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ABSTRACT
In this paper delay-free distributed joint source-channel coding
for communication of two correlated Gaussian sources over a
Gaussian Multiple Access Channel (GMAC) are considered.
Both discrete and hybrid discrete analog schemes are proposed
and optimized. The proposed schemes are noise robust and
show promising performance which improve with increasing
correlation.

1. BACKGROUND AND FORMULATION

In the recent work of [1], the distortion lower bound was de-
termined for transmitting a bi-variate Gaussian source over
a Gaussian multiple access channel (GMAC), where each
source is to be recovered at the receiver. The authors showed
that below a certain channel signal-to-noise ratio (SNR)
threshold, distributed uncoded transmission, where the source
symbols are simply scaled to meet the channel power con-
straint and then transmitted directly over the channel, is able
to reach the distortion lower bound. In order to get closer to
the distortion lower bound for all SNR the authors further pro-
posed a distributed scheme where each encoder consists of an
infinite dimensional vector quantizer (VQ) preserving correla-
tion superimposed on a linear mapping. It was shown that this
joint source-channel coding (JSCC) approach performs very
close to the the distortion lower bound for all SNR. Separate
source channel coding (SSCC) on the other hand was shown
to be strictly sub-optimal both to the lower bound and the pro-
posed JSCC scheme even with infinite block length.

In a practical setting, however, infinite dimension coders
are unrealistic and high dimensional coding also result in high
complexity and delay which may not be desirable in certain
applications. In this paper, we study the same communication
problem as presented in [1], however with an added constraint
- zero delay. In other words, we restrict the dimensionality of
the encoding process to operate on a symbol-to-symbol basis.
To our knowledge, there is no prior work that addresses such a
constraint within the context of recovering both sources trans-
mitted over a GMAC. We emphasize that this problem should
not be confused with that of recovering the common infor-
mation of the two sources, where uncoded transmission is in
fact optimal for all channel SNR [2]. Naturally, one must ex-
pect that the optimal performance in our case backs off from
the distortion lower bound proposed in [1], possibly at a sig-
nificant amount. Nonetheless, we are interested in devising
very simple, possibly implementable coding schemes under

this constraint and show how they perform with respect to the
distortion lower bound.

For the remaining part of this section, we present a proper
definition of the communication problem. In Section 2, we
describe in detail two distributed zero-delay JSCC schemes,
where the first is based on Nested Quantization (NQ) [3], and
the second is a hybrid scheme consisting of a scalar quantizer
and a linear coder: Scalar Quantizer Linear Coder (SQLC).
Both schemes are optimized based on derived distortion- and
power expressions. Their simulated performance is shown in
Section 3, followed by a summary.

1.1 Problem Formulation

The communication system is illustrated in Figure 1.

Figure 1: A Bi-variate Gaussian transmitted on a GMAC
where each observation is reconstructed at the receiver.

The sources x1 and x2 are zero mean Gaussian random
variables with variance σ2

x and an inter-correlation ρx =
E[x1x2]/σ2

x . The joint probability density function (pdf) is

px(x) = px(x1,x2) =
1

2π
√

det(Cx)
e−

1
2 xT C−1

x x (1)

with equal marginal distributions px(xi) ∼ N (0,σ2
x ), and Cx

is the covariance matrix. Denote the encoding functions by
fi(xi) and channel input symbols yi, where yi = fi(xi), i = 1,2.
We define the average transmit power as Pi = E[|yi|2], i = 1,2.
The encoded observations are communicated over a memory-
less GMAC with Gaussian additive noise of zero mean and
variance σ2

n . We assume ideal Nyquist sampling and an ideal
Nyquist channel where the sampling rate of each source is the
same as the signalling rate of the channel. We also assume
ideal synchronization and timing between all nodes. The re-
ceived signal, z = f1(x1) + f2(x2)+ n, is passed through the
decoding functions gi(z), i = 1,2 to reconstruct each individ-
ual source. We use the mean-squared-error distortion criterion,
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and define the average end-to-end distortion as:

