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ABSTRACT

In this paper we propose a class of SR algorithms for com-
pressed video using the maximum a posteriori (MAP) ap-
proach. These algorithms utilize a novel multichannel im-
age prior model which has already been presented mainly for
uncompressed video, along with a new hierarchical Gaus-
sian nonstationary version of the state-of-the-art quantiza-
tion noise model. The relationship between model compo-
nents and the decoded bitstream is also demonstrated. An
additional novelty of this framework pertains to the transi-
tion flexibility from totally nonstationary algorithms used for
compressed video to fully stationary algorithms used for raw
video. Numerical simulations comparing the proposed mod-
els among themselves, verify the efficacy of the adopted mul-
tichannel nonstationary prior for different compression ratios,
and the significant role of the nonstationary observation term.

1. INTRODUCTION
Improving the resolution of a frame or a set of frames be-
longing in a video sequence, by utilizing the non redundant
information provided by a sequence of LR decoded frames.
The super-resolution (SR) problem impacts a wide variety of
signal processing applications. For example, SR aims at en-
hancing the precision of scientific, medical, and space imag-
ing systems, improves the robustness of tracking tasks, and
benefits consumer electronic and entertainment applications
such as, cell phones, digital video cameras, portable Digi-
tal Versatile Discs (DVD), and High Definition Televisions
(HDTV) [1]. In each of these systems, acquiring data us-
ing a high resolution system increases significantly system
complexity. Consequently, SR algorithmic techniques be-
come really important for achieving this goal. Moreover,
while many techniques have been proposed to enhance un-
compressed video (see for example [1]- [4]), only a few have
been introduced to efficiently improve the resolution of com-
pressed video (e.g., [5], [6]) There is also a significant gap
on proposing a unified class of SR algorithms for both com-
pressed and uncompressed data. On the other hand, the use
of an algorithm designed for raw data but applied to decom-
pressed data, discards important information about the quan-
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tization noise that was introduced in the HR frames during
compression.

In this paper we address the compressed video SR problem
within the context of the MAP framework. The main novel-
ties of this work are mainly two. The first one, stems from
the fact that it extends the utilization of the recently proposed
nonstationary multichannel prior from uncompressed [3] to
compressed video, given that its stationary version has al-
ready been adopted for decoded video sequences [S]. More-
over, it is the first time that the single frame counterpart of
the nonstationary prior [3] is also used for compressed video.
The second novelty is the introduction of two new nonstation-
ary hierarchical observation models for the decoded frames
by utilizing the same assumptions stated in [3] for the prior,
in the observation terms (quantization noise) proposed in [5].
Consequently, a class of new video SR algorithms results with
the transition flexibility from fully nonstationary algorithms
for compressed data to fully stationary algorithms for raw
video by selecting only four parameters.

This paper is organized as follows. In Sec.2 we present the
mathematical background. In Sec. 3 we introduce a general
MAP problem formulation for the SR of compressed video
resulting in three new algorithms and their asymptotic cases.
Numerical experiments are provided in Sec. 4, indicating the
superiority of the nonstationary prior for different bit-rates
and the contribution of the new observation models in certain
cases. Finally, Sec. 5 concludes the paper.

2. MATHEMATICAL BACKGROUND

2.1. Observation Models

As clearly stated in [S] and [6], compression noise is at-
tributed to quantization noise and also the motion vectors
(MVs) which are provided in the compressed bit-stream. Fol-
lowing the steps in [5], [6], we also use two different obser-
vation models related to quantization noise. However, the
novel factor adopted in this paper, is the fact that we formu-
late their nonstationary (hierarchical two-level Gaussian) ver-
sions in total allignment with the respective methodology pro-
posed in [3], for the prior model. More specifically, by treat-
ing the spatially varying precisions per pixel (related to quan-



tization and registration noise) as Random Variables (RVs)
described by a Gamma hyperprior, we capture in a more real-
istic way their heavy-tailed (Student-t like) nature, especially
in the cases of high compression rates.

