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ABSTRACT

Adapting the transmission strategy under partial or uncertain chan-
nel state information (CSI) at the transmitter is of importance in
practical systems with imperfect channel knowledge. In this work,
we consider the problem of power allocation in a system of parallel
communication sub-channels with uncertain CSI. We adopt the ro-
bust (minimax) optimization methodology and attempt to arrive at a
novel precoding strategy that guarantees a certain worst-case perfor-
mance, but without being too conservative in terms of average per-
formance. To this end, we precisely model the underlying sources
of uncertainty, and characterize the typical norm-constrained uncer-
tainty set by an additional unbiasedness constraint. This helps to
reduce the severity of the worst-case scenario, and in turn leads to
a less conservative, robust minimax power allocation strategy with
superior average performance.

1. INTRODUCTION

Adapting the transmission strategy with respect to the channel con-
ditions leads to an improved transmission performance. In case,
perfect CSI is available at the transmitter, the transmission strategy
can be adapted via a precoder designed to optimize a certain objec-
tive function such as receiver mean square error (MSE), signal-to-
noise ratio (SNR) or the transmission rate. On the other hand, if no
CSI is available, only a trivial fixed precoder can be used, and the
potential precoding gains are lost. Between these two extremes of
precoder design, based on perfect CSI and no CSI, the case of par-
tial CSI at the transmitter is of interest in practical systems, where
the CSI is obtained at the transmitter either via estimation on the
reverse link or via the quantized feedback from the receiver, both
leading to a CSI that is not perfect and possibly erroneous.

Broadly speaking, the precoder design approaches with partial
CSI knowledge can be classified into two frameworks. The stochas-
tic framework assumes a certain distribution for the channel coef-
ficients, and designs the precoder based on the knowledge of the
mean or the covariance of this distribution [1-3]. The criterion here
is to optimize a certain objective function w.r.t the given CSI distri-
bution. The precoder, thus obtained, is optimal in terms of average
performance, but since the knowledge of CSI statistics is needed, it
is inherently prone to CSI modeling errors.

The deterministic framework, on the other hand, models the
channel coefficients as being lying in an uncertainty region around
the nominal channel and does not require any statistical knowledge
about the CSI. The only assumptions are on the size of this uncer-
tainty region. The robust optimization [4] strategy is then pursued,
leading to a minimax/maximin problem formulation, and as such
the precoder promises a certain guaranteed level of performance
[5,6]. The deterministic framework was pursued independently
in [5, 6] to design precoders under uncertain CSI with the objec-
tive of maximizing the worst-case (WC) received SNR for spherical
and more general uncertainty classes respectively. In [7], the prob-
lem of robust power allocation is addressed for the maximization of
channel capacity in a simple parallel sub-channel setting. However,
owing to the non-convex nature of the objective function, the con-
sequent duality gap leads to a possibly too conservative solution.
Payaro et al. applied the deterministic framework in [8] to solve the
complementary problem, i.e. designing a precoder that minimizes
the transmit power while satisfying some Quality of Service (QoS)
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constraints. Recently, [9] presents a unified view on precoder de-
sign for SNR maximization or transmit power minimization for el-
lipsoidal uncertainty class and different power constraints.

In this work, we pursue the deterministic framework to design
a precoder for the maximization of SNR in a system of parallel sub-
channels, given an uncertain knowledge of the sub-channel gains
at the transmitter. In this context, the precoder design problem re-
duces to the one of finding the optimal power assignment to each
sub-channel. Our work differs from the previous approaches, in the
way we characterize the uncertainty class. Traditionally, the WC
precoder designs (e.g. [5-7]) are based on the norm based uncer-
tainty class for the minimax problem formulation. In this work,
motivated by the unbiasedness of the estimator (or the quantizer for
feedback) employed to obtain the CSI at the transmitter, we impose
an additional constraint that the average value of the transmitter un-
certainty (i.e. the estimation/quantization error) is zero. This addi-
tional and natural constraint effectively reduces the size of the un-
certainty class employed in the minimax problem formulation, and
consequently reduces the conservativeness of the maximin robust
precoder.

