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ABSTRACT

In this paper, we study the design of causal anytime
codes for transmission over symmetric discrete memoryless
channel. In our earlier work [1], we proposed an anytime
transmission scheme which is based on unequal error protec-
tion using Luby transform codes (UEP-LT) and sequential
belief propagation (BP) decoding. In this paper we extend
our previous result by providing an analysis on the proposed
scheme. In particular, an upperbound on the end-to-end
distortion of the anytime transmission scheme is derived.

1. INTRODUCTION

The study of reliable transmission of real-time information
of a dynamic source over a noisy rate-limited communication
channel has received much attention in recent years since it
is a desired quality in several emerging applications. These
applications may include state estimation in wireless sensor
networks (WSN), online multimedia streaming on the Inter-
net, etc. For example, consider a production line whose ac-
tion is regulated by a remote controller. Especially, in many
control applications the system performance is typically very
sensitive to delay in action. In these cases it is particularly
interesting to apply transmission schemes for which the reli-
ability is improved with time.

The traditional approach to deal with channel imperfec-
tion such as packet loss, delay, data-rate limitations, and
etc, when a dynamic source is considered, is dynamic pro-
gramming (DP) [2]. In many cases, the dynamic program-
ming suffers from a serious problem which is called the curse
of dimensionality, i.e., the computations become intractable
when the number of states and decisions increases. Although
approximate dynamic programming (ADP) [3, 4] can relax
the problem to obtain some feasible solutions, it does not
provide a unique solution to the original DP problem, and
the computational complexity is still high in many cases.

In contrast with the traditional approach, Sahai in [5]
proposed the fundamental concept of anytime information
transmission. There are two main features that distinguish
traditional communication theory from the anytime concept.
The anytime transmitter has only access to a part of the
source message at anytime, and the anytime receiver can use
information in current channel output, as well as in previous
channel outputs. As shown by [5], for a scalar linear system
x(t+1) = ax(t)+v(t), a > 1, where x(t) and v(t) denote the
plant state and the process noise, respectively, there exists
an estimate of the state x(t), referred to as x̂(t), such that
the distortion over a noisy channel is always bounded.

In [6], bounds on anytime error exponent have been de-
termined, and a time-sharing anytime channel code for a
discrete memoryless channel (DMC) with perfect feedback
is proposed. As a matter of fact, in many practical cases, a
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perfect feedback from the decoder to the remote transmitter
is not possible because of diverse channel limitations. In [7],
the distortion convergence rates for certain anytime coding
schemes have been derived based on unequal error protection
(UEP) property and assuming no channel feedback is avail-
able at the transmitter. In applications such as controlling
unstable plants, exploiting UEP principles in the anytime
design is crucial since not only delay in action is of great
importance, but also some parts of information bits need to
be treated differently.

In the literature, rateless codes have been shown to have
advantages in UEP applications [8, 9]. Rateless codes are a
class of random sparse channel codes in which the encoder
produces an unlimited number of symbols such that the de-
coder can recover the source symbols from a sufficiently large
subset of channel outputs. Luby Transform (LT) codes [10]
are rateless error control codes suitable for erasure chan-
nels. From [11], we also know that LT and Raptor codes [12]
(concatenation of LT codes with high-rate LDPC outer en-
coder/decoder) perform very well on symmetric noisy chan-
nels such as binary symmetric channel (BSC) and binary-
input additive white Gaussian noise (BIAWGN) channel.

This paper is a continuous work of our previous paper
[1], in which we proposed a causal anytime transmission
scheme for communication over symmetric discrete memo-
ryless channel, based on UEP-LT codes and sequential belief
propagation decoding. In the current paper, we provide an
analytic analysis of our earlier proposed scheme. In particu-
lar, an upperbound on the end-to-end distortion is derived,
and will be compared with existing results.

2. PROBLEM STATEMENT AND
PERFORMANCE CRITERION

In this section, we will describe the system model and specify
the information pattern of each building block.

We shall assume that a scalar random variable xt ∈ X is
drawn according to a known distribution at time t where X ⊆
R. Between the source and the destination there is a binary
symmetric channel with bit cross-over probability ǫ. The
inputs and outputs of the channel are denoted respectively
by yt ∈ {0, 1} and zt ∈ {0, 1}. The conditional probability
of the channel is time-invariant, i.e., Pr(zt|yt) = Pr(z|y).