Following the analysis in [5] and [6] the first proposed
imaging model, which describes the quantization noise, is
given by

y; = DHf; +e;, (1

where D is the M N x LM LN down-sampling matrix, H is
the LM LN x LM LN known blurring matrix, y, is the com-
pressed observation of the ith LR frame, f; is its HR counter-
part (of dimensions M N x 1 and LM LN X 1, respectively)
and e; ~ N(0,U;) with U; being the covariance matrix in
the spatial domain. Moreover, given that this is the station-
ary version of the aforementioned model (assuming an IID
noise process, or equivalently AWGN) U; = Ci_ll, where I is
the identity matrix of size M N x M N and (; is the inverse
quantization noise variance (precision parameter).

Based on the framework proposed in [3], we introduce
the nonstationary form of the aforementioned observation
model which comprises a novelty of this work. There-
fore, we define the spatially varying quantization noise er-
ror per pixel as e;, ~ N(0,(v;,)~ ") (v=1,.,MN), along

with the vectors-matrices v; = [v;1,Vi2,-.,VimN]T,

total _ T T T T -1 _
v = Wi sV os Uy and Uj =
dlag{vivl, V25 -+ ,Uin[N}, wherei =k—m, ..., k,... , k+

m. Moreover, assuming statistical independency for the
quantization errors, the following improper Gauss pdf occurs
(non-AWGN assumption)

MN
p(yilfi, vi) o [ (i)'

1
exp (~5((y, - DHE)TU; \(y, - DHE)). ()

Assuming a Gamma hyperprior for the RVs v; ,, i.e.,

=2
P(Viwi iy i) o (Vi) 2 exp(=Ai(Y; — 2)vin),  (3)

along with their statistical independency
p(wis Aiy 1) = H (Vi Ay i), )

we obtain the proposed two-level hierarchical (Student-t) like
form of the quantization error.

Utilizing exactly the same references and arguments for the
second imaging model proposed in [5], its stationary version
is defined as

= DHM, i f; +e; 1, (5)

where M(d; ) = M, ;, is the 2-D motion compensation ma-
trix of size LM LN x LMLN and e; ;, ~ N(0,U; ;) is the
quantization noise model with U; ; representing the covari-
ance matrix in the spatial domain for the 7th frame, where (;
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is the precision related to both quantization and registration
noise components (U; ;, = C;,CII).

To formulate the respective novel nonstationary ver-
sion of this model we use the following definitions (in
total alignment with the previous observation models):

—1 _ T
ik, ~ N0, (Vi)™ Vi = [Vik,1,Vik 2, - - Vil MN] " s

total _ [T T T T -1
Vix = [Uk—m,ka-~-7Uk,ka-~-7vk+m,k] and U;,~ =

diag{vik,1, Vik.2, - - -, Vik,m N }. Moreover, the respective hi-
erarchical form of the noise term is based on the following
equations

MN
(¥;|fi, vik) H(Uz’k,u)l/2
v=1
1 _
exp (=5 ((v; = DHMfi) "UL ! (y; — DHMfy))),
(6)
Vi —2
P(Vikw; Nik, Yik) o (Vi) exp(—Nir (Vi — 2)Vikw),
@)
MN
P(Vik; Aik, Yir) = H P(Vik,v; Aiks Yik)- (8)
v=1

The transition of the aforementioned observation models from
their nonstationary to the stationary forms takes place in the
asymptotic cases where 1); — co and v;; — 00, respectively.

Finally, as clearly stated in [5] and [6], in both the
aforementioned observation models the noise component by
the motion vectors provided in the compressed bitstream
should be incorporated, which is efficiently formulated as IID
(AWGN) stationary noise process

yi\fv C(Vl j) DHMz ]f + Wij, MV, (9)

where given the assumptions stated in those references
wijmv ~ N(O,R;;av) and Ryj py = 7 1I is the re-
spective covariance matrix in the spatial domam for the ¢th
frame (r; ; is the precision related to the displaced frame dif-
ference (DFD)). Obviously, in the case of the second observa-
tion model j=k. As is shown in Sec. 3, setting these precision
parameters equal to zero, results in the utilization of the pre-
sented algorithms for uncompressed data.

