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ABSTRACT

The stochastic filtering problem deals with the estimation of
the posterior distribution of the current state of a signal pro-
cess X = {X;}, given the information supplied by an asso-
ciate process ¥ = {; },~. The scope and range of its applica-
tions includes the control of engineering systems, global data
assimilation in meteorology, volatility estimation in financial
markets, computer vision and vehicle tracking. A massive
scientific and computational effort is dedicated to the devel-
opment of viable tools for approximating the solution of the
filtering problem. Classical PDE methods can be successful,
particularly if the state space has low dimensions. In higher
dimensions, a class of numerical methods called particle fil-
ters have proved the most successful methods to-date. These
methods produce an approximations of the posterior distri-
bution by using the empirical distribution of a cloud of par-
ticles that explore the signal’s state space. We discuss here a
more general class of numerical methods which involve gen-
eralised particles, that is, particles that evolve through larger
spaces. Such generalised particles include Gaussian mea-
sures, wavelets, and finite elements in addition to the clas-
sical particle methods. We will construct the approximating
particle system under the Gaussian measure framework and
prove the corresponding convergence result.

1. THE FILTERING FRAMEWORK

Let (Q,.%,P) be a probability space on which we have de-
fined a process X = {X; },- called the signal and an associate
process ¥ = {¥; },- called the observation. The process X is
the solution of a d-dimensional stochastic differential equa-
tion driven by a p-dimensional Brownian motion V, that is:

t t
X=X+ [ fX)ds+ [ o(x)av. (1

where f:R? - R? and o : RY — RY*” are bounded and
globally Lipschitz. We denote the distribution of Xy by 7.
The process Y satisfies the evolution equation

t
Y, = Yo+/0 h(X)ds +W;, ()

where /1 : RY — R™ is a measurable function with linear
growth and W is an m-dimensional Brownian motion inde-
pendent of X. Let % = (%), be the filtration generated by
the observation process Y. The o-field % is a mathematical
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model for the information available to us at time . Mathe-
matically, the solution of the filtering problem is the condi-
tional distribution of the signal process X;, given the o-field
%;, denoted in what follows by 7;. The (random) measure
7; is also called the posterior distribution of the signal. The
process T = {m },~, can be viewed as a stochastic process
taking values in an infinite dimensional space: the space of
probability measures over the state space of the signal.

Under additional assumptions, one can show that
7 satisfies a non-linear stochastic PDE called the Kushner-
Stratonovich equation. Moreover a certain unnormalised ver-
sion of 7 denoted by p = {p;},- satisfies a simpler, linear
stochastic PDE, called the Duncan-Mortensen-Zakai equa-
tion. We have (see [23])

t 8 X t
pi(9r) = mo(o) + /0 o a"; +AQ,)ds+ /O py(@uh")dY,
3)

where A is the infinitesimal generator of the signal process X
defined as
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and @ (x) = @(,x) : [0,00) x RY — R is a bounded Borel

measurable function continuously differentiable in the time
variable and twice differentiable in the space variable with
all derivatives bounded. By Kallianpur-Striebel formula (see,
e.g. Chapter 8 in [11]) we have

p: (@)
pi(1)

where 1 is the constant function 1.

It is possible to explicitly describe 7 if the system is lin-
ear. Outside the linear context, it is known that only a few
very exceptional examples have explicitly described poste-
rior distributions (for example, the Benes filter). Therefore,
typically the process 7 or (p) can only be approximated nu-
merically. There are a wide variety of approaches to estimate
7, some more successful than others (see e.g. [3], [4], [7]
and [15] and the references therein, see also Cahpters 8 and
9in [2]).

Particle methods ([2, 8]) are one of the most effective and
versatile methods for solving the filtering problem numeri-
cally, and their development has been intensified in the last
two decades (see Chapter 7 in [7]). These methods approx-
imate the process m; (or p;) with discrete random measures
(sums of Dirac measures) of the form

Oy = Zai(t)Sv :

AOES P—a.s., 5)



with stochastic weights a;(¢),ax(¢),..., and corresponding
stochastic positions v (¢),v2(t),..., where v;(t) € R%. The
measure (f, can be thought of as the empirical distribution of
particles whose positions are given by the processes v; and
carrying the weights a;.