D =
1
2
(D1 + D2) =

1
2
(

E{|x1 − x̂1|2}+E{|x2− x̂2|2}
)

. (2)

The objective is to determine the memoryless mapping func-
tions fi and gi, for a given power constraint, such that D is min-
imized. We will in this paper measure performance in terms
of signal-to-distortion ratio SDR= σ2

x /D.
We consider mainly a received power constraint [4] PRx in

this paper. It is defined as E[|z|2]≤PRx+σ2
n . Such a constraint

is meaningful when there is a strict power requirement at the
receiver. As shown in [1], the received power relates to the
average transmit power Pi through PRx = P1 + P2 + 2ρx

√
P1P2.

It will also become clear from Section 2 that optimization for
the transmit power Pi is not advantageous due to the inherent
structures of our proposed scheme. However equal transmit
power, i.e. when P1 = P2 = P, is still possible using the same
coder designed for PRx through time sharing.

2. DISTRIBUTED ZERO DELAY JSCC

One primary concern in our design, is that we have to ensure
that the interfering sources can be split apart at the receiver.
One classic approach is sequential decoding. For it to work
in a zero-delay JSCC setting, we borrow the idea from Nested
Quantization (NQ) [3].

2.1 Nested Quantization

NQ consists of two quantizers, one for each encoder. For
decoding to be possible, one of the quantizers must be
placed/nested in between the centroids of the other in such a
way that the sum preformed by the GMAC does not act as a
many-to-one mapping, i.e. that we can identify each centroid
at the decoder and thereby split the interfering sources apart.

Without loss of generality, we choose encoder 2 to be
nested in between encoder 1. We have

z = q∆(x1)+α(`±c[q∆(x2)])+ n, (3)

where q∆ represents a uniform mid-rise quantizer with step-
size ∆, `±c denotes the limitation to a certain (integer) value c
and α is an attenuation factor. Further we let centroid no. i be
denoted qim

For a given ∆, c and α must be chosen small enough so
that encoder 2 can be placed/nested in between encoder 1 (see
Figure 2). This can be better understood by looking at the en-
coding process in more detail. We first quantize both sources

q∆(xm) =
⌊

xm

∆

⌉

= im(xm),m = 1,2 (4)

where b·e denotes rounding to the nearest integer. The second
source is then limited to a certain c ∈ N

`±c[i2(x2)] = i2(x2)− c
⌊

i2(x2)
c

⌉

= ĭ2(x2). (5)

Then ĭ2 is attenuated by a factor α in order to place the second
encoder “in between” the first.

The basic concept is illustrated in Figure 2 (encoder 1 is
included in the figure for clarity. Only the dots shows up in
the real channel signal). When correlation is low (ρx close to
0), all centroids of encoder 2 lie between any two centroids

Encoder 1 Encoder 2
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Origin

-2 -1 1 2 3
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:9.0=xρ C=5 )1( xd αρ+∆=

Figure 2: NQ structure in the channel space for ρx = 0 and 0.9.

of encoder 1. When the correlation is high (ρx >≈ 0.7), the
centroids of encoder 2 will be nested in between the centroids
of encoder 1. Note that not all centroids are re-used for every
interval as is the case when ρx ≈ 0. The correlation between
the sources makes it possible to increase the resolution of both
quantizers. Hence overall fidelity improves when ρx increases.
At the decoder, we first compute an maximum likelihood (ML)
estimate of the indices of the outer quantizer, followed by es-
timation of the inner quantizer index using the recovered first
index. The ML estimate of the first source is

x̃1 = g1(z) = q j1(z), where

j1(z) = argmin
j∈Z

‖q∆( j∆)(1 +αρx)− z‖2, (6)

where the factor (1+αρx) takes into account that the midpoint
for each channel segment (what lies between two decision bor-
ders for encoder one) shown in Figure 2 changes with ρx. That
is, given that qi1(z) is transmitted, the midpoint for the relevant
channel segment is qi1(z) + E{αx2|qi1(z)} = qi1(z) +αρxqi1(z),
where we used the relation E{x2|x1} = ρxx1 for correlated
Gaussian random variables [5, p. 233]. Given the first source,
one can recover the second by:

x̃2 = g2(z) = q j̆2(z), where

j̆2(z) = arg min
j∈Z:| j|≤ c−2

2

‖z−q j1(z)−q∆( j∆)‖2. (7)