In our anytime transmission scheme, the two main func-
tional units, source coding and channel coding are consid-
ered separately. Throughout the paper, we employ trun-
cated binary expansion as the source coding scheme to map
xt into a sequence of bits (b1, . . . , bjt), where jt denotes the
first jt (jt ≥ jt−1) bits available at the anytime encoder
at time t. As will be clear later, the binary expansion fits
well into the anytime framework that provides anytime re-
liability. In our problem formulation, we use the notation
xb
a = {xa, . . . , xb} which denotes the evolution of a discrete-

time signal x(t) from t = a to t = b. The binary expansion is
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defined by a map Es
jt : X 7→ Yjt , where Yjt takes values from

b
jt
1 = {0, 1}jt . In fact, the choice of jt depends on the rate

of source coding, i.e., if the source generates a bit, bj , every
1/R time units for a given source rate R > 0, then jt = ⌈Rt⌉.
Without loss of generality, we assume that the source rate is
R=1. The anytime channel encoder is described by a map
Ec
t :Y

jt 7→ Yt which outputs a bit at each time according to
the function Ec(bjt

1 ) = yt.
At the remote receiver, the channel decoder, specified by

a map Dc
t : Z

t 7→ Yjt , is allowed to exploit the information
from the current, as well as the previous, received symbols,

for the purpose of estimation, i.e., b̂jt
1 =Dc

t (z
t
1). Finally, the

source decoder can be written as the map Ds
jt :Y

jt 7→X . The
source decoder outputs the reconstructed value x̂t.

In this paper, we consider a scalar linear plant with the
system equation

x(t+ 1) = ax(t) + v(t) , t = 1, . . . , T, (1)

where x(t) ∈ R is the system state at time instant t, and
v(t) ∈ R is the white process noise causes from inappropriate
modeling. This open–loop system is unstable if a > 1 whose
value is known at both the transmitter and the receiver. The
system is triggered by the initial state x(0) which has the
uniform probability density function (pdf) on [0, 1).

As in [7], we consider that the variance of the process
noise is much smaller than that of the initial state, hence
the noise is negligible and the only source of uncertainty in
the system is x(0). Therefore, the system equation can be
rewritten as x(t) = atx(0), t = 1, ..., T . Following the nota-
tion of the anytime information pattern, at t = 0, the initial
state is first quantized into jt bits, and thereafter, a binary
codeword, before it is sent over a binary symmetric channel.
As a matter of fact, at each time instant t, a new chan-
nel coded bit representing the value of x(0), referred to as
yt ∈ {0, 1}, is transmitted. At the receiver, the channel de-
coder obtains a noisy version of yt, referred to as zt ∈ {0, 1},
and starts providing estimates of the source value based on
the current and previous received bits, i.e., zt1. The recon-
structed value x̂(0|t) is then given by applying the inverse
binary expansion on the decoded bits.

We evaluate the system performance using end-to-end
mean-squared error (MSEe2e), defined as

MSEe2e(t) , E[(x(t)− x̂(t))2] = a2t
E[(x(0)− x̂(0|t))2], (2)

where the last equality follows from x̂(t)=atx̂(0|t), that is
to say, in the absence of the process noise. The goal is to
design a channel encoder/decoder pair in order to estimate
x(0) precisely out of the received data up to time t so that the
MSE decays fast enough, i.e., limt→∞ MSEe2e(t)=0. Thus,

a2t in (2) will be dominated by ∆2
t , E[(x(0)− x̂(0|t))2] as

time increases.

3. ANYTIME CHANNEL CODING

In this section, we briefly present the proposed channel cod-
ing scheme. First, we describe the anytime repetition cod-
ing in Section 3.1. Thereafter, we describe the anytime LT
encoding and decoding algorithms in Section 3.2 and Sec-
tion 3.3, respectively.