2. GENERALISED PARTICLE FILTERS

In this section, we introduce the concept of generalised par-
ticle filters. In this case, the positions of the (generalised)
particles are in (possibly) larger spaces than the state space
of the signal process X.

The reason for introducing the generalised particle is
twofold. Firstly, the particles involved in the classical par-
ticle filter carry information about their position and their
weight. One can interpret the system of particles as a quan-
tization of the posterior distribution 7, respectively, of the
unnormalised conditional distribution of the signal. This lim-
ited information may be wasteful. Indeed, it may be the case
that if we allow more information to be carried by the parti-
cle then perhaps we will need a smaller number. Therefore
we may be able to reduce the overall computational effort.

The second reason is that we can integrate within the
framework of generalised particle framework a wide variety
of numerical methods including

o Classical Particle Filters: as explained above, in this case
the particles carry information about their weight and po-
sition.

e Gaussian Mixtures: the particles are in this case charac-
terised by Gaussian measures. They are parameterised
by their weights, mean values and the corresponding the
covariance matrix.

e Wavelets: an orthonormal wavelets series with proper se-
lected dilation and translation parameters is chosen to
characterise particles. The transition centres are viewed
as positions; and the weights of the particles are the in-
ner products of the wavelets and a certain chosen density
function.

e Finite Elements: the shape functions of a finite element
are considered as the positions of the generalised parti-
cles, and the nodal variables should act as the generalised
weights.

In what follows, we will discuss the second class of
generalised particles, i.e., Gaussian mixtures. The classic
particle filters use a mixture of Dirac measures to construct
the particle approximation; several attempts have been
made to generalise this idea. Kotecha and Djuri¢ ([12])
first introduced the so called Gaussian particle filters, where
they used a single Gaussian to approximate the posterior
distribution. They shortly improved their initial work and
built the approximations by weighted Gaussian mixtures. Up
to now, most of the existing work has been closely related
to the extended (or ensemble) Kalman filter, because of the
Gaussian nature of Kalman filter, and hence this method
may provide a way to improve the asymptotic behaviour
for the ensemble Kalman filter (see discussions in [14]).
The majority of the previous work is in the discrete time
framework. Reich ([18]) recently took a Gaussian mixture
to generalise the ensemble Kalman filter and designed a
new algorithm based on continuous time formulation. See
Flament et al ([10]), Van der Merwe and Wan ([22]), and
Carmi et al ([5]) for more related work. However, there
has been no existing rigorous mathematical study on the
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convergence results of such Gaussian mixture methods.
Therefore, it is of great interests to fill this gap; and this is
the aim of the present work.

In the following section, a new algorithm using Gaussian
mixtures to approximate the continuous-time nonlinear filter-
ing problem is presented. Compared with most of the exist-
ing related work, which mainly considered the problem from
an ad-hoc perspective and relied on the numerical implemen-
tation; this new algorithm is investigated mathematically and
a rigorous proof of its convergence rate is given.

2.1 The Approximating Algorithm

Let A={0=08) < 6 <--- < 6y =T} be an equidistant
partition of the interval [0,7] with equal length, with
6=i8, i=1,...,N;and N = g We introduce the fol-
lowing algorithm involving mixtures of Gaussian measures.