The rest of the paper is organized as follows. Section 2 presents
the system model and the preliminaries needed to pose the robust
optimization problem. In Section 3, we detail the proposed and con-
ventional approaches to optimize power allocation under channel
uncertainty. Section 4 makes a simulation based comparison of the
proposed design with conventional ones, while Section 5 presents
the conclusion.

2. PRELIMINARIES
2.1 System Model & Objective Function

We consider a system of N parallel interference-free sub-channels.
This originates, for instance, in the context of an orthogonal multi-
carrier system, where the transmission on each sub-carrier can be
modeled as a flat fading AWGN channel having a gain determined
by the channel frequency response at that sub-carrier. Thus, the
system can be represented via set of scalar equations,

Gi = hizi + 7 (1)

fori = 1,2,..., N, with h; € C denoting the complex fading
coefficients, and 7; ~ N(0, Jf]) denoting the zero mean, circu-
larly symmetric complex Gaussian noise. Here z; denote the inde-
pendent (unit power) transmit symbols, so we re-write the system
model as

i = hip) s + 7, 2

where p; € R4 denotes the power allocated to the i—th sub-
channel, and serves as a degree of freedom to optimize the trans-
mission performance. Throughout this work, we assume a perfect
receiver CSI', thus the receiver can pursue the matched filtering
(and scaling) to obtain y; = ﬁfzf Ui, such that

yi = hip} @i + s, 3)

I'This scenario serves at least as an approximation for the scenario where
the receiver CSI is of sufficiently reliable quality.
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where h; = |BL| € Ry,and nm; = R still follows the Gaus-

1
[l
sian distribution A'(0, o2). We build this work on the system model
given by (3). While the receiver CSI is perfect, we assume that the
transmitter CSI is possibly erroneous.” Let the estimated channel
gains at the transmitter be denoted as hi; € R4, then we have the
actual channel gains given as

hi = hi; + hug, 4

where hy; € R denote the associated estimation (quantization) er-
rors i.e. the uncertainties at the transmitter. Without limiting the
scope of our contribution, we assume that the sub-channels are
sorted and indexed in the order of decreasing channel gains w.r.t.
the transmitter CSI Ay;.

Note that in the matrix-vector notation, the system model in
(3) can be expressed as y = HPY?x + n with H being the di-
agonal channel matrix and P being a diagonal matrix determin-
ing the power assignments. We aim to optimize the receiver SNR,
tr(HPHY)

tr(Ry)

tions, we write the objective function explicitly in terms of the
power assignments {p; } and the channel uncertainties {hy;} as

@({pl {huz Zpb htz+huz) ) (5)

, via precoder optimization. Thus, in the scalar nota-

where we dropped the constant term involving an, ie. SNR =
w. It may be pointed out here that besides measuring

the recelved SNR, this objective function also has a relationship
[10, Sec. 3.4] with the Pairwise Error Probability (PEP) — the
probability that a codeword has a better ML metric than the actu-
ally transmitted codeword.

2.2 Uncertainty Model

The transmitter is assumed to obtain its CSI via one of the two
mechanisms:

e a possibly erroneous, out-dated, and quantized feedback from
the receiver, or

e estimation on the reverse link by exploiting channel reciprocity.

In both cases, the obtained CSI is imperfect, and hy; = h; — hy; de-
notes the associated uncertainty about the actual channel magnitude
at the transmitter. It is clear that this uncertainty is real valued, i.e.
hu; € R, and that the uncertainty has no bias, otherwise it can be
removed as a preprocessing step. We assume ergodicity of this unbi-
asedness, so that the uncertainty is also unbiased along the channel
index. This assumption is justified especially in scenarios where
CSI is obtained by pilot symbols at intermittent sub-channels, fol-
lowed by an unbiased interpolation / estimation at the intermediate
sub-channels.

