provided in [11].

With the above kernel definitions the GSCT likelihood be-
comes an approximated kernel density and can be directly used in
a Bayesian statistical framework for source localization and track-
ing. Moreover, the source locations can be estimated from the full
likelihood without modeling the joint conditional PDF because we
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assume that sources dominate different directions of propagation,
and hence the corresponding time-delays are distributed in different
hyperspheres of the whole multidimensional TDOA space.

3. SEQUENTIAL BAYESIAN TRACKING

In a generative Bayesian tracking framework the target states x; at
time #, in our case the set of TDOAs, are obtained by evaluating
the PDF p(x;|z;,), where zj, = {z],...,2} is the set of all the
available observations up to time 7. Assuming that p (x;_1|Z1,—1)
is known and that the target states evolve as a 1-st order Markov
chain, the PDF can be iteratively computed by adopting the two
following prediction-update steps [6, 12]:

pealzit) = [ pGubxi)pGooilzi ) dxiy

p(xt|z1e) o< plz]xe) p(x¢]Z12-1) €]
The above recursion is completely described by the dynamic model
p (x¢|x;—1), that describes the state evolution over time, the obser-
vation likelihood p (z;|x,) and the initial distribution p (x¢).

When assumptions on Gaussianity and linearity of the problem do
not hold a closed-form derivation of the involved distributions is
not feasible. A solution is offered by PF methods that represent the
(i)

PDF at time ¢ through I weights w, /i = 1, ..., associated to a set

of samples of the state space (particles) x,(l). Among several avail-
able implementations, whose main differences lie in the adopted
importance distribution and resampling strategy, Sampling Impor-
tance Resampling (SIR) has been shown to marry well with tracking
of multiple acoustic sources [13, 14].

3.1 PF Implementation
In the proposed tracking framework, the target state is defined in

the TDOA domain x; = [t!,--+ 7] " and particle weights are ob-
tained evaluating the GSCT function of eq. 8.

When N targets are being tracked the above Bayesian framework
can be adopted by considering the joint state that combines each
single target state x; = [x}, e ,xf\' } Unfortunately, joint tracking
suffers from the so called “curse of dimensionality”: the number of
particles needed as well as the computational costs grow exponen-
tially with the number of targets. This problem can be circumvented
tracking the sources in a disjoint fashion, i.e. instantiating a filter
for each target. This can be done if the PDF is separable:

p(xi|z1—1) = [ [ p(x'Z1:1-1) (10)

so that posteriors are approximated by independent sets of weighted
samples (xt('i'i , wt(fl; . Under this assumption, the state evolution of
each target is modeled, independently, as a Brownian movement by
adding Gaussian noise to the previous particle positions:

x; ~ N (X;Lhc;l)

As for the observation likelihood, thanks to the kernel approxima-
tion of GSCT, it can in turn be assumed to be locally separable,
allowing a sequential independent update of the weights of each
filter. However, since filters evolve independently, a data exclu-
sion process is necessary to encourage filters to track all the targets.
Each particle weight is thus computed using a mask whose aim is
to remove the already tracked modes in the likelihood:

p (Zt |Xz(ni)>
v (£ (")) Y6 )

where /() is a generic contrast function (e.g. w(x) = x°) and X, =
[x},..., %] is the maximum a posteriori estimation of the combined
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Figure 2: Overall block diagram of the proposed tracking frame-
work.

200 ©

Figure 3: The experimental setup. 3 microphones capture the sig-
nals emitted by up to 7 sources positioned along a circle whose
radius is 1.5 meters. The angular distance between sources is 20°.

state space:

I = argmaxw(’”) (12)
l
% = A (13)
while Y(+) is defined as:
(i) oy 0 ifminyg, |f" - x| < b
T , = v#n At t > 14
(™, %) { 1 ! otherwise. (14

The mask Y(-,-) implicitly solves the data association problem us-
ing a minimum distance criterion. The function y(-) in eq. 11 is
adopted to increase the concavity of the GSCT function around
the modes and speed up the particle convergence toward the target.