3.1 Anytime UEP-repetition coding

As a part of the channel code, an anytime repetition code is
used, which is a special block repetition code. More specif-
ically, how frequently an information bit is coded is deter-
mined by its importance level. The first bit b1 repeats most
often since it is the most significant bit. For example, if
the bit stream bt

1 is generated up to time t, the channel

encoder might pick up a bit bt according to the sequence
{b1; b1b2; b1b2b3; . . .}, where the position of the bit bt is spec-

ified by the time instant t. The decoder receives {b̂1b̂1b̂2 . . .},
and employs majority logic decoding (MLD) so as to decide

b̂i=0 (1 ≤ i ≤ t) (or, 1) if it repeats more than b̂i=1 (or, 0)
in the previous estimates. The decoder should also be able
to decode if the number of received zeros or ones is equal.

To handle this, it decides b̂i=1 or 0 using a Bernoulli trial.
The anytime repetition coding strategy, despite its rel-

atively low computational complexity, can provide anytime
reliability at the expense of zero rate and increasing delay
with time. In the next section, we bring up the idea of
anytime rateless scheme which is suitable for applications of
finite rate and delay.

3.2 Anytime UEP-LT encoding

In this section, we describe the encoding procedure which
is an adaptation of the expanding window fountain (EWF)
codes [9] fitting into the anytime transmission scheme. Let
the information bits (input bits) denoted by b and the en-
coded bits (output bits) denoted by y at time t=T be al-
located to r overlapping information windows and r indi-
vidual encoding windows. More specifically, at time t, the
jth (j=1, . . . , r) information window contains a portion of
the input bits bt

1 whose length will be referred to as Kj

(Kj > Kj−1). Therefore, there are r levels of importance
where each contains Kj−Kj−1 bits.

Associated with the jth information window, there exists
a degree distribution Ωj(x) according to which the bits in the
corresponding window are chosen to be XOR’ed and generate
an encoded bit yt which is located in the jth encoding window
whose length is denoted by Tj . We emphasize here that the
last information window does not necessarily contain all the
information bits, bT

1 , however, the encoding windows expand
up to t = T , i.e.,

∑r
j=1 Tj=T . It should be noted that Kj is a

function of t as well, but for the ease of notation, we denote
it by Kj .

Now, let Ωm(x)=
∑Dm

dm=1 Ωdmxdm denote the output bit

degree distribution corresponding to the mth(1≤m≤ j) en-
coding window, where Ωdm represents the probabilities of
choosing the corresponding number of bits from the mth in-
formation window. We define the output edge degree distri-
bution as ωm(x)=

∑Dm

dm=1 ωdmxdm−1 =Ω′

m(x)/Ω′

m(1), where

βm = Ω′

m(1) is the average degree of an output bit in the
mth encoding window. Similar degree distribution can be
specified for the input bits as well. For this purpose, we
analyze the input degree distribution of each level of impor-
tance individually. Let Λm(x)=

∑

nm
Λnmxnm be the input

degree distribution of the mth(1 ≤ m ≤ j) level of impor-
tance. The coefficients can be determined from the charac-
teristics of output degree distribution in the following way.
Let Im(x)=

∑

nm
Inmxnm denote the input degree distribu-

tion of the input bits in the mth information window induced
only by the edges connected to the output bits in the mth

encoding window. Therefore, Λnm =
∏j

i=m Ini
, where only

the input bits of the mth level are considered. As shown in
[11], Im(x)≈eαm(x−1) where αm=I ′m(1)=βmTm/Km. Thus,
input bit degree distribution of the mth level of importance
at t ∈ Tj can be written as

Λm(x) = exp

[(

j−1
∑

i=m

αi + βjt/Kj

)

(x− 1)

]

. (3)

In a similar fashion, we introduce the input edge degree
distribution of the mth level as ιm(x)=

∑

nm
ιnmxnm−1. It
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can be verified (see [11] for details) that ιm(x) has asymp-
totically the same distribution as Λm(x), therefore, Λ′

m(1)=

ι′m(1) =
∑j−1

i=m αi+βjt/Kj .

