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ABSTRACT
In this paper, we propose a novel online scheme for the sparse adap-
tive filtering problem. It is based on a formulation of the adaptive
filtering problem as a minimization of the sum of (possibly nons-
mooth) convex functions. Our proposed scheme is a time-varying
extension of the so-called Douglas-Rachford splitting method. It
covers many existing adaptive filtering algorithms as special cases.
We show several examples of special choices of the cost functions
that reproduce those existing algorithms. Our scheme achieves a
monotone decrease of an upper bound of the distance to the solution
set of the minimization under certain conditions. We applied a sim-
ple algorithm that falls under our scheme to a sparse echo cancella-
tion problem where it shows excellent convergence performance.

1. INTRODUCTION
Recently, there has been an increased interest in developing adap-
tive filtering algorithms which exploit the sparsity of the unknown
system in its estimation. Many adaptive filtering algorithms min-
imize a time-varying cost function, in the sense of keeping the
value as low as possible, to obtain a replica of the unknown system.
The sparsity prior is utilized by incorporating a sparsity-inducing
term (usually a nonsmooth convex function) into the cost function,
for instance adding a term that includes the (weighted) !1 norm
(see for example [3, 17, 23, 28]). One example for such an algo-
rithm is the adaptive proximal forward-backward splitting (APFBS)
scheme [17, 28], which is a time-varying extension of the proxi-
mal forward-backward splitting [6, 20]. The APFBS scheme at-
tempts to minimize a time-varying cost function which is a sum of
one smooth and one nonsmooth convex function. It covers many
conventional standard/proportionate-type algorithms, for example,
NLMS [18]/APA [12, 19] and PNLMS [7]/PAPA [1, 10]. An accel-
eration of APFBS was proposed [29].

Still, the cost functions in most adaptive filtering algorithms
are restricted to the following case. The cost function has to be the
sum of a smooth convex function and a nonsmooth convex function.
Hence it is of great interest to extend the class of cost functions
applicable in adaptive filtering algorithms, thereby giving way to
novel adaptive filtering algorithms.

In this paper, we propose an adaptive filtering scheme which
can utilize the sum of multiple nonsmooth convex functions. The
general scheme is based on the application of the so-calledDouglas-
Rachford splitting algorithm [4, 27] which minimizes the sum of
two (possibly nonsmooth) convex functions by the iterative use of
the proximity operator [6, 16] of each convex function. We ex-
tended the Douglas-Rachford splitting algorithm to the setting of a
time-varying cost function.

The adaptive filter in our scheme is defined as an application
of the proximity operator to an auxiliary sequence. This sequence
has the nice property that an upper bound of its distance to the in-
verse image (w.r.t. the proximal map) of the minimizer of the cost
function decreases monotonically in each time-step.

This scheme reproduces well-known adaptive filtering algo-
rithms, for example, NLMS [18]/APA [12, 19], PNLMS [7]/PAPA
[1, 10] and the APFBS scheme [17, 28] by setting the time-varying
cost function accordingly. Sparsity-aware adaptive filtering algo-
rithms within our scheme are obtained for instance by incorporating
a time-varying weighted !1 norm.
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Figure 1: Adaptive filtering scheme.
We can further generalize our scheme to the case where the cost

function is the sum of more than two convex functions by making
use of a product space formulation [5, 8, 9, 21]. The result is an
online scheme for the minimization of the sum of multiple time-
varying convex functions. As an example of this scheme, we pro-
pose a sparsity-aware adaptive learning in transform domain.

As a numerical example, we present a sparse echo cancellation
setting. In this example, a simple algorithm that falls under our
scheme shows excellent convergence performance.