In order to minimize the MSE we calculate

x̂m = E{xm|x̃1, x̃2}, m = 1,2 (8)

The average transmit power from each encoder is

P1 = E[ f1(x1)2] =
∞

∑
i1=−∞

Pr(i1)i21

P2 = E[ f2(x2)2] = α2
(c−1)/2

∑
ĭ2=−(c−1)/2

Pr(ĭ2)ĭ22

(9)

where Pr(·) is the probability for the event inside the paren-
theses. To design the optimal NQ, we need to determine the ∆,
α and c that minimize D with respect to the given power con-
straints. Since the two encoders are asymmetric, P1 is strictly
greater than P2, as one can see from (9). As stated in the intro-
duction, we will optimize the codec in terms of received power
constraint PRx. Time sharing can be applied to make the trans-
mit power of each source averaged over long source symbols
approximately equal.
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Formally, we’ll solve the following optimization problem

min
∆,α ,c:(P1+P2+2ρx

√
P1P2)≤PRx

D. (10)

The average end-to-end distortion D can be broken into three
independent distortion contributions: Dq,m, the quantization
distortion, Dc,m, the distortion from limitation of source 2 and
Dn,m, the distortion resulting from channel noise. The first two
distortions can be seen as granular- and overload noise from
the quantization process. Letting Nqm denote the number of
centroids for quantizer m (here Nq1 = ∞ and Nq2 = 2(c−1))
we get ε̄2

q = Dq,m + Dc,m and ε̄2
q :

ε̄2
q = 2

Nqm
2 −1

∑
i=1

∫ i∆

(i−1)∆

(

xm − (i−1)∆− ∆
2

)2

px(xm)dxm

+ 2
∫ ∞
(

Nqm
2 −1

)

∆

(

xm −
(

Nqm

2
−1

)

∆− ∆
2

)2

px(xm)dxm.

(11)

The last distortion term is

Dn,m =
∫∫∫

px(x1,x2)p(z|i1(x1), ĭ2(x2))

(x̆m(i1(x1), ĭ2(x2))− x̂m( j1(z), j2(z)))2drdx1dx2 =

∑
i1,ĭ2
∑
j1, j2

Pr(i1, ĭ2)Pr( j1, j2|i1, ĭ2)(x̆m(i1, ĭ2)− x̂m( j1, j2))2,

(12)

where x̂m is as previously defined and x̆m = E[x̂m|i1, ĭ2] the
quantized and limited source(s).

Better performance is possible if a different step-size is
allowed for each quantizer, i.e. ∆1 6= ∆2. One case we are
particulary interested in is when ∆2 → 0, that is, when encoder
2 becomes continuous. The resulting scheme is named Scalar
Quantizer Linear Coder (SQLC) and is presented in following
section.

2.2 Hybrid discrete-analog scheme: SQLC

Encoder 1 is the same as for NQ given in (4). Let centroid i
be denoted qi. For encoder 2, we now have f2 = α(`±κ [x2]),
which is a limiter that clips the amplitude to ±κ where κ ∈
R+, followed by a scaling factor α . Like for the NQ, we
must ensure that the sum of the quantized and the linear coded
value is uniquely decodable. In order to do so, the second en-
coded source must be placed between the centroids of encoder
1 without overlapping with its “neighbors”. The concept is de-
picted in Figure 3 for ρx = 0. Note that Figure 2 is a quantized
version of the channel space structure shown in Figure 3.