3.3 Anytime UEP-LT decoding

Regarding the decoding procedure, the belief propagation
(BP) algorithm is recognized as one of the successful algo-
rithms in decoding graphical codes approaching Shannon ca-
pacity. It is an iterative process such that at each iteration
input and output bits exchange messages, containing log-
likelihood ratio (LLR). Let B(l) (Y (l)) denote the messages
passed from an input (output) bit b (y) to an output (input)
bit at the lth iteration of BP algorithm which are related as

tanh(Y (l)/2) = tanh(qt/2)
∏

adj(b)

tanh(B(l)/2)

B(l+1) =
∑

adj(y)

Y (l),
(4)

where qt , ln[Pr(yt = 0|zt)/Pr(yt = 1|zt)] denotes channel
LLR at time t, and in the case of BSC, qt=ln

(

1−ǫ
ǫ

)

(−1)zt .
Moreover, adj(b) (adj(y)) represents the output (input) bits
adjacent to the input (output) bit b (y). At the last iteration,

the LLR of an input bit, which is obtained by
∑

y Y
(l), is a

measure to decide if the decoded bit is 1 or 0, where the sum
is over all output bits adjacent to the input bit. The anytime
decoding sequentially applies the BP algorithm based on the
assumption that the previous received bits zt−1

1 are available
at the decoder.

To simplify the analysis of the BP algorithm, one can
approximate the probability density of messages passed at
each iteration by simple functions, instead of tracking the
true densities. Commonly in practice, e.g., [11], B(l) and Y (l)

are asymptotically approximated by Gaussian variables by
which we only need to determine the mean and the variance.

4. PERFORMANCE ANALYSIS

In this section, we present the the performance analyses of
the anytime transmission schemes described in Section 3.

Theorem 1 The source distortion at t ∈ Tj, subjected to
the binary expansion of Section 2, is given by

∆2
s(t) =

1

3

(

1

4

)jt

. (5)

Theorem 2 Given a BSC and the anytime UEP-LT codes
of Section 3.2 and Section 3.3, the channel distortion ∆2

c,lt(t)
at t ∈ Tj is upper bounded by

∆2
c,lt(t) ≤

1

2

j
∑

i=1

Ki
∑

k=1+Ki−1

2−2k exp

(

j
∑

m=i

αm(t)
(

exp
(

−E[Y
(l)
m,i]/4

)

−1
)

)

,

(6)
where,

αm(t) =

{

βmTm/Km, m = i, · · · , j − 1
βjt/Kj , m = j

E

[

Y
(l)
m,i

]

=
∑

dm

ωdmξdm(µi,(l))

µi,(l+1) = ι′m(1)E[Y
(l)
m,i]

ξdm(µi,(l)) = 2E

[

tanh−1

(

tanh(q/2)

dm−1
∏

m=1

tanh(Um/2)

)]

.

(7)

where Um’s (m = 1, ..., dm − 1), representing the message

B(l), are symmetric Gaussian distributed iid random vari-

ables, following N
(

µi,(l), 2µi,(l)
)

.

Corollary 1 Given a BSC and the anytime UEP-LT code
of Section 3.2 and Section 3.3, the end-to-end distortion at
t ∈ Tj is upper bounded by

∆lt(t) ≤ ∆s(t) + ∆c,lt(t), (8)

where ∆s(t) and ∆c,lt(t) are defined in (5) and (6), respec-
tively.

Theorem 3 Given a BSC and the anytime repetition code
of Section 3.1, the end-to-end distortion is upper bounded by

∆re(t) ≤ ∆s(t) + ∆c,re(t), (9)

where

∆2
s(t) =

1

3

(

1

4

)jt

,

∆2
c,re(t) =

K
∑

k=1
k:odd

2−2kIǫ

(

K − k + 2

2
,
K − k + 2

2

)

+
K
∑

k=1
k:even

2−2k

[

Iǫ

(

K − k + 1

2
,
K − k + 1

2

)

+
1

2

(

K − k + 1
K−k+1

2

)

(

ǫ − ǫ2
)

K−k+1

2

]

,

(10)

where Iǫ(a, b) is the regularized incomplete beta function de-
fined as

Iǫ(a, b) ,
a+b−1
∑

j=a

(

a+ b− 1

j

)

ǫj(1− ǫ)a+b−1−j .

5. PROOF

This section is devoted to the proofs of theorems in Section 4.