2. SPARSITY-AWARE ADAPTIVE FILTERING PROBLEM
Let R and N denote the sets of all real numbers and nonnegative
integers, respectively. Denote the set N\{0} by N∗ and transposi-
tion of a matrix or a vector by (·)T . Suppose that we observe the
output sequence dk ∈R (k ∈N) that obeys the following model (see
Fig. 1):

dk = uTk h
∗ +nk,

where k ∈ N denotes the time index, N ∈ N∗ the tap length, uk :=
[uk,uk−1, . . . ,uk−N+1]

T ∈RN a known vector defined with the input
sequence uk ∈ R (k ∈ N), h∗ ∈ RN the unknown system to be esti-
mated (e.g., echo impulse response), and nk ∈ R the noise process.
Throughout this paper we consider h∗ ∈ RN to be sparse, i.e., few
coefficients are significantly different from zero (active coefficients)
and many coefficients are zero or near-zero (inactive coefficients).

For a finite number of measurements r ∈ N∗ (usually r $ N),
the sequence (dk)k∈N ⊂ R can be written compactly in the follow-
ing form:

dk =UT
k h∗ +nk,

where dk := [dk,dk−1, . . . ,dk−r+1]T ∈ Rr, Uk :=
[uk,uk−1, . . . ,uk−r+1] ∈ RN×r, and the noise vector
nk := [nk,nk−1, . . . ,nk−r+1]T ∈ Rr for all k ∈ N. In addition,
we define the estimation residual functions !k : RN → Rr for k ∈ N

by
!k(h) :=UT

k h−dk, h ∈ R
N . (1)

A major goal of the adaptive filtering problem is to ap-
proximate the unknown system h∗ by the adaptive filter hk :=
[h(k)
1 ,h(k)

2 , . . . ,h(k)
N ]T ∈ RN with the knowledge on (ui,di)ki=0 and

an initial estimate h0 ∈ RN .

3. TIME-VARYING EXTENSION OF
DOUGLAS-RACHFORD SPLITTINGMETHOD

For every k∈N, letQk ∈RN×N be a symmetric and positive definite
matrix which is used to define the inner product 〈x,y〉Qk := xTQky
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and its induced norm ‖x‖Qk :=
√

〈x,x〉Qk for all x,y ∈ RN . We
consider the situation where the unknown system h∗ ∈ RN can be
expected to lie in the neighborhood of "k := argmin

h∈RN
#k(h) += ∅,

where #k : RN → (−$,$], k ∈ N are time-varying cost functions.
Therefore our goal is to track the set "k with the adaptive filter hk.
Most adaptive filtering algorithms implicitly utilize this simple idea.

3.1 Proposed scheme for the sum of two convex functions
Suppose that#k can be decomposed as the sum of two functions:

#k(h) := %k(h)+&k(h), (2)

where %k : RN → (−$,$] and &k : RN → (−$,$] are proper lower
semicontinuous convex functions (see for example [13]). We addi-
tionally suppose that the proximity operators1 prox(Qk)

'k%k and prox
(Qk)
'k&k

of %k and &k can be computed efficiently.
In order to minimize the time-varying function #k in an online

way, we propose a time-varying extension of the Douglas-Rachford
splitting method.

Algorithm 1 (Adaptive Douglas-Rachford splitting algorithm)
For an arbitrary initial vector g0 ∈ RN, generate a sequence hk ∈
RN (k ∈ N) by

hk := prox(Qk)
'k&k (gk) (3)

with

gk+1 := gk + tk
{

prox(Qk)
'k%k (2hk−gk)−hk

}

, (4)

where 'k ∈ (0,$) and tk ∈ (0,2) (k ∈ N).

The next proposition is obtained by Proposition 18 in [4] and
the firm nonexpansivity of the standard proximity operator.

Proposition 1 (Properties of Algorithm 1) Suppose that the func-
tions %k and &k satisfy the qualification condition2 for every k ∈ N.

Then the sequences (hk)k∈N and (gk)k∈N generated by Algo-
rithm 1 satisfy the following
(i)























∥

∥

∥hk+1−prox
(Qk+1)
'k+1&k+1(g

∗
k+1)

∥

∥

∥

Qk+1
≤ ‖gk+1−g∗

k+1‖Qk+1

‖gk+1−g∗
k+1‖Qk+1 ≤

√

(max (Qk+1)
(min (Qk)

‖gk+1−g∗
k+1‖Qk

‖gk+1−g∗
k‖Qk < ‖gk−g∗

k‖Qk

for all g∗
k+i ∈

(

prox(Qk+i)
'k+i&k+i

)−1
("k+i) (i = 0,1), where (max

and (min denote respectively the maximum and the minimum
eigenvalues of a matrix.