2.2. Image Prior Models

In this work we consider two nonstationary prior models
(along with their stationary counterparts / asymptotic cases)
in order to penalize compression errors. The first one, is the
novel nonstationary multichannel prior proposed in [3] for
uncompressed data (the stationary version of it, l;i — oo and
&j — oo, was used in [3], [4] for raw data and in [5] for
compressed video). Moreover, the second one is also referred
as single (within) channel nonstationary prior in [3] (its sta-
tionary form was also used in [4] and [5] and consists of the
well-known single channel prior which is modelled by a SAR
distribution). Therefore, the full mathematical background
of the utilized priors, along with their qualitative analysis is
given in the aforementioned publications and is not repeated
in this work, due to space constraints.



3. MAP PROBLEM FORMULATION AND

PROPOSED ALGORITHM
In this section we introduce a MAP problem formulation for

the SR of compressed video, resulting in three novel non-
stationary algorithms. Moreover, their asymptotic (semi-
stationary and stationary) versions are mentioned, which oc-
cur when only the observation model or both the prior and the
observation models are stationary, respectively.

3.1. Algorithm 1
The simplest approach to the studied problem is to use a sin-

gle decoded channel described by the nonstationary observa-
tion model of (1)-(4). In this case no motion information is
used and SR takes place without using any of the adjacent
channels. Combining these equations with the single (within)
channel nonstationary prior in [3] the MAP estimate results
in the following novel non-stationary algorithm

af = : (10)

(5 +3(i —2)
(3(ein)? + Ni(v; — 2))

an

Viv =

2
(HTDTU 'DH+ > (Q1)"A;'Q > =H'DTU; y,,
d=1 a2
where D7 defines the up-sampling operation.
Based on the previous analysis, the stationary version of
Algorithm 1 has already been proposed in [5], while for its
semi-stationary (also new algorithm) version (12) becomes

2
<HTDTDH + c;lZ(Qd)TAide> f; = H'D"y,,

d=1
(13)
and (; is also given in [5].

3.2. Algorithm 2
The nonstationary version of this algorithm, comprises also

a novel approach. More specifically, it utilizes the nonsta-
tionary format of the second observation model (5)-(8), along
with (9) (for j=k), while the respective nonstationary prior
model of Algorithm 1 is also adopted. Therefore, motion in-
formation between video frames is utilized only by the ob-
servation model. Consequently, the respective MAP estimate
yields

(3 + 3 — 2))

Vik,y = , (14)
T (S (e + Nk (Vi — 2))
ik = el : (15)
MV 2
|yMV — DHM, ;£ ||
2
Z Q) AQYE = Z (16)
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where
B k+m
J= Z M., H' DU, DHM, ;. + ;M ;H D" DHM, ],
i=k—
a7
5 k+m
Z= Z My, H'D"U; }y; + 1My ;H D C; 1y
i=k—

(18)
while the estimation of ¢ ;... 1s given by (10) for i = k and
C.r = C(v;). Similarly to Algorithm 1, the stationary
version of Algorithm 2 has already been proposed in [5] and
[6], and for its semi-stationary (also novel algorithm) format
the steps of the previous analysis are followed.

3.3. Proposed Algorithm 3

In the novel proposed nonstationary Algorithm 3, the
nonstationary observation term described by (1)-(4) and
the bitstream related observation term expressed by (9),
are combined with the new nonstationary multichannel
prior analyzed in [3]. Following [3]- [6], along with
the respective notation, (taking into account all possi-
ble combinations of the HR motion fields and the com-
pressed LR motion fields) the objective function becomes
Juap(f, b, B vy, v X ptut 18 7t €8 F)  where t
stands for total, f = [f,{_,m . fk,.. A )7, and ¥ is
the column vector containing the decoded observations. Its
minimization results in

(5 +3Wi—2)

vy = : (19)
' (5(eiw)? + Xi(thi — 2))
lv2V — DHM, 8 *
(G + 0)f = Ay, @1
\yhere
G = dzag{(rk—m + Gk—m,)7 eeey (Fk—i-m + @k+m)}
Qnd
A = dlag{(Akfm + Ekrfm)7 eeey (Aker + Ek+m)}7
with

k+m

I; =H'D’U;'DH,0; = > r;M;;H'D"DHM, ;,
k

AJ = HTDTU_ E = Z ’I’iij,iHTDTCLj and ﬁ
1=k—m

is given in [3]. Finally, in a respective way to the previous

algorithms, the stationary version of Algorithm 3 is given

in [5], while its semi-stationary format is derived based on

the previous analysis and is not given explicitly due to space

limitations.