The encoding function f1(x1) is the same as for NQ,
whereas f2(x2) = α(`±κ [x2]). The decoders operate in a simi-
lar way as for the NQ. Source 1 is decoded as (6) then source
2 is found from

x̃2 = g2(z) = β (z−g1(z)), (13)

where β is an amplification factor. Again we compute x̂m as
in (8). The optimization problem is as in (10) except that we
now optimize over α,β ,∆ and κ .

We perform the distortion calculations in a somewhat dif-
ferent way than the NQ. Specifically, we must simplify (12)

Source space

1x

2x

xσ4

κ

κ−

Channel space])[()( 21 xxq κα ±∆ + l

∆

0=xρ

1q 2q1−q2−q z0

1−

2−

3−

4−

2

1

4

3

)1( xαρ+∆

1q 2q1−q2−q
2− 1−3−4− 1 2 3 4

Figure 3: SQLC concept. The numbers show how the seg-
ments in the source- and channel space are related.

since the inner source is now continuous. We divide the aver-
age end-to-end distortion into the following five contributions
(an approach inspired by Kotel’nikov [6, pp.62-98]): quantiza-
tion distortion and channel distortion for source 1 and clipping
distortion ε̄2

k2, channel distortion ε̄2
C2 and anomalous distortion

ε̄2
an for source 2.

The quantization distortion for source 1 is given by (11)
with Nq1 = ∞, the clipping distortion for source 2 is given by

ε̄2
k2 = 2

∫ ∞

κ
(x2 −κ)2 px(x2)dx2. (14)

and the channel distortion for source 2 is

ε̄2
C2 = E{(x̃2 − x̂2)2} = E{(x̃2 − (α x̃2 + n)β )2}

≈ σ2
x (1−αβ )2 +β 2σ2

n

(15)

where x̃2 denotes the clipped source. The last approximation
comes from assuming that E{x̃2}= σ2

x . In addition to channel
distortion from the weak (additive/thermic) noise in (15), there
is also the anomalous distortion resulting from a threshold ef-
fect [7], [8]. This is distortion on source 2 when the wrong
centroid for encoder 1 is detected.

To calculate the anomalous distortion for source 2 and the
effect of channel noise on source 1, we first need the chan-
nel output pdf. The pdf depends on ρx. As ρx increases, the
limitation to ±κ becomes more and more insignificant since
when ρx increases, the conditional pdf p(x2|x1) narrows. That
is, given a certain qi, the correlation itself “limits” x2 when ρx
gets close to one. This can be seen by studying Figure 4 and
Figure 3 together.

Assume first that ρx is small enough for the limitation to
±κ to be significant. Further let y2 = f2(x2), and u(·) be
the Heaviside function. It is straight forward to show (using
e.g. [5]) that the pdf of y2 is

py2(y2) =
1√

2πασx
e
− y2

2
2α2σ2

x u(y2 −ακ)u(−y2 +ακ)

+ po
(

δ (y2 −ακ)+ δ (y2 +ακ)
)

,

(16)

where po = Pr{x2 ≥ κ}. When y1 and y2 are summed over
GMAC, the resulting pdf (16) is centered at the transmitted
centroid from encoder 1 (see Figure 3). Let z2 denote the re-
ceived signal when source 1 is subtracted. Assuming that the
noise will not confuse the centroids of encoder 1, then the dis-
tribution after addition of noise is given by a convolution [5,
181-182].

pz2(z2)κ = py2 ∗ pn (17)
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The pdf for each channel segment is as in (17) until ρx be-
comes so large that the clipping to ±κ becomes negligible.
Furthermore, y2 will no longer be repeated on each segment,
but spread out over several of the channel segments. This
means that the channel segments shown in Figure 3 are no
longer exact copies of each other but contains different “parts”
of y2 (see Figure 3 and Figure 4). This is the same effect as
we saw for the NQ in Figure 2. We now have y2 ≈ αx2. Given

0

0

x
1

x 2

q
i

−2

2

−1

1−3

−4

l
1

4

3

∆

e
2

ψ

(a)

x
1

x 2γ
∆

≈l
1

φ=ψ≈π/4

(b)

