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ABSTRACT

We consider a Multiple-Input Single-Output Finite Impulse
Response system. We are interested in the identifying chan-
nel parameters only from output signal. Our approach is
based on fitting higher-order cumulants in a least squares
sense which yields a polynomial optimization problem. Us-
ing the link between the problem and the Parallel Factor de-
composition of a structured third-order tensor we derive a
cheap algorithm for identifying the parameters of MISO sys-
tem.

1. INTRODUCTION

We consider the following multichannel convolutive mixing
model:

y[n] =
L

∑
l=0

H[l]s[n− l] (1)

where s[n] = (s1[n], . . . ,sP[n]) are random source vectors,
H[n] = (h1n . . . hPn) is the 1×P matrix of impulse responses
of the mixing Multiple-Input Single-Output (MISO) channel,
y[n] is the output signal. Signals and system are assumed to
be complex-valued.

We consider the problem of blind channel identification:

identify channel parameters {hp,l}
P,L
p,l=1,0 based only on the

system output y[n].
There are many papers devoted to the overdetermined

case (more sensors than sources). The underdetermined case
has only recently been treated, and systems with one sin-
gle output sensor have received considerably less attention
[6, 12].

In this paper (as in [6, 12]) we will concentrate on the
MISO case an develop a technique that only makes use of
fourth-order statistics. We assume the following:

A1: Each nonobservable discrete input sequence sp[n], p ∈
[1,P] is complex-valued, ergodic, stationary, independent
and identically distributed (i.i.d.) with symmetric distri-
bution, zero mean, and nonzero kurtosis.

A2: All input signals sp[n] are mutually independent.
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A3: The additive noise sequence v[n] is normally distributed
with zero mean and unknown autocorrelation function.
It is assumed to be statistically independent from sp[n],
p ∈ [1,P].

A4: The FIR filters representing the channels hp, p ∈ [1,P]
are assumed to be causal with the same length L+ 1, i.e.
hp,l = 0, ∀l 6∈ [0,L], and hp,l 6= 0 for l = 0 and l = L.

As an example of an application where these conditions are
satisfied one can consider several source signals sharing the
same carrier frequency at the neighborhood of the receiving
antenna. In this context, the radio communication channel
can be modeled as a MISO system where the output sig-
nal y[n] is the result of the linear combination of nonob-
served input signals sp[n] filtered by unknown FIR filters

hp = (hp,0, . . . ,hp,L)
T , p ∈ [1,P]. Thus, in the presence of

additive noise v[n] model (1) can be rewritten as follows:







y[n] = x1[n]+ · · ·+ xP[n]+ v[n],

xp[n] = (hp ∗ sp)[n] :=
L

∑
l=0

hp,lsp[n− l]
.

An interesting property of Higher Order Statistics (HOS)
based techniques is that they are insensitive to additive (pos-
sibly colored) Gaussian noise. HOS based methods are very
useful in dealing with non-Gaussian and/or non-minimum
phase linear systems.

For triples of integers (τ1,τ2,τ3) ∈ [−L,L]× [−L,L]×
[−L,L] =: [−L,L]3 define

cτ1,τ2,τ3
:= cum[y∗(n),y(n + τ1),y

∗(n + τ2),y(n + τ3)], (2)

where cum(y1,y2,y3,y4) denotes the fourth-order cumulant
of y1,y2,y3,y4 [11]:

cum(y1,y2,y3,y4) := E(y∗1y2y∗3y4)−E(y∗1y2)E(y∗3y4)−

E(y∗1y∗3)E(y2y4)−E(y∗1y4)E(y2y∗3).
(3)