The uncertainty region, which is a crucial design parameter for
minimax problem formulation in worst-case designs, is therefore
selected via incorporation of two constraints. First, that the channel
uncertainty at the transmitter has a bounded norm, and second that,
owing to the unbiasedness of the estimator/quantizer employed, it
has a zero sum. Mathematically, we define the uncertainty class as
the following set of channel uncertainties,

1 & 1
uh—{{hui}:NZhufg& NZhM—o}, (6)
=1 i=1

Thus, while pursuing the minimax WC design, we consider only
unbiased uncertainties of magnitudes not exceeding a thresh-
old. The threshold § can be interpreted as a design parame-
ter in practical implementations to trade-off robustness with con-
servativeness, but if some statistics about the uncertainty are
available, it can indeed be selected in a non-ad-hoc manner,
as outlined in earlier works, for instance [6].

2Note that the transmitter needs a knowledge of only the sub-channel
gains {h;} instead of the actual fading coefficients {h;} to optimize its
power allocation.

An important consequence of the zero sum constraint in (6), in
comparison to earlier works, is that it effectively reduces the man-
ifold of potential minimax robust solutions, thereby introducing a
regularization effect which turns out to be favorable. The reason be-
ing that the minimax optimization for the considered scenario in ab-
sence of such a constraint leads to optimal uncertainties h,; < 0 for
alli = 1,2,..., N. Besides estimator biasedness, this inherently
means that the estimation error is correlated — a property which
any reasonable (especially the MMSE) estimator should exploit to
improve the estimate. Thus, given an unbiased estimator for CSI
at the transmitter, it is natural to pursue the minimax optimization
with this unbiasedness constraint in place, and it helps ultimately
to arrive at a minimax robust power assignment scheme that is less
conservative. We remark, that in Section 4, we also evaluate the
performance of various schemes, including the proposed one, for
Gaussian uncertainties without an explicit zero sum constraint.

3. MAXIMIN ROBUST POWER ALLOCATION (MRPA)

The maximin robust power allocation design problem in presence
of an uncertainty {hu; } at the transmitter can be posed as,

min ‘P({pi}v {hui})7 @)

max
{pi}€P  {hu;}EUn

where P denotes the set of valid power assignments, defined below,
and Uy denotes the channel uncertainty class, as defined for instance
in (6). Put in words, the inner minimization identifies the worst-
case scenario, while the outer maximization optimizes the worst-
case performance. We note that,

e P={{pi}: N, pi < Pr, p; >0} forms a convex set.

e Uy in (6) is an intersection of two convex sets, and is therefore

a convex set as well.

e o({pi}, {hu;}) is concave (linear) in p; and is convex in hy;.
Hence, the objective function is concave-convex in the two opti-
mization variables, and the regions P and U4, are convex and com-
pact, so that the minimax theorem [11, Sec. 2.6] holds, i.e. the opti-
mal power assignment and the WC uncertainty form a saddle point.
In the sequel, we solve this maximin problem for the proposed and
the conventional uncertainty class.

3.1 Proposed MRPA - Optimization with Unbiasedness Con-
straint

We solve here the maximin robust power allocation problem (7)
with the uncertainty class defined in (6). To this end, we note that
since the inner minimization is convex, we may employ the La-
grangian duality (for inner minimization) to equivalently write the
problem as

N

Ao 3
AhZ Ly — 3

+ N + N
(®)

where A > 0 and p are the Lagrangian multipliers dualizing respec-
tively the inequality and equality constraints in (6). Defining,

max max min

i (i +-Pui)”
(pi}eP A0 {hui} { i+

=1

A _ B

)‘:N7 N_W7

®

we may rewrite the Lagrangian function in (8) as,

N
¢ ({pi}{hei} A ) = Z [pi (s +hu)® +Mhuf +2p0hu; ] — ANG.
B (10)

The KKT condition for the minimization problem yield the follow-
ing optimal (WC) uncertainties

* pihw; +
Ry L 1
(pi+>\ > (an
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fori = 1,2,..., N. We observe that back substitution of h, in
(10), taking into account
* Ahe; — H
he; + by = ———, 12
leads to the dual function
N 2
ihes (A — 20) —
0(pit A=Y {p il o A’“‘) Fo1 NS, (13)

i=1

such that the maximin problem (8) reduces to the following maxi-
mization problem.