1The proximity operator prox(Qk)
'k% of a proper lower-semicontinuous

function % of index 'k > 0 and norm ‖ ·‖Qk is defined as

prox(Qk)
'k% (g) :=argmin

x∈RN

(

%(x)+
1
2'k

‖x−g‖2Qk

)

,∀g ∈ R
N .

2Qualification condition [4]: The set

cone(dom(%k)−dom(&k)) :=
⋃

(>0
{(x | x ∈ dom(%k)−dom(&k)}

is a subspace of RN , where

dom(%k)−dom(&k) := {x1−x2 ∈ R
N | ∀(x1,x2) ∈ dom(%k)×dom(&k)}.

(ii) Suppose there exists a N0 ∈ N such that " := ∩i≥N0"i += ∅,
Qi = Q, &i = & , and 'i = ' for all i≥ N0. Then we have

∥

∥

∥
hk+1−prox

(Q)
'& (g∗)

∥

∥

∥

Q
≤ ‖gk+1−g∗‖Q < ‖gk−g∗‖Q

for all k ≥ N0 and all g∗ ∈
(

prox(Q)
'&

)−1
(").

(iii) (Convergence of the Douglas-Rachford splitting method [4])
Suppose that Qk =Q, %k = % , &k =& (i.e.,"k =") and 'k = '
for all k ∈N. Then by using (tk)k∈N satisfying )k∈N tk(2− tk) =
$, we have

∥

∥

∥hk−prox
(Q)
'& (g∗)

∥

∥

∥

Q
≤ ‖gk−g∗‖Q

k→$
−→ 0

for some g∗ ∈
(

prox(Q)
'&

)−1
(").

Note that Proposition 1(ii) implies a monotone decrease of
a sequence of upper bounds (‖gk − g∗‖Q)k∈N of the distance3
dQ(hk,") without assuming %i = % for any i ≥ N0. This property
is useful for adaptive filtering applications.

In the following section we will present some useful examples
of (%k,&k) for adaptive filtering applications.

3.2 Useful choices of %k and &k
Example 1 (Indicator function) We propose to use the indicator
function indicator function

*Sk : R
N 0 h 1→

{ 0 if h ∈ Sk
$ otherwise. (5)

as %k or &k in the objective function #k. Here, (Sk)k∈N is a se-
quence of closed convex sets. These sets Sk will represent the sets
of candidate solutions at time k in the adaptive filtering problem. It
is easy to show, that the proximity operator of *Sk is identical to the
metric projection onto the closed convex set Sk , i.e.,

prox(Qk)
'k*Sk

(g) = argmin
x∈Sk

‖x−g‖Qk =: P(Qk)
Sk (g).

Algorithm 1 with the selection of &k as in (5) achieves hk ∈ Sk
for any selection of %k and for every k ∈ N. In other words, Algo-
rithm 1 can utilize Sk as a hard constraint as well as a nonsmooth
term %k which represents a priori knowledge on h∗.

Algorithm 1 with the selection of %k as in (5) covers many ex-
isting algorithms. This becomes apparent when also specifying Sk
and &k.