Proof (Theorem 1) Let xs(t) denote the quantized value
of x at time t. Hence, the source distortion ∆2

s(t) can be
written as

∆2
s(t) , E

[

(x− xs(t))
2] = E





(

∞
∑

k=1

bk2
−k −

jt
∑

k=1

bk2
−k

)2




= E





∞
∑

k=jt+1

∞
∑

l=jt+1

bkbl2
−(k+l)



 =
∑

k

∑

l

2−(k+l)
E[bkbl].

(11)
Since bk’s are iid distributed as Bernoulli(1/2), E[bkbl] can
be obtained as

E[bkbl] =
1

4
+

1

4
δ(k − l), (12)

where δ(k−l) is the delta-Dirac function defined as δ(k−l) =
1 if and only if k = l, otherwise zero. Plugging (12) into (11)
and applying the sum of geometric series, it yields

∆2
s(t) =

4

3

(

1

4

)jt+1

. (13)
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Proof (Theorem 2) Since the channel distortion of each level
of importance varies by forming each encoding window as
time continues, we consider the anytime transmission hap-
pens at the interval Tj , i.e., t ∈ Tj , then the channel distor-
tion can be written as

∆2
c,lt(t) , E

[

(xs(t)− x̂(t))2
]

= E









Kj
∑

k=1

bk2
−k −

Kj
∑

k=1

b̂k(t)2
−k





2



=
∑

k

2−2k
E[(bk − b̂k(t))

2]

=

Kj
∑

k=1

2−2kPr(b̂k(t) = 1
∣

∣bk = 0)

=

j
∑

i=1

Ki
∑

k=1+Ki−1

2−2kPei(t),

(14)

where the last equality follows by defining Pr(b̂k(t) = 1
∣

∣bk =
0) as Pe(t). Furthermore, Pei(t) denotes bit error probability

of the input bits in the ith level of importance. Assuming the
Gaussian approximation and all-zero codeword sent, Pei(t)
can be obtained by (15), where Yj,i is the message sent from
output bits in the jth encoding window to the input bits of
the ith level. Also, Iinj

is the probability that an input bit

(in the ith class) connected only to the jth encoding window
is of degree nj regardless of the other edges. Applying the
Chernoff bound Q(x)≤1

2
exp(−x2/2) to (15), yields

Pei(t) ≤
1

2

j
∏

m=i

∑

nm

Iinm
exp

(

−nmE[Y
(l)
m,i]/4

)

=
1

2

j
∏

m=i

Iim

(

exp
(

−E[Y
(l)
m,i]/4

))

.

(16)

By following (3), (16) is equivalent to

Pei(t) ≤
1

2
exp

(

j
∑

m=i

αm(t)
(

exp
(

−E[Y
(l)
m,i]/4

)

− 1
)

)

,

(17)
where the average degree of the input bits in the mth window
regardless of other edges can be derived as

αm(t) =

{

βmTm/Km, m = i, · · · , j − 1

βjt/Kj , m = j
(18)

Now, the only concern is to determine E[Y
(l)
m,i]. For this

purpose, we follow the semi-Gaussian approximation [11] in
order to obtain the updating rules. Based on the semi-
Gaussian assumption, the messages sent from input bits of
the ith class at round l of the BP algorithm are symmet-
ric Gaussian variables with mean µi,(l), and variance 2µi,(l).
From the second equation of (4), the relation of µi,(l) and

E[Y
(l)
m,i] (i ≤ m ≤ j) can be shown to be

µi,(l+1) =
∑

nm

ιnm (nm − 1)E[Y
(l)
m,i] = ι′m(1)E[Y

(l)
m,i], (19)

where ι′m(1) =
∑j−1

m=i βmTm/Km +βjt/Kj is asymptotically

the average degree of an input bit in the ith class by consid-
ering all output neighbors connected to it.

The messages passed from an output bit of window m
are assumed to be Gaussian, and their expected values can
be determined as

ξdm(µi,(l)) , E

[

Y
(l)
m,i|deg(y) = dm

]

= 2E

[

atanh

(

tanh(q/2)

dm−1
∏

m=1

tanh(Um/2)

)]

,

(20)
where Um’s (m = 1, ..., dm − 1) are iid random variables

distributed by N
(

µi,(l), 2µi,(l)
)

. Furthermore, the channel

LLR is independent of Ui’s. Therefore,

E

[

Y
(l)
m,i

]

=
∑

dm

ωdmξdm(µi,(l)). (21)

Starting from µi,(0)=0, then E

[

Y
(0)
m,i

]

=qωd1 , according to

(20); and after a sufficient number of iterations, the mean
values are obtained. It is worth mentioning that the degree
one of the degree distribution should not be zero, otherwise,
the mean at each iteration becomes zero and the decoding
algorithm does not start.