max max
A>0,u {p;}EP

9({pi}7)‘hu‘) (14)

Since the inner maximization is convex, we may again use the
Lagrangian duality to write the problem as

d{pit, A ), (19

max min max
A>0,p v2>0  {p;}:p;>0

with ¢ ({p’b}7 )‘7 , l/) =0 ({p’b}y )‘7 /"L) +v (PT - Zzlil pl)7 ie.
we used ¥ > 0 as the Lagrangian multiplier to dualize the sum
power constraint in P. The KKT conditions now lead to the follow-
ing optimal (robust) power assignments

* Ahe; — B +
pi = (7\/; )\) s (16)

where (o)" = max(e,0) ensures that the power assignments
are non-negative.3 Let N, denote the number of active modes
with p; > 0 and N, denote the number of inactive modes, i.e.
N, + Ny, = N, then we may express the resulting dual function,

by substituting p; into ¢ ({pi}, A, i, v), to get

)+

Na \2p 2 ) 2y N2
é(A,H,V):Z{hLZ()\ hui —3pA b +207) —2/v (A — 1)

(Ahe; — )

i=1
2

4+ Nk — Nb% + vPr — ANG.

Since 0 (A, u, v) is by definition convex in v and concave in p, the
optimal Lagrangian multipliers can be obtained via the first order
optimality conditions and some algebraic manipulations, such that

* —)\aPT
f— —7 17
= NXT Pr(No/V,) an
. Na 2
V= (NHPT(Nb/Na)) ! (1s)

with the scalar o = N% vazal hy;. Back substitution leads to

Na . 2 2_ * X *x2 *2
GOt o) = [Z ha(O2he — 3" Mo + 20 )} Ny

oy (Mg — p*) A
2 2 2
BNZNNZQ2 O+ Pr/NY) 19
(NX+ Pr(No/Na))?

We note that 6 (A, p*,v*) is by definition concave in A > 0, so
a simple single variable, numerical convex optimization may now
be pursued to obtain A\*, which can be employed to obtain the ro-
bust power allocation {p; } and its corresponding WC uncertainty
{hu;}. An algorithmic summary of how to arrive at the proposed
minimax robust power allocation is given below.

31t is worth mentioning here that the quantity Ahy; —  is non-negative for
all 4. This holds because Ah¢; > 0 for all ¢, and the Lagrangian multiplier
1 < 0. Note that the non-negativity of Ah; — p also confirms that hy; +hu}
in (12) is non-negative for all 4.

Algorithm 1 Algorithm for the proposed MRPA.

Inputs: {h¢} ., Pr, 6
Outputs: {hu} }:1, {p} }/1,
Choose an initial guess .
while Desired optimality not attained do
for N, = 1to N do
Compute «, and then p* and v* via (17) and (18).
Compute {p;} via (16).
if > | p; == Pr then
Break
end if
end for{Correct value of IV, determined. }
Evaluate 6 (\, u*, v*) at given N,, a, p* and v* via (19).
Make an appropriate correction in A. We employ the
fmincon routine from the MATLAB optimization toolbox.
end while
A A
Compute {p} }¥; from (16), and {h,} }7*; from (11).

3.2 Conventional MRPA — Optimization without Unbiased-
ness Constraint

The maximin robust power assignment design problem without the
uncertainty unbiasedness constraint can be posed similarly as in (7),
but with U, replaced by U, which denotes the conventional channel
uncertainty class, constrained only via the uncertainty norm, i.e.

N
U = {{hUi}:%Zhu? <5}. (20)
i=1

To solve (7) with Z/?h instead of Uy, we make use of the Lagrangian
dualities in a way similar to that in Sec. 3.1. The WC uncertainty
without the unbiasedness constraint solves to

he = — (ﬂ) , 1)
pi + A

while the optimal power assignments can be given as

. +
* )‘hlz {
D < NG > (22)

The associated optimal Lagrangian multipliers, obtained via the first
order optimality conditions, read as

. 2
v = /)‘70‘ , (23)
A+ Pr/N,

o_bBf ] o
A _Na< a2 — B+ 6N/N, 1)’ (24

with 8 = NL‘ Zf\i‘l h.?. The optimal Lagrangian multipliers A* and
U* can now be plugged in (22) to obtain the robust power allocation
{p;}, cf. [9] for instance.