Initialization: At time zero, the particle system consists
of n Gaussian measures all with equal weights 1 /n initial
positions v/}(0), and initial covariance matrices ®/(0), for
j=1,. n and the associated Gaussian measure is denoted
by l"v»];( 0).0(0)- The approximation of py has the form

P =~ ZF ), (0 (6)

Recursion: During the interval ¢ € [i5,(i+1)0), the ap-
proximation p” of the unnormalised conditional distribution
p will take the form

1 n
= . ;aj(t)rv’}(t),w;’(t)a (7

where V(t) denotes the mean and @ (z) denotes the covari-
ance matrix of the Gaussian measure I';» 1(0).00(1)> and a”( ) is
the weight of the particle. Obv10usly, each particle is charac-
terised by the triple process (a" i Vi i 0 ") which is assumed to
evolve as

(1) = 1+ [ @0 ()Y,

Vi) = vi(i8) + fi5 £ (vi(s) ) ds
+(1-a)fso (vf;(s)) avy,

wi(t) =« s(ooT) (v’?(s)) ds,

where {VU }’L1 are mutually independent d-dimensional
Brownian motions and independent of Y. The parameter « is
a real number in the interval [0, 1]. For o = 0 we recover the
classic particle approximation (see, for example, Chapter 9
in [2]); for & = 1 the mean of the Gaussian measures evolve
deterministically (the stochastic term is eliminated).

At the end of the interval [i8, (i + 1)d), each particle
(i+1)5

®)

branches into a number of offsprings. We denote by 0;7
the number of offspring produced by the j-th random vari-

able at time (i+1)3. We set

(1+l)5}

. n,(i+1)8
{nal with prob. 1 — {nda; (iH1)3,

{na?(ﬁl)é} +1

0;},(1#1)5 _
n, 1+1)5}

€))

with prob.  {na;’



Then from (9), we have

E[o (i+1)8 |</z+1 }7na1/(z+1)5 (10)

7

and therefore no bias is introduced at branching times
]E[ Plis1) NEZTY } = p(”iﬂ)ai The offsprings of the j-th

partlcle w1ll be Dirac measures. We can think of them as
being degenerate Gaussian measures with means that are in-
dependent samples from the parent particle Fv»;(,)’w;y(t) and

null covariance matrices.

After branching all the particles are re-indexed from 1 to
n and all of the unnormalised weights are re-initialised back
to 1; and the particles evolve following (8) again.

The recursion is repeated N times until we reach the ter-
minal time 7', where we obtain the approximation p7 of pr.

3. CONVERGENCE RESULTS

The approximating sequence p" = {p/’;t > 0} constructed
using the procedure described in the previous section satisfies
the evolution equation described in the following procedure
(for simplicity of notations we consider one-dimensional
case hereafter):

Proposition 3.1 The measure-valued process p" = {pJ' :t >
0} satisfies the following evolution equation:

pr(9) =m(9)+ [ plagids+ [ prng)a

! ! n ! R
+ [ Ritgyas+ [ R@ar+1 ¥ [Rp)av
=t

(11

for @ € CJ'(R) and t € [0,T] with m > 5. In (11), the terms
R!(@), R>(9), and R} (@) are of order 8, N, is the following
martingale:

1 < ! n !
:n;/O ai(s)e’ (Vi(s

and M™® = {M"? i > 0 and i € N} is the discrete process

1,9
+o¢N,+MW§],

))o(vi(s))av,;

nwizz[nks ka))
=1 j=1
(V1 (k)
N
~aj(es-) [ o) ay| (2
R 2wy (k6—)
where X, (k6) ~ N(V" (k5) (k5)) is a Gaussian random

variable.

Consider the time inhomogeneous Zakai equation (3),
and fix s > 0. Define

(T)(t,x) EPS—t(P(x)v € [O7S]

where (P,),>0 is the Markov semigroup whose infinitesimal
generator is the differential operator A (as defined in (4)).
Then the Zakai equation (3) becomes (see [20])

ot
pi(@) = po(P) + /0 P, (hP,_, @)Y, (13)
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Similarly for p/*(¢) we rewrite (11) for z € [0,s] and get

t
pI(9) =p§(P9)+ | prhP. p)aY

+/

+; y /0 R (P @)V’ + Ny:
i=1

2(p
) ) dr+/ Ry (P;—,)dY, +M[t/5]