Let us first consider the Single-Input Single-Output (SISO)
system. In this case HOS-based blind channel identification
methods exploit the following Barlett-Brillinger-Rosenblatt
(BBR) formula [2]:

cτ1,τ2,τ3
= γ4,s

L

∑
l=0

h∗l hl+τ1
h∗l+τ2

hl+τ3
, (4)

where (τ1,τ2,τ3) ∈ [−L,L]3 and γ4,s is the kurtosis of s(n).
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Most methods for channel identification based on HOS
can be divided into three main categories (see [11] for de-
tails): closed form solutions, linear algebra solutions and
nonlinear optimization solutions. Closed form solutions and
linear algebra solutions are based on a given subset of equa-
tions of overdetermined system (4). Nonlinear optimization
solutions exploit all equations of (4). These solutions yield
a polynomial optimization problem and hence are more ex-
pensive than the closed form and linear algebra solutions, but
are more accurate and robust.

Optimization based methods for the SISO case were con-
sidered in [4, 5, 7, 10, 13, 14]. It was shown in [7] that the
problem of blind SISO identification can be reformulated as
a problem of computing the Parallel Factor (Parafac known
also as CP) decomposition of a third-order (2L+ 1)× (2L+
1)× (2L+ 1) tensor composed of fourth-order output cumu-

lant values C = (cτ1,τ2,τ3
)L

τ1,τ2,τ3=−L. Moreover, factors in the

Parafac decomposition have a Hankel structure.
This paper is possibly a first attempt to find non-linear

optimization solutions for MISO case. Similar to the SISO
case [7], we exploit the Parafac interpretation of the BBR
formula (see Proposition 2.1 below).

The algorithms used to find the Parafac decomposition
are often based on Alternating Least Squares (ALS) initial-
ized by either random values or values calculated by a direct
trilinear decomposition based on the generalized eigenvalue
problem [3, 8].

The ALS method has two main drawbacks. First, it may
take a long time to converge. Second, it does not preserve
the symmetry properties of the original tensor and therefore
cannot be used for solving non-linear optimization problem
appearing in the paper.

The contribution of this paper is twofold. First, we
present an explicit representation of the complex gradient of
the cost function. This result has recently been obtained for
SISO case in [4, 5]. Second, we give a fixed point interpre-
tation of the critical points of the cost function and propose
the cheap Single-Step Krasnoselskij (SSK) iteration to find
the fixed points. The SSK algorithm will depend on a real
parameter λ , so we will refer to it as to SSKλ . Although the
the convergence of SSKλ is not guaranteed for arbitrary λ ,
simulations indicate that trying different λ the SSKλ always
converges to at least local minima.

Notation:

• (·)∗, (·)T , (·)H and (·)# denote the conjugate, transpose,
conjugate transpose and Moore-Penrose pseudoinverse,
respectively;

• A⊙B denotes the Khatri-Rao product of matrices A and
B: the columns of A⊙B are the Kronecker products of
the corresponding columns of A and B;

• E(·) denotes the mathematical expectation.

2. COST FUNCTION AND THE LINK WITH THE
PARAFAC DECOMPOSITION.

In this section we will follow the ideas from [7]. Under as-
sumptions A1-A4, the BBR formulae takes the form:

cτ1,τ2,τ3
= γ4,sp

P

∑
p=1

L

∑
l=0

h∗p,lhp,l+τ1
h∗p,l+τ2

hp,l+τ3
, (5)

where as before (τ1,τ2,τ3) ∈ [−L,L]3, γ4,sp is the kurtosis of

sp(n), and cτ1,τ2,τ3
is given by (2)-(3).

The unknown channels h1, . . . ,hP are defined as the least
squares solution of the polynomial system (5). In other
words, the goal is to solve the following optimization prob-
lem

min
h1,...,hP∈CL+1

f (h1, . . . ,hP) = min
h∈C(L+1)P

f (h), (6)

where
h = (hT

1 , . . . ,h
T
P)T

and

f (h) = ∑
|τ1|,|τ2|,|τ3|<L

|cτ1,τ2,τ3
− γ4,sp

P

∑
p=1

L

∑
l=0

h∗p,lhp,l+τ1
h∗p,l+τ2

hp,l+τ3
|2.