Example 2 (Useful sets Sk) Define the sets Sk in (5) as

Sk := argmin
h∈RN

‖!k(h)‖2, (6)

where we use ‖ · ‖2 for the standard Euclidean norm on Rr. More-
over, we assume that Uk has full column rank and Qk is a diagonal
matrix, i.e., Qk := diag{q(k)

1 ,q(k)
2 , . . . ,q(k)

N } (Note that many of the
variable metric projection type methods, such as the proportionate
NLMS/APA [1, 7], utilize diagonal matrices (see [30])). Then, the
update (4) in Algorithm 1 with %k := *Sk in (5) is reduced to

gk+1 := gk− tkQ−1
k Uk+−1k !k(2hk−gk)+ tk(hk−gk), (7)

where +k :=UT
k Q

−1
k Uk + , I. The regularization parameter , ≥ 0

is introduced for numerical stability. Algorithm 1 with (7) signif-
icantly extends the standard NLMS/APA [12, 19] and the propor-
tionate NLMS/APA [1, 7]. APA, for instance, is reproduced by set-
ting Qk := I and &k := 0, where I is the identity matrix.

3The distance between an arbitrary point x∈ RN and a closed convex set
C ⊂ RN is defined by dQk (x,C) :=miny∈C ‖x−y‖Qk .
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Another selection of Sk is a hyperslab

Sk := {h ∈ R
N | |uTk h−dk|≤ -k} (8)

for some user-defined tolerance -k > 0. This set Sk has a closed-
form expression of P(Qk)

Sk :

P(Qk)
Sk (h) = h−

{

0 h ∈ Sk,
!k(h)−sgn(!k(h))-k

‖Q−1
k uk‖2Qk

Q−1
k uk otherwise

with !k(h) in (1) for r = 1, where sgn(·) is the signum function
defined by sgn(x) := x/|x| if x += 0, sgn(x) := 0 otherwise, for all
x ∈ R,

Example 3 (The adaptive proximal forward-backward split-
ting scheme) Let gk : RN → (−$,$] be a lower semicontinuous
convex function and fk : RN → R a smooth convex function whose
gradient .(Qk) fk is Lipschitz continuous with Lipschitz constant Lk,
i.e.,

‖.(Qk) fk(x)−.(Qk) fk(y)‖Qk ≤ Lk‖x−y‖Qk ,∀x,y ∈ R
N .

Define %k of the objective function#k by a upper bound of fk+gk:

%k(h) :=gk(h)+ fk(hk)+ 〈.(Qk) fk(hk),h−hk〉Qk

+
Lk
2
‖h−hk‖

2
Qk

. (9)

It is easy to show, that the proximity operator of %k in (9) at hk is
identical to the so-called proximal gradient operator (for example
[6]) athk, i.e., prox

(Qk)
'k%k (hk) = prox(Qk)

/kgk

(

hk−/k.(Qk) fk(hk)
)

with
/k = (Lk+'−1k )−1. Hence the adaptive proximal forward-backward
splitting scheme [17, 28] is reproduced as an example of Algorithm
1 by setting &k := 0 and tk := 1, i.e.,

hk+1 := prox(Qk)
/kgk

(

hk−/k.(Qk) fk(hk)
)

. (10)

The available stepsize range of /k in (10) is reduced compared
with the stepsize range (0,2L−1k ) of the original adaptive proximal
forward-backward splitting scheme.

In particular, if we choose

fk(h) :=
1
2 )i∈Ik

w(k)
i d2Qk

(h,Si), (11)

where (Sk)k∈N is a sequence of closed convex sets, Ik ⊂

{0,1, . . . ,k} the indices of the closed convex sets and w(k)
i ∈ (0,1],

i ∈ Ik are the weights satisfying )i∈Ik w
(k)
i = 1. In this case, the

update (10) can be expressed as

hk+1 :=prox
(Qk)
/kgk

(

hk−/k )
i∈Ik

w(k)
i

(

P(Qk)
Si (hk)−hk

)

)

, (12)

which is the generic form [17, 28] of an adaptive parallel projection
type algorithm [26].