(14)

and the error of the approximation has the representation

(P = p1)(@) =(P — po) (Bep) + M5

+ / R}(P,r)dr+ / RX(P_,¢)dY,
0 0
Ly (o3 ()

oY [ REog)av
n=Jo

+ / (P} = pr) (hPs—rp)dY, 3
0

where M’ *? and N, are the same as in Proposition 3.1, except
that ¢ replaced by P;_;¢. In the following, we will use the
norm || - ||ne. (m > 0) defined as

@llme= 3. sup [Dyo(x)],

In|<mxeR?

where n = (n!,...,n%) is a multi-index and Dy
(d1)M -+ (dy)". In this section, we assume d = 1 for sim-
plicity of notations. By computing the bounds on the first six
terms (excluding the final term) on the right hand side of (15),
one obtains the rate of convergence of the approximation in
terms of the three parameters n, § and o. In what follows we
will assume, without loss of generality that § < 1.

Theorem 3.2 [fthe coefficients o, f, and h are bounded and
Lipschitz, then for any T > 0, m > 5, there exists a constant
¢} independent of n, 8 or & such that for any @ € Ci(R), we
have fort € [0,T|

E[(p(¢) — p:(9))*] < cf |9l mc(n, 8, c0), (16)
where
_ I he 1« 2. 202
c(n,6,a)—max{n, a6, —\/gn, J(1—a) ad }

The following is a brief discussion of the method of proof
of Theorem 3.2. The basis of the result is a variation of
a convergence criterion introduced in [16] (Theorem 4.9).
Typically the criterion establishes the convergence of finite
signed measure valued processes provided they satisfy
certain evolution equations with terms that can be controlled
as the convergence parameter (in our case the number
of Gaussian measures comprising the approximation)
increases. We use the fact that both the operators P; and
hP;_, in (15) are bounded and linear; we then calculate the
upper bounds of the second moments for the first six terms
on the right hand side of (15), which are obtained as the
terms in the coefficient ¢(n,d, ) (ignoring the constants).
The conclusion in Theorem 3.2, namely inequality (16), is
then obtained by applying Theorem 4.9 in [16] to equation



(15) and the corresponding second moments.

In what follows, we should determine ¢(n, 8, &) to obtain
the L2-convergence rate of the approximation process pf.
When o = 0 in (8), the component Gaussian measures
have null covariance matrices, in other words they are Dirac
measures. In this case p, is nothing other than the classic par-
ticle filter (see, for example, [2]). In this case several terms in
¢(n,0,a) coming from the covariance term disappear. The
rate of convergence c¢(n, §,0) becomes:
1 1
¢(n,8,0) =maxq —, — .
ool k]

Obviously the fastest rate is obtained when § is a fixed con-
stant independent of 7. The L?-convergence rate will be in this
case of order 1/n, which concides with the results in [2].

When o € (0, 1], the rate of convergence can deteriorate.
First of all let us observe that we still need to choose & to
be a fixed constant independent of n. Then the convergence
depends on the simpler coefficient ¢(n, @) given by

1
c(n,0) = max{, o, (1— a)zaz}
n

In this case we need to choose o = % (or of order 1/+/n) to

v
ensure the optimal rate of convergence, which equals to 1/n.

The following theorem, as a direct corollary of Theorem
3.2, gives the convergence for both p/* and its normalized
version for fixed partition mesh 6 and a = 1//n:

Theorem 3.3 Ifthe coefficients o, f, and h are bounded and
Lipschitz, then for any T > 0, m > 5, there exist constants clT
and ¢! independent of n, such that for any @ € C;*(R), we
have fort € [0,T)]

T
o c
E[(p7(9) = pi(9))°] < ~-ll@llnes (17)
and for the normalised conditional distribution m,(Q) and its
approximation 7 (@) = p}'(@)/p{(1):

~T
- n B ¢
Ellz' (@) - m(@)]] < 7,5||<P||m,w~ (18)

A stronger convergence result can be proved, from which
we can see that the convergence are uniform in time 7.