Plugging the results into (14), the upper bound for chan-
nel distortion is given by

∆2
c,lt(t)≤

1

2

j
∑

i=1

∑

k

2−2kexp

(

j
∑

m=i

αm(t)
(

exp
(

−E[Y
(l)
m,i]/4

)

−1
)

)

.

(22)

Proof (Corollary 1) The end-to-end distortion can be writ-
ten as

∆2
lt(t) = E

[

(x− xs(t) + xs(t)− x̂(t))2
]

(a)

≤
(

E
1/2[(x− xs(t))

2] + E
1/2[(xs − x̂(t))2]

)2

= (∆s(t) + ∆c,lt(t))
2 ,

(23)
where (a) follows from the Minkowski inequality.

Proof (Theorem 3) The source distortion of the anytime
repetition coding follows from the same proof as that of the
anytime UEP-LT scheme. Note that according to the repe-
tition strategy, K bits are used at time t in which it can be

verified that t = K(K+1)
2

. In order to analyze the channel
distortion, the probability of error for the bits that are re-
peated odd number of times is considered individually com-
pared with those which are repeated even number of times.
Therefore, if we assume that at time t, K is an odd number,
then it can be easily verified that

Pek,odd
=

n
∑

j= k+1

2
+1

(

k

j

)

ǫj(1− ǫ)k−j

Pek,even
=

n
∑

j= k
2
+1

(

k

j

)

ǫj(1− ǫ)k−j +
1

2

(

k
k
2

)

ǫk/2(1− ǫ)k/2 .

(24)
The second term in Pek,even is due to the error in which the
number of zeros is equal to the number of ones. Applying (3)
and (5) to the results and using the Minkowski inequality as
in (23), the proof completes.

6. NUMERICAL RESUTS

In this section, we quantify the performance of the anytime
transmission schemes in terms of the end-to-end distortion
and compare them with simulation results.
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Pei(t)=Pr
(

∑

Y (l)<0
)

=
∑

ni,···,nj

Pr
(

niY
(l)
i,i +· · ·+ njY

(l)
j,i

∣

∣deg(b∈window i)=ni, · · · , deg(b∈window j)=nj

)

· Pr (deg(b ∈ window i)=ni, · · · , deg(b ∈ window j)=nj)=
∑

ni

· · ·
∑

nj

Iini
· · · Iinj

Q

(

√

(

niE[Y
(l)
i,i ]+· · ·+njE[Y

(l)
j,i ]
)

/

2

)

,

(15)
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Figure 1: Degree distributions associated with the windows

The number of information and encoding windows for the
anytime UEP-LT codes is set to six windows with the lengths
K = [10,12,30,40,50,60] and T = [60,65,180,250,270,300],
respectively. Furthermore, the degree distributions are op-
timized for the BSC with cross-over probability ǫ=0.11 us-
ing the approach in [1] which yields the degree distributions
shown in Figure 1. The maximum order of the windows’ de-
gree distributions is set to D=[4,8,9,10,12,14]. For the any-
time UEP-LT codes, ξdm(µi) in (7) is sampled using Monte-
Carlo simulations by setting µ∈ (0, 16] and the step-size as
∆µ=0.01. The number of BP iterations is also set to 50
rounds. The analytic and simulated results are reported in
Figure 2. It is worth pointing out that at lower time hori-
zons, the asymptotic Gaussian assumption used in the proof
of Theorem 2 does not hold. However, as time increases the
upper bound provides the true bound on the distortion of
the anytime UEP-LT scheme.

7. CONCLUSION

In this paper, we have derived analytical upper bounds
for the end-to-end distortion of two anytime transmission
schemes. These strategies are based on repetition channel
coding with sequential MLD algorithm, and UEP-LT chan-
nel coding using sequential BP decoding. In addition, the
bounds have been compared with simulations in order to
verify the accuracy of the analytical results.
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