Example 4 (Weighted !1-norm for promoting sparsity) In order
to exploit the sparsity of the unknown system, we can use, as %k or
&k in Algorithm 1,

0k(h) := (‖h‖(1k)
1 := (

N
)
i=1

1(k)
i |hi|, (13)

where h := [h1,h2, · · · ,hN ]T ∈ RN , ( > 0 is the regularization
parameter, and 1(k)

i > 0, i ∈ {1,2, . . . ,N}, are the weights of
the !1 norm. We restrict Qk to a diagonal matrix, i.e., Qk :=
diag{q(k)

1 ,q(k)
2 , . . . ,q(k)

N }. Then the proximity operator of 0k takes
the form

prox(Qk)
'k0k

(g) =
N
)
i=1
sgn

(

gi
)

max

{

|gi|−
'k(1

(k)
i

q(k)
i

, 0

}

ei, (14)

where {ei}Ni=1 is the standard orthonormal basis of RN (i.e., ei :=
[0, . . . ,0,1,0, . . . ,0]T , i ∈ {1,2, . . . ,N}, with the value 1 assigned to
its ith position). We call the operator in (14) Adaptively Weighted
Soft-Thresholding (AWST) [17, 28].

Now we turn our attention to the design of the weights 1(k)
i in

&k(h) in (13). The idea is to penalize coefficients that are close to
zero with a large weight in order to push them down to zero. In addi-
tion, we will choose a small weight for active (large) coefficients in
order to keep their influence onto the value of the cost function low
(small contribution in (13)). Therefore, we will control the weight
1(k)
i adaptively as a function of h(k)

i (the ith component of hk). One
example of such a weight design in [17, 28] is

1(k)
i :=

{

!, if
∣

∣

∣
h(k)
i

∣

∣

∣
> 2,

1, otherwise,
(15)

where ! ≈ 0 is a small positive constant, and 2 > 0 is the threshold-
ing parameter for the selection of active coefficients.

There are many ways to design the parameter 2; for example,
we may design the parameters based on noise statistics such as the
variance.

Note that the computational complexity of AWST is relatively
small, because it requires O(N) multiplications at most.

We mention that a different way of using a weighted !1-norm
for sparse system identification was recently proposed [23], which
is based on the use of the projection onto a weighted !1-norm
constraint-set in the frame of the adaptive projected subgradient
method [24, 25].

We finally note that our scheme can also utilize another
sparsity-aware structure, for instance, the so-called group-sparsity,
i.e., a coefficients in the same group are highly correlated and take
on the values zero or non-zero as a group. This structure also of-
ten exhibit in many application. An adaptive filter exploiting the
group-sparsity was recently proposed [2].

3.3 Proposed scheme for the sum of multiple convex functions
As a special example of our scheme, we present an online scheme
for the minimization of a time-varying function which has a repre-
sentation as the sum of several (more than two) convex functions.

The basic idea of our scheme is to reduce the minimization of
the sum of (more than two) convex functions to the minimization of
the sum of two functions in a product space: consider the situation
where the time-varying cost function can be decomposed as the sum
of convex functions

#k(h) :=
J
)
j=0

3 (k)
j (A jh), (16)

where 3 (k)
j : RN → (−$,$] is a proper lower semicontinuous con-

vex function with an invertible matrix A j ∈RN×N ( j ∈ {0, . . . ,J}=:
J ). Let us define the product space H := RN × · · · × RN

(J+ 1 components). An element H ∈ H can be written as H =
(h(0),h(1), . . . ,h(J)) with entries h( j) ∈ RN ∀ j ∈ J . Using this
notation it is obvious that

hk ∈ argmin
h∈RN

#k(h)

1931



if and only if

jA (hk) ∈ argmin
H∈H

(4k(H)+ *D(H)) ,

where

4k : H → (−$,$], H := (h(0),h(1), . . . ,h(J)) 1→
J
)
j=0

3 (k)
j (h( j)),

jA : R
N → H ,h 1→ (A0h,A1h, . . . ,AJh) ∈ H ,

and *D is the indicator function of the subspace
D := {jA(h) ∈ H | h ∈ RN}⊂ H . Hence the minimization
of#k in (16) can be reduced to the minimization of the sum of two
functions 4k + *D over the product spaceH .