Theorem 3.4 [fthe coefficients f, ¢, and h are bounded and
Lipschitz, then for any T > 0, m > 5, there exist constants c;

and & independent of n such that for any ¢ € CZ’+2 (R),

T
- c
E | sup (p{’(w)pt«p))z] < 2|0l 20 (19)
1€[0,7] n
and for the normalised conditional distribution 7',
- ér
E | sup |m'(9) —m(@)|| < —=[@llni2em  (20)
t€[0,T] n
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Remark 3.5 The fact that the optimal value for o decreases
with n is not surprising. As the number of particles increases,
the quantization of the posterior distribution becomes finer
and finer. Therefore, asymptotically, the position and the
weight of the particle provide sufficient information to obtain
a good approximation.

Remark 3.6 Since the approximations p;' and m' have
smooth densities with respect to the Lebesgue measure, it
makes it possible to study various properties the density of
pr and that from its approximation p|* (for example, the posi-
tion of their maximum value, the decay in time, the properties
of their derivatives, etc). This would not be possible under
the classic particle filtering framework, where the approxi-
mations are linear combinations of Dirac measures, unless a
smoothing procedure is applied first.

4. CONCLUSION AND FURTHER WORK

In this paper we have analysed a class of approximations of
the posterior distribution under continuous time framework.
The approximation uses mixtures of Gaussian measures to
approximate the posterior distribution. The L-convergence
rate of such approximation is given. This method can be
viewed as a natural extension of the classic particle filters,
in the sense that the classic one is a special case of the gener-
alised one when o = 0. Its asymptotic behaviour (as n — o)
is similar to the classic particle filters. For o > 0, the approx-
imating measure has a density with respect to the Lebesgue
measure and this can enable us to study the properties of the
density of the posterior measures. However, the Gaussian
mixture particle filters reduces the computational efforts by
carrying more information on each (generalised) particle; it
also enables us to study more properties about p;, especially
its density, from its approximation p;’.

The next step is to study the effect of the ‘mollifying’
parameter & on the variance of the method, and identify the
optimal one. In this way we will keep the computation effort
to a minimum.

The use of the method presented here can provide an an-
swer to the issue of sample degeneracy (or sample impover-
ishment), see for example [1, 6]. This affects classical par-
ticle filters and it is manifested through the fact that, over
time the weights of majority of the particles can decrease to
zero, with only few becoming very large. As a result the
accuracy of the approximation decays over time. Several ad-
hoc approaches have been investigated to tackle this problem.
An approach called jittering was introduced in [6] by adding
an additional noise to the samples to reduce the degeneracy.
Normally the weights are calculated using the posterior like-
lihood (see [9]), Thrun et al ([21]) proposed a risk-sensitive
particle filters, where they measured the weights by both the
likelihood and a specific risk function measuring the risk of
not tracking a particular area of the state space. A theoretical
study on this method (see [17]) shows that it is a successful
alternative approach to mitigate sample impoverishment.

As mentioned in Section 2, other possible tools to help
construct the generalised particles include wavelets and fi-
nite elements. The key idea of building the approximations
is similar to using the Gaussian mixtures. Again we denote
the approximation of the p; by p;’, and aim to make the ap-
proximation p;’ satisfy
ao

91 —|—A(p,)dt—|—pt"((p,h—r)dY,—l—Rfl((pt). 2D

dp;' (o) = p;'(



Comparing (21) with the Zakai equation (3), it can be seen
that these two equations are “sufficiently” close to each other
provided the remainder term R} (¢y) in (21) is “sufficiently”
small, in which case p;* will converge to p; (see Theorem
4.9 in [16] for the rigorous statement and its proof). This
development is part of our future work. Once this is done, we
aim to provide a comparative theoretical analysis in order to
identify the optimal methods within the class of generalised
particle filters for various classes of approximations.
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