Note that the likelihood of the particles f (xl(ni)> is dynamically
normalized in the range between 0 and 1. Finally, once the particle
weights have been normalized in order to sum up to the unity, the
target state estimation X' is obtained as the expectation of the PDF
approximated by the n-th set of weighted particles:

%= [xipGladxt = Tu™as)
i

Note that f <xt("i)) is the GSCT function computed as in eq. 8

using the observation vectors T,; estimated by ICA at the current
time 7. In our implementation ¢ represents an index for discrete
time instants since, as explained in section 4, the estimation of the
observation vectors is performed applying a batch off-line ICA im-
plementation over sliding segments.

It is worth underlining that even though the propagation model
should ensure spatio-temporal continuity, trajectory swaps may oc-
cur between the filters, in particular when the speech activities of
some sources interrupt for some frames. The association ambigu-
ity between targets and filters is known as “external permutations”
in the BSS community. Although this problem is beyond the goal
of this paper, trajectory swaps can be mitigated by finding, at each
iteration, the permutation that maximizes the continuity between
contiguous estimated state vectors.

4. EXPERIMENTAL EVALUATION

The proposed approach is evaluated on a synthetic data set gener-
ated with the image method [15] in a 5 X 8m room with reverber-
ation time 0.5s. Very challenging scenarios are taken into account
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Figure 4: Mean NTVE and mean HR when N =5 and the inter-
microphone distance d is 0.2 and 0.3 meters. The GSCT is com-
puted as in [2].

where only three microphones are used to acquire the speech signals
emitted by several omnidirectional sources whose acoustic activi-
ties overlap in time. For each scenario several runs are performed
to account for the stochastic nature of the tracking framework.

4.1 Algorithm description

Figure 2 sketches a block diagram of the data flow in the proposed
tracking scheme. Time-domain signals, sampled at f; = 16kHz
are transformed by an STFT analysis with windows of 1024
points shifted of 256 samples. The Recursively Regularized
implementation of ICA (RR-ICA) [9] is independently applied to
sliding blocks of 30 STFT frames, shifted of 15 frames. Note, no
link is defined between ICA adaptations of different blocks, so
that a batch off-line ICA implementation is realized. Denoting
the maximum allowable TDOA as Tmax = 5, where ¢ and d are
the sound speed and the microphone spacing respectively, the
bandwidth £ is fixed to h = %.

As far as the particle filter is concerned, 700 particles are allocated
for each filter while o] = Tz‘“—(a)x in the dynamical model. In order to
ensure that filters keep monitoring the whole state space, the 20%
of particles with lowest weigths are propagated with a higher speed
(o) = %) with the intent to alleviate the effects of potential local
maxima in the likelihood. Filters are initially instantiated randomly
in the state space (i.e. p(xj) is uniform).

4.2 Metrics

Performance is measured in terms of Normalized TDOA Vector Er-
ror (NTVE) which is the euclidean distance between the hypothe-
sized target position X} and the reference one X/, normalized with

respect to the maximum distance 2 Tpax VP:

%7 — %/

g =100- ————.
' ZTmax\/F

(16)

Each estimation is further labeled as correct if the localization error
is below 5%. This allows the introduction of the Hit Rate (HR) as
the ratio between the number of correctly tracked targets over the
number of targets. We further introduce the mean NTVE and mean
HR which are the average over all the experimental runs of NTVE
and HR respectively.

Since the addressed localization task does not foresee any source
identification, estimated and reference positions are associated on
a minimum-distance maximum-hit criterion: among all the possi-
ble permutations, the one with lowest average localization error and
highest hit rate is selected.

mean NTVE

mean HR

time (s)

Figure 5: Mean NTVE and mean HR when N =5 and the inter-
microphone distance d is 0.2 and 0.3 meters. The GSCT is com-
puted as in eq. 8.
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Figure 6: Mean NTVE and mean HR when N = 7 and the inter-
microphone distance d is 0.2 and 0.3 meters. The GSCT is com-
puted as in eq. 8.