(7)

The following Proposition can be easily obtained from the
results presented in [7] (as observed in [12]).

Proposition 2.1 The cost function (7) can also be expressed
as:

f (h) := ‖γ4,sp

P

∑
p=1

G(hp)h
∗
p− vec(C[1])‖

2
, (8)

where
G(hp) = H(hp)⊙H(hp)⊙H(hp)

∗
,

H(hp) =























0 0 . . . hp,0

.

.

.
.
.
. . .

. .
.
.

0 hp,0 . . . hp,L1

hp,0 hp,1 . . . hp,L

.

.

.
.
.
. . .

. .
.
.

hp,L−1 hp,L . . . 0
hp,L 0 . . . 0























and vec(C[1]) ∈ C(2L+1)3
denotes the vector whose

(2L+ 1)2(τ1 + L)+ (2L+ 1)(τ3 + L)+ τ2 + L+ 1

coordinate is equal to cτ1,τ2,τ3
.

Formula (7) yields that if (h1, . . . ,hP) is a global minimizer
of f , then for any unit-modulus constants c1, . . . ,cP, and any
permutation i1, . . . , iP of indices 1, . . . ,P, (c1hi1 , . . . ,cPhiP) is
again a global minimizer. We will say that blind MISO iden-
tification problem has an essentially unique solution if it is
unique up to unit-modulus scaling and permutation. Propo-
sition 2.1 says that formulae (5) can be interpreted as the
Parafac decomposition (representation as a sum of (L + 1)P
rank one terms) of the tensor C = (cτ1,τ2,τ3

)L
τ1,τ2,τ3=−L. This

interpretation together with Kruskal’s uniqueness condition
for Parafac [8] yields that in the MISO case, the blind iden-
tification problem has generically an essentially unique solu-
tion if P≤ L+ 1 (see [12] for details).

3. COMPLEX GRADIENT AND SSKλ
ALGORITHM.

To describe the critical points of f we will use the notion

of the complex gradient operator
∂ f

∂h∗
, see [9] and references

therein. Since f is a polynomial in h and h
∗ it follows that f
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is a real-valued function that is analytic with respect to h and

h
∗. Hence, h is a critical point of f if and only if

∂ f

∂h∗
= 0 [9].

Now we are ready to present the expression of the complex
gradient of the cost function.

The proof of the following results strongly exploits the
symmetry properties of the cumulant. It is based on repre-
sentation (8).

Proposition 3.1 Let M(h) be the P(L+1)×P(L+1) matrix
(or P×P block matrix) defined by

M(h) = (G(hi)
H
G(h j))

P
i, j=1.

Then the complex gradient of the cost function f (h) is

∂ f

∂h∗
= 4γ2

4,sM(h)∗h−4γ4,s







G(h1)
Hvec(C[1])

.

.

.

G(hP)Hvec(C[1])







∗

. (9)

Let us define the mappings Φ, Φλ , and ν as follows

Φ,Φλ ,ν : C
(L+1)P→C

(L+1)P
,

ν(h) =

(

h
T
1

‖h1‖
, . . . ,

h
T
P

‖hP‖

)T

,

Φ(h) =
1

γ4,s











M(ν(h))−1











G

(

h1
‖h1‖

)H

vec(C[1])

.

.

.

G

(

hP
‖hP‖

)H

vec(C[1])





















∗

,

Φλ (h) = λ Φ(h)+ (1−λ )h.

For a given h0 ∈ C(L+1)P consider the sequence of iterates

{hk}∞
k=0 determined by the successive iteration method

h
0
, h

1 := Φ(h0), . . . ,hk := Φ(hk−1), . . .

This sequence is known as Picard iteration (see [1]) and is
used for finding the fixed points of Φ (recall that h is a fixed

point for Φ if Φ(h) = h). The sequence {hk}∞
k=0 given by

h
0
, h

1 := Φλ (h0), . . . ,hk := Φλ (hk−1), . . . (10)

is called Krasnoselskij iteration (see [1]). It is clear that the
mappings Φ and Φλ have the same fixed points.