In addition, we have convenient forms of the proximity op-
erator of 4k and *D for calculation by imposing the inner prod-
uct 〈·, ·〉Qk := )Jj=0 5 j〈·, ·〉Q(k)

j
and its induced norm ‖ · ‖Qk :=

√

)Jj=0 5 j‖ ·‖
2
Q(k)
j
for adaptively-defined symmetric positive defi-

nite matrices Q(k)
j ⊂ RN×N and positive weights 5 j ⊂ (0,$) ( j ∈

J ) for the inner product. The components of the proximity op-
erator of 4k (with respect to ‖ · ‖Qk ) are the respective proximity
operator of 3 kj , i.e.,

prox(Qk)
'k4k

(H) =

(

prox(Q(k)
0 )

'k5−1
0 3 (k)

0
(h(0)), . . . ,prox(Q(k)

J )

'k5−1
J 3 (k)

J
(h(J))

)

for any H := (h(0),h(1), . . . ,h(J)). The components of
prox(Qk)

'k*D (H) are a weighted average of the components ofH, i.e.,

prox(Qk)
'k*D (H) = P(Qk)

D (H)

= jA





(

J
)
j=0

ATj Q
(k)
j A j

)−1(

J
)
j=0

ATj Q
(k)
j h( j)

)



 ,

for anyH := (h(0),h(1), . . . ,h(J)).
Consequently, we arrive at the following algorithm that keeps

the value of#k low by applying Algorithm 1 to 4k + *D with %k :=
4k and &k := *D.

Algorithm 2 For an arbitrarily chosen g0 ∈ RN, generate a se-
quence hk ∈ RN (k ∈ N) by

hk :=

(

J
)
j=0

ATj Q
(k)
j A j

)−1( J
)
j=0

ATj Q
(k)
j gk, j

)

(17)

with the sequences gk, j ∈ RN (k ∈ N) defined by g0, j := g0 and

gk+1, j := gk, j + tk
{

prox(Q(k)
j )

'k5−1
j 3 (k)

j

(

2A j(hk)−gk, j
)

−A j(hk)
}

(18)

for each j ∈ J , where 'k ∈ (0,$) and tk ∈ (0,2) (k ∈ N).

As we imposed &k = *D in the derivation of Algorithm 2,
Proposition 1(ii) is helpful to analyse the behavior of the algorithm.

Algorithm 2 covers many useful adaptive filtering algorithms
because most convex cost functions adopted in existing algorithms
[11, 15, 22] can be incorporated as 3 (k)

j (A j · ) in Algorithm 2.

Example 5 (Sparsity-aware adaptive learning in transform do-
main) Assume that it is available that knowledge of the eigen-
value decomposition of the auto-correlation matrix of the input,

i.e., Ru := E[uku
T
k ] =V6VT (E[·] denotes expectation). The auto-

correlation in general degrades the convergence performance of
adaptive filtering algorithms. For acceleration, we propose a learn-
ing algorithm for the transformed vector h̄k := 6

1
2Vhk (The bar “

¯ “ implies the coefficients in transformed domain). For simplicity,
we restrict Q(k)

j to the identity matrix I.
Consider the time-varying cost function#k in (16) in transform-

domain with

#k(h̄) := ‖VT6− 1
2 h̄‖

(1k)
1 +

J
)
j=1

*S̄k+1− j
(h̄) (19)

Here, the first term represents the sparsity in the original domain
and the set S̄k :=

{

h̄ ∈ RN
∣

∣

∣

∣

∣

∣
(6− 1

2Vuk)
T h̄−dk

∣

∣

∣
≤ -k

}

represents
the data-fidelity in the transform-domain.