In this algorithm the (HR) MF information is also taken
into account through the prior, while simultaneous SR (and
restoration) of all the HR frames is taking place which is
not the case in algorithms 1 and 2. Clearly, all proposed
algorithms can be used for both compressed (using also the



motion vector information provided by the compressed bit-
stream) and not compressed data in each of their three states
(nonstationary, semi-stationary and stationary). Finally, (12),
(13), (16), and (21) can not be solved in closed form, due
to the non- circulant nature of the matrices D, M7, M, Ci;
A B, g Uy L and U, 1 . Thus, we resorted to a numerlcal
solution using a con]ugate—gradwnt (CG) algorithm.

4. EXPERIMENTAL RESULTS

In this section, we assess experimentally the performance of
the developed novel MAP SR Algorithms 1, 2 and 3 in their
stationary, semi-stationary, and nonstationary forms by com-
paring among themselves (relative efficacy) for both com-
pressed and raw video data. Moreover, the stationary algo-
rithms have been tested against their state-of-the-art counter-
parts and exhibited better performance. Consequently, their
advanced nonstationary versions, will also do better than the
competition. However, this latter comparison is not shown
due to space constraints. In all presented results, the influ-
ence of the compression ratio on the SR enhancement pro-
cess is also taken into consideration, utilizing the H.264 /
AVC standard. The central 256 x 256 region/section of five
consecutive frames of the sequence “Mobile” (CIF format),
at 30 frames per second was selected for the HR original
data. While the first frame of the sequence is intra-coded,
each other frame is compressed as a P-frame (baseline pro-
file). Moreover, we tested two limiting bit-rates of 1.63 Mbps
(quantization parameter equals to 16) and 199 kbps (quanti-
zation parameter equals to 23), simulating a “high” and “low”
quality coding video process, respectively.

In the “high” quality case the input sequence to the encoder
was not blurred at all (H = I), whereas in the “low” quality
case uniform 9 x 9 blur was adopted as extra degradation
mechanism. After blurring, all frames are sub-sampled by a
factor of two (L = 2). The objective metrics used to quantify
the quality of the results, were ISNR, PSNR, and VIF [3]- [6].

The stationary versions of Algorithms 1, 2 and 3 de-
noted by All, AI2 and pAl (proposed algorithm) respec-
tively, were initialized as described in [5]. Moreover, these
algorithms were utilized for the initialization of their semi-
stationary counterparts which in their turn initialized the re-
spective nonstationary algorithms. The prior related hyperpa-
rameters were initialized as mentioned in [3], while the ob-
servation model oriented ones are given by \; = 1/(2¢;)
(Mik = 1/(2¢ix)). Moreover, the values of parameters [, £
and v which control the degree of nonstationarity are shown
in the tables below along with the experimental outcomes in
the case of raw data (r;; = 0). Additionally, motion esti-
mation was implemented using a 3-level hierarchical block
matching algorithm with integer pixel accuracy at each level.
During the CG performance, matrices M; ; were initially es-
timated and remained fixed (the same holds for the estimated
precision parameters). The same procedure was followed for
the estimation of matrices C; ;, given the decoded LR obser-
vations, in order to optimize v; ; vector estimates compared
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to their values obtained from the compressed bitstream. In all
models, the adopted convergence criterion for the termination
of the CG algorithm was ||£7<* — £2'¢/|* / ||£214]|* < 10-C.

Based on the presented tables several observations are
made. The proposed model (nonstationary Algorithm 3 utiliz-
ing the nonstationary prior) is robust in terms of ISNR, PSNR
and VIF in the cases where it is used for compressed data
compared against all other models, while the nonstationary
quantization noise term plays a significant role in nonstation-
ary All and Al2. Moreover, the efficacy of the unified class
of SR Algorithms for compressed data is much greater com-
pared to its respective use for uncompressed data, due to the
removal of the artifacts which are introduced by the compres-
sion procedure.