4.3 Static Sources

We consider a first scenario where 5 and 7 static sources are po-
sitioned on a circle at 1.5m from the microphones, as depicted in
Figure 3. The length of the speech signals is 10 seconds. Figure 4
shows the envelopes of mean NTVE and mean HR for 5 sources
considering two different microphone distances (i.e d = 0.2 and
d = 0.3) when the GSCT is computed with the original non-linearity
in [2]. As expected, the PF cannot converge correctly due to the
sparse and sharp representation of the likelihoods. Figure 5 shows
the same envelopes but obtained computing the GSCT as defined
in eq. 8. Note that the proposed method converges very quickly
to all the target positions and keep track of them ensuring an av-
erage error that is around 5% of the maximum error. It is worth
noting that the system convergence time and stability are slightly
worse when d = 0.3. Large microphone distances allow higher spa-
tial resolution and coverage. Unfortunately, as the spatial aliasing is
increased, the resulting GSCT modes become sharper, which makes
them harder to detect. Moreover the likelihood in correspondence of
ghost locations could result enhanced, affecting the stability of the
system. In order to tackle this problem future experiments will be
carried out exploiting the appealing behavior of ”Super-Chebishev”
metrics, as proposed in [11]. Figure 6 reports the results obtained
when 7 sources are active, computing the GSCT as in eq. 8. The
plots confirm that the proposed method can accommodate 7 active
sources ensuring not only very good spatial detection but also pro-
viding very high accuracy and quick convergence. Finally, Figure 7
reports the average performance for 7 sources when d = 0.2 and
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Figure 7: Mean NTVE and mean HR computed for different num-
bers of particles, when N = 7 and the inter-microphone distance d
is 0.2. The GSCT is computed as in eq. 8.
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Figure 8: Reference (continuous line) and estimated (points) trajec-
tories on each dimension for 5 sources moving in circles.

different particle numbers are adopted. It is clear how increasing
the number of hypotheses (i.e. number of particles) tends to speed
up the convergence process. Conversely, the accuracy seems not to
take benefit from a large number of particles.

4.4 Moving Sources

Since the PF methods have been devised specifically for source
tracking, a further experiment is conducted where 5 sources move
along circles with radius 0.5m, completing a full loop. Circle cen-
ters are the source positions in Figure 3. The length of the speech
signals is approximately 15 seconds. Figure 8 reports the estimated
source trajectories against the references in the TDOA domain and

shows that the adopted dynamic model is suitable for both static as

well as moving sources!.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel framework for tracking mul-
tiple acoustic sources with a limited amount of sensors. Our method
consists in a disjoint particle filter implementation whose likelihood
is obtained from the GSCT function. Experimental results show
that the proposed method is capable of locating up to 7 sources in
a reverberant environment using only 3 microphones. Experiments
show also that the proposed method can effectively track 5 moving
sources in the same reverberant set up.

A video clip showing a real-time system implementing the described
method is available at http://shine.fbk.eu/research/demoGSCT.

It is worth noting that the GSCT does not require any particular
geometry for the microphone array. On condition that ICA is able
to correctly estimate the mixing parameters, multiple distributed mi-
crophone pairs can be used in order to increase both resolution and
coverage in the spatial domain [16]. Thus, future works will con-
cern possible extensions to distributed microphone array contexts
for both source separation, source position and orientation estima-
tion [17].

Concerning trajectory swaps, future investigation will focus on
robust spectral features for measurement-target association.

A further open issue is related to the detection of the number
of sources which is not addressed in this paper. Solutions based on
the so called Track-Before-Detect paradigm already exist and will
be taken into account for future developments [13, 14].
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