Figure 4: SQLC when ρx = 0.9 4(a) Structure in the source
space. 4(b) How to calculate anomalous errors.

that qi was transmitted one can show, using the expression for
p(x2|x1) [5, p.223], that pz2i(z2)γ = p(y2|qi)∗ pn(n) is

pz2i(z2)γ =
e

1
2

(qi(1+αρx)−z2)2

(α2σ2x (ρ2x −1)−σ2n )
√

2π(α2σ2
x (1−ρ2

x )+σ2
n )

. (18)

The pdf in (17) is valid when l1 > 2κ while (18) is valid
when l1 ≤ 2κ . l1 = 2‖e2‖/cosψ = 2b

√
λ2/cosψ as seen

from Figure. 4(a). b (≈ 4) is a constant determining the width
of the ellipse containing most of the probability mass and
λ2 = σ2

x (1− ρx) is the smallest eigenvalue of the covariance
matrix Cx. The total channel output pdf can be found as a
weighted sum of (18) or shifted and weighted versions of (17)
depending on which of them is valid. The weighting is done
with the probabilities for the centroids from encoder 1.

The anomalous distortion for source 2 can now be calcu-
lated. When the threshold effect happens, positive values are
decoded as negative and vice versa, as seen from Figure 3.
The magnitude of this error depends on whether l1 > 2κ or
not. Consider first that l1 > 2κ : The probability that anoma-
lies happen is equal for each segment and given by

pth1 = 2
∫ ∞

∆
2 (1+αρx)

pz2(z2)κdz2, (19)

where pz2(z2)κ is given in (17). The error that occurs is
bounded by (2κ)2, since κ is detected as −κ when anoma-
lies first start to happen. Now consider that l1 ≤ 2κ . It can be
shown that the probability for anomalies is the same for each
channel segment also for this case (given qi) implying that

pth2 = 2
∫ ∞

∆
2 (1+αρx)

pzi(z2)γ|qi=0dz2, (20)

where pzi(z2)γ is given in (18). The error γ must be de-
termined. γ can be bounded by considering jumps between

the segments which are closest to the origin in the source
(and channel) space since this results in the largest error. We
can therefore use the parallelogram shown in Figure 4(b) as
an approximation to determine γ when ρx is large. Since
φ = ψ ≈ π/4 for large ρx, the parallelogram consists of a
square and two triangles with both legs equal to ∆. We get

γ = l1 −∆= 2bσx
√

2(1−ρx)−∆. (21)

The anomalous distortion is therefore

ε̄2
an ≤







4pth1κ2, l1 > 2κ ,

pth2γ2, l1 ≤ 2κ .
(22)

Distortion from channel noise for source 1, ε̄2
C1, only oc-

curs when the signal from source 2 and the channel noise to-
gether are larger than∆/2. Since we are only interested in find-
ing the optimal parameters for designing the SQLC, we sim-
plify the analysis by considering jumps to the nearest neigh-
boring centroids only. The probability for this event is then the
same as that in the case of the anomalous distortion for source
2 given by (19) and (20). Furthermore, the distortion we get
when two neighboring centroids are interchanged is ∆2, thus

ε̄2
C1 = ∆2







pth1, l1 > 2κ ,

pth2, l1 ≤ 2κ .
(23)

The average end-to-end distortion is then the sum of all
the above distortion terms, divided by two. The power from
encoder one is still as in (9) whereas the power from encoder
2 become

P2 =
∫ ακ

−ακ
y2

2 py2(y2)dy2 + 2poα2κ2. (24)

The optimization problem can now be solved. The result-
ing optimized parameters as a function of channel SNR must
be found numerically but can be described by mathematical
formulas using nonlinear curve fitting algorithms. What one
can notice from the optimized parameters is that when ρx gets
close to one we get a smaller ∆ and a larger α for a given chan-
nel SNR compared to the ρx = 0 case. This implies improved
fidelity (SDR) when ρx increases. Also, κ becomes irrelevant
when ρx is close to one (since p(x2|x1) narrows).