Representative video frames of recovered HR intensities,
are depicted in Figs. 1 and 2. Clearly, the novel nonstationary
prior utilized in pAI3, efficiently removes ringing and block-
ing artifacts, while it simultaneously denoises smooth areas
and preserves edges. The numbers are sharper, stripes are also
improved, while in the high bit-rate scenario, where nonsta-
tionary pAl exhibits its best performance, the circles on the
ball are better defined and the tip of the train is less jagged
given the removal of compression artifacts. Finally, the non-
stationary observation terms are proved to have a strong effect
only in denoising the smooth parts of the frames.
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Fig. 1. SR estimates (Bit-Rate: 1.63M bps). Result after (a) bicubic inter-
pol. of the LR observ., (b) stat. pAI3, (c) semi-stat. All, (d) semi-stat. Al2,
(e) nonstat. AI2, (f) nonstat. pAl3.



Table 1. Algorithms Using Mobile (Bit-Rate: 1.63Mbps)/Uncompressed Video (No Blur/H = T)

1.63Mbps/H =1 ISNR (dB) PSNR (dB) VIF l £ [
Stat. Alg. 1 | 0.69/0.59 20.65 0.26/0.20 — — —

2 | 2.21/1.89 22.18 0.33/0.28 — — —

3 | 3.33/2.83 23.30 0.38/0.33 — — —

Semi-Stat. Alg. 1 1.89/1.77 21.85 0.34/0.32 | 2.10 — —
2 | 3.19/2.65 23.16 0.38/0.32 | 2.10 — —

3 | 4.26/3.58 24.21 0.42/0.37 | 2.01 5 —

Nonstat. Alg. 1 1.90/1.77 21.86 0.34/0.32 | 2.10 — 10

2 | 3.31/2.66 23.28 0.38/0.32 | 2.10 — 5

3 | 4.28/3.60 24.23 0.42/0.37 | 2.01 5 10

Table 2. Algorithms Using Mobile (Bit-Rate: 199kbps)/Uncompressed Video (Uniform Blur 9 x 9)

199kbps /Uniform Blur 9 X 9 ISNR (dB) PSNR (dB) VIF l 13 P
Stat. Alg. 1 1.27/0.95 18.68 0.16/0.14 — — —

2 1.46/1.23 18.87 0.17/0.16 - - -

3| 1.57/1.36 | 1898 | 0187017 | — | — | —

Semi-Stat. Alg. 1 1.55/1.34 18.91 0.18/0.17 2.10 - -

2 1.63/1.40 19.04 0.19/0.18 2.10 - —

3 1.87/1.66 19.28 0.20/0.19 2.01 5 —

Nonstat. Alg. 1| 1.74/1.34 19.10 0.19/0.17 | 2.10 | — 5

2 1.64/1.40 19.05 0.19/0.18 2.10 — 10

3 1.89/1.66 19.30 0.20/0.19 2.01 5 8

Fig. 2. SR estimates (Bit-Rate: 199kbps). Result after (a) bicubic interpol.
of the LR observ., (b) stat. pAI3, (c) semi-stat. All, (d) semi-stat. Al2, (e)
nonstat. All, (f) nonstat. pAI3.

5. CONCLUSIONS

In this paper we presented a class of new video SR algorithms,
based on the MAP framework, which exhibit the transition
flexibility from fully nonstationary algorithms for compressed
data to fully stationary algorithms for raw video. Those algo-
rithms exhibited stronger efficacy when used for compressed
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video compared to raw data. The main contributions of this
paper, stem from the utilization of a novel nonstationary prior
and of two new nonstationary observation models within the
context of compressed video SR. Based on the comparative
study of the 3 algorithms, we see that in all experimental cases
the proposed algorithm performs better than previous ones in
terms of both ISNR and PSNR, as well as VIF. This is a strong
indication that the use of MF in the prior term is much more
efficient than its use in the observation term, in terms of both
restoration capability and resolution enhancement. Finally, as
expected, the lower the compression ratio, the more efficient
the proposed algorithm is.
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