The following Proposition indicates the link between the
fixed points of Φλ and the critical points of f .

Proposition 3.2 Let λ ∈ (0,1] and h0 ∈ C(L+1)P. If the
Krasnoselskij iteration converges to h

∞ := (h∞
1 , . . . ,h

∞
P ),

then for some positive numbers d1, . . . ,dP the vector
(d1h

∞
1 , . . . ,dPh

∞
P ) is a critical point of f .

Remark 3.3 Since G(dh)(dh)∗ = |d|4G(h)(h)∗, the con-
stants (d1, . . . ,dP) can be easily found as a positive solution
of the optimization problem

min
d1,...,dP∈R+

‖γ4,s

P

∑
p=1

G(dph
∞
p )dph

∞
p
∗− vec(C[1])‖

2
.

Proposition 3.2 yields the following Single Step Krasnosel-
skij (SSK) algorithm
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Figure 1: plots of NMSE1 and NMSE2

Algorithm 3.4

• Given : λ ∈ (0,1], h0 ∈ C(L+1)P, TOL, Nmax;

• k← 0;

• do until
‖hk−hk−1‖
‖hk‖

< TOL or until

the maximum number of iterations Nmax is reached

– k← k + 1;

– hk←Φλ (hk−1);

• end do

Remark 3.5 For the SISO case Proposition 3.2 is obtained
in [4, 5] where it was used for the analysis of the SS-LS al-
gorithm introduced in [7]. We noted in [5] that for some
initializations the SS-LS algorithm does not converge. More-
over, we observed that for some data the SS-LS algorithm
does not converge for any initialization: the fixed points of
the mapping Φ are unstable. However, the convergence can
be significantly improved (see [5]) just by considering the
Krasnoselskij version of the SS-LS algorithm with different
λ .

For λ = 1, the SSKλ algorithm is a version of the SS-
LS algorithm for MISO case. Simulations indicate that the
SSK1 often fails after several iterations because the matrix
M(hk) becomes singular. In contrast, the SSKλ with nonzero
λ again has good convergence properties.

To minimize f we propose the following

Algorithm 3.6

1. Given : h0 ∈ C(L+1)P, TOL, Nmax, λ = 0.5;

2. start Algorithm 3.4

3. if the maximum number of iterations Nmax is reached in
2.,

• then repeat step 2. with another random λ ∈ (0,1)
• else stop;

4. SIMULATIONS.

We considered a scenario with 2 sources. We used chan-
nels h1 = (1, 0.31 + j0.22, 0.57− j0.29)T , h2 = (−0.57−
j0.50, −0.26 j, 0.62 + j0.71) with a sample data length

N = 104 and SNR values ranging from 0 to 20 dB. The source
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Figure 2: Mean of the number of iterations and mean of the
computational time of Algorithm 3.6

signals have been QPSK modulated and R=300 input data
blocks have been independently generated. The normalized
mean squared error (NMSE) of the results was computed for
each channel p = 1,2 as follows:

NMSEp =
1

R

R

∑
r=1

‖ĥr
p−hp‖

2

‖hp‖2
,

where ĥ
r
p is the estimated channel vector associated with

source p.
The channels have been estimated by Algorithm 3.6. We

used Nmax = 50. Fig. 2 demonstrates that Algorithm 3.4 was
called only one time in average. We do not compare with the
performance of an other algorithm since there does not exist
an algorithm that is able to solve the problem in a satisfactory
manner.

5. CONCLUSION.

In this paper, we found an optimization solution of the prob-
lem of Blind Channel Identification of MISO System. First,
we used the link with the Parafac decomposition to find an
explicit expression of the complex gradient of the cost func-
tion and then, we designed cheap iterative algorithm for iden-
tifying the parameters of the MISO system. Although we
considered channels with the same length our approach re-
mains valid in general case.
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