As discussed in Section 2.1, NQ can be roughly interpreted
as a quantized version of the SQLC scheme, at least at high
channel SNR. They both follow the same underlying princi-
ples, i.e. we can use similar geometrical arguments to explain
the NQ as we did to explain the SQLC (picture a quantized
version of Figure 3 and 4).

Although the SQLC has better performance than NQ in
terms of SDR performance, as will be evident from Section 3,
NQ is advantageous if we consider an extension of this scheme
to more than two sources, or if a fully discrete system must be
constructed.

3. SIMULATIONS

We compare the optimized NQ and SQLC to the performance
(SDR) upper bound, the SSCC bound and the optimal dis-
tributed linear scheme (all derived in [1]). The channel SNR
is defined as P/σ2

n , where P is the average transmit power per
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Figure 5: Comparison of relevant schemes

source symbol. Simulation results are shown in Figure 5 for
ρx = 0 and ρx = 0.95. When ρx = 0 the SQLC is around 2-3
dB away from the performance upper bound and the NQ infe-
rior to the SQLC by approximately 0-2 dB. Both schemes are
significantly better than the linear scheme. Notice that the NQ
and SQLC are robust to variations in noise variance.
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Figure 6: How correlation affects performance.

It is also interesting that both the SQLC and NQ improve
significantly with increasing ρx by only changing the param-
eters ∆,c,κ ,α and β , still using the same basic encoding and
decoding principle. The gain from increasing ρx is shown in
Figure 6(a) for the SQLC scheme at 30 dB channel SNR. Note
also that there is no noticeable gain before ρx ≈ 0.7, whereas
the gain gets significant when ρx → 1. The gap to the perfor-
mance upper bound as a function of ρx is plotted in Figure 6(b)
for 30dB channel SNR. When ρx gets larger, the performance
of all schemes improve in terms of SDR. The gap to the perfor-
mance upper bound in terms of SDR, however, becomes larger
for the SQLC (≈5dB) and NQ (≈ 7dB). The opposite is true
for the linear scheme. Considering that the mappings are delay
free, the performance is still quite good. The SQLC, NQ and
the linear scheme all reach the performance upper bound in the
limit ρx → 1, while the optimal SSCC scheme does not. The
reason why the SQLC and NQ reach the performance upper
bound is that when ρx → 1, ∆→ 0, and κ ,c → ∞. The result

is then a linear scheme which is optimal when ρx = 1 [1].
Under an equal transmit power constraint one must expect

a loss in performance for the SQLC and NQ since they have
asymmetric encoders and are therefore optimal when P2 < P1.
Simulations have shown that the loss from imposing equal
transmit power constraint is around 0.5− 1.5 dB compared
to the received power constraint case (with arbitrary Pi) when
ρx = 0 and becomes less as ρx increases. The reason for this is
that the two encoders become more “similar” as ρx increases.
In the limit ρx → 1 the two encoders become the same and no
loss is observed relative to the received power constraint case.

4. SUMMARY

In this paper distributed delay free joint source-to-channel
mappings for two memoryless Gaussian sources communi-
cated over a Gaussian multiple access channel were proposed.
The schemes were optimized for a received power constraint.

Both a fully discrete mapping based on nested quantiza-
tion (NQ) and a hybrid discrete-analog scheme (SQLC) were
analyzed. The SQLC has a performance 2 to 5 dB inferior to
the performance upper bound, considering a received power
constraint and the NQ is inferior to the SQLC with about 0 to
2dB. Both schemes are noise robust. Interestingly, both NQ
and SQLC improve with increasing ρx without changing the
basic encoder and decoder structure, and when ρx → 1 both
schemes reach the upper performance bound. Since the NQ
and SQLC have nonsymmetric encoders, their performance
will deteriorate somewhat when an equal transmit power con-
straint is imposed at each node.
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