To deal with (19), we set

A0 := 6− 1
2 , 3 (k)

0 (h̄) := ‖VT h̄‖
(1k)
1 ,

A j := I, 3 (k)
j (h̄) := *S̄k+1− j

(h̄) ( j = 1, . . . ,J)

in the frame of (16). Then we obtain the following algorithm by di-
rect application of Algorithm 2 (with the relation prox(I)

'k‖VT (·)‖
(1k)
1

=

V ◦prox(I)
'k‖·‖

(1k )
1

◦VT [6]):

hk =VT6− 1
2 h̄k,

h̄k =
N
)
i=1





((i)−
1
2 ḡk,0,i+)Jj=1 ḡk, j,i
(−1
i +J



ei,

ḡk+1,0 = ḡk,0+ tk
{

Vprox(I)
'k5−1

0 ‖·‖
(1k )
1

(

2hk−VT ḡk,0
)

−6− 1
2 h̄k

}

,

ḡk+1, j = ḡk, j + tk
{

P(I)
S̄k+1− j

(

2h̄k− ḡk, j
)

− h̄k

}

, ( j = 1, . . . ,J)

where gk, j,i is the ith component of ḡk, j , ei is the standard orthonor-
mal basis of RN , and the projection onto S̄k is given by

P(I)
S̄k

(h̄) := h̄−



















0 if h̄ ∈ Sk,

tk
!k

(

VT6− 12 h̄
)

−sgn
(

!k
(

VT6− 12 h̄
))

-k
∥

∥

∥
6− 12 Vuk

∥

∥

∥

2

I

6− 1
2Vuk

otherwise.

4. NUMERICAL EXAMPLE
We examine the efficacy of Example 5 in the context of a simple
echo cancellation problem for white noise input (i.e. h̄k = hk).

We use the sparse echo impulse response h∗ of length N = 512
initialized according to ITU-T G.168 [14] (in this case, h∗ has only
64 non-zero components). The input signal uk is generated accord-
ingN (0,1). The noise nk is zero mean white Gaussian and signal-
to-noise ratio (SNR)= 25 dB, where SNR := 10log10(E[z2k ]/E[n2k ])
with zk := uTk h

∗.
For convenience, we denote by ’RZA-LMS’ the Reweighted

Zero-Attracting (RZA) LMS4 [3], by ’APFBS’ the adaptive proxi-
mal forward-backward splitting scheme [17] (i.e., the update (12)

4RZA-LMS is described by the following equation:

hk+1 := hk +µ
!k(hk)

‖uk‖22+,
uk−(

N

)
i=1

sgn
(

h(k)
i

)

1+ cRZA
∣

∣

∣
h(k)
i

∣

∣

∣

ei,

where r := 1, µ > 0 is the step-size and cRZA > 0 is a constant. The regular-
ization parameter , ≥ 0 is introduced for numerical stability.
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Figure 2: Comparison of the algorithms in system mismatch.

with Sk in (6) and gk := (‖ ·‖(1k)
1 in (13)), and by ’Proposed’

Example 5. ’NLMS’ is nothing but APA (see (7)). We set
Qk := I, r := 1, ! := 1× 10−6, and , as the variance of the
input signal. The parameters are set as tk := 0.5 for ’NLMS’,
(µ,( ,cRZA) := (0.5, 10−4,2×105) for ’RZA-LMS’, (/k,( ,2) :=
(0.5, 8 × 10−5,2 × 10−4) for ’APFBS’, and (tk,50,2,J,-k) :=
(1, 105,5× 10−4,1,5× 10−5) for ’Proposed’. For all the algo-
rithms, we set the initial estimates to g0 := 0 ∈ RN . The step-size
for each algorithm is chosen in such a way that the convergence
speed of all algorithms is the same. The regularization parameter is
chosen to obtain the best results in our experiments.

Figure 2 depicts a comparison of the algorithms in the sense
of system-mismatch 7(hk) := 10log10

‖h∗−hk‖22
‖h∗‖22

averaged over 300
runs. ’Proposed’ achieves the best steady-state behavior (lowest
system mismatch) of the algorithms.

5. CONCLUSION
In this report, we extended the Douglus-Rachford splitting algo-
rithm to the setting of a time-varying cost function. By this ex-
tension, we can deal with the sum of multiple time-varying nons-
mooth convex functions for sparsity aware adaptive filtering. We
presented some fundamental properties of the proposed scheme and
many useful examples of the proposed scheme by specifying nons-
mooth convex functions.
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