We reiterate, that unlike the proposed robust power allocation
in Sec. 3.1, which incorporates the uncertainty unbiasedness as an
additional constraint in its maximin design formulation, the con-
ventional approach does not take this into consideration and as such
has a larger uncertainty class. This inherently means that the con-
ventional WC optimization pursued in this sub-section leads to a
possibly too conservative power allocation strategy.

3.3 Worst-Case Unbiased Uncertainty for a Given Power Allo-
cation

A related problem, that we need to solve for a comparison of the
proposed robust power assignment with some conventional power
allocation schemes (such as the one in Sec. 3.2) is to determine the
worst-case unbiased uncertainty for a given power allocation. To
this end, we need to solve the following optimization problem

poin o e{pid i) 25)
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where {p;} is some arbitrary fixed power allocation. This problem
can be immediately recognized as being identical to the inner mini-
mization problem in (7), and solves to

bt =~ (”—”’”’ +f‘> , (26)
pi+ A

which leads to the dual problem

N : . by . — 1 —_ ~2 ~
max Y {p’h”“h” 20) = It } —ANS. (@)
220,z =1 pi + A

By the first order optimality condition for ji, we get

ZN Piht;

=1 5.4 X\

~ it

Iu* =——F5— 11 , (28)
i1 5w

leading to the function ¢({p:},{hui}, A, ") to be numerically
maximized over A to get A* that can be plugged in (28) to obtain j1*.
Finally, via (26), we obtain {h,]} — the WC unbiased uncertainty
associated with the given power assignment.

4. SIMULATION RESULTS

In order to analyze the effectiveness of the proposed power allo-
cation strategy, we carry out a simulation based comparison for a
system of IV parallel sub-channels. We assume that the transmitter
has an imperfect knowledge of sub-channel gains, and that it has a
limited power budget Pr that can be distributed among the parallel
sub-channels, via one of the following four schemes.

e Uniform Power Allocation (UPA), i.e. p; = Pr/N for all
i=1,2,...,N.

e Best Sub-channel Power Allocation (BSPA), with p; = Pr only
for the strongest channel mode (w.r.t. the uncertain transmitter
CSI) and p; = 0 for all other 7.

e Maximin Robust Power Allocation (MRPA) without unbiased-
ness constraint, i.e. p; as in Sec. 3.2.

e Maximin Robust Power Allocation (MRPA) with unbiasedness
constraint, i.e. p; as in Sec. 3.1.

Let us first take a look at the intuitive results. We note that
with SNR as the objective function, the optimal power assignment
— in case of perfect CSI — is to assign all the available power Pr
to the strongest sub-channel. For the scenario of uncertain CSI at
the transmitter, the solution would stay the same unless and until
the uncertainty is large enough to cast doubt on the identity of the
strongest sub-channel. In the extreme case, if the uncertainty is
very high, we may end up in an equal power assignment to all sub-
channels. The UPA and the BSPA are therefore the two extreme
cases to which the maximin robust power allocation converges at
very high and very low uncertainties respectively.

4.1 Worst-case SNR Performance

In this section, we present the comparison of the four schemes in
terms of their WC received SNRs, i.e., the received SNR achieved
by them for their respective WC uncertainties as derived in Section
3.3. To this end, we generate random nominal channel realizations
{ht; }, determine the power allocation and corresponding WC un-
certainties for each scheme, and then measure their received SNRs.
The SNRs are averaged over several (1000) nominal channel real-
izations, and are plotted in Fig. 1 as a function of the degree of
uncertainty in transmitter CSI. For better intuition, we label the x-

axis in terms of the normalized uncertainty measure 8, such that

Sy
POARYLH

Hence, values of 6 = {0, 1} correspond to the extreme cases of
zero and maximum uncertainty in the transmitter CSI. In order to
focus on the effect of channel uncertainty only, we normalize the
achieved SNR by the effective channel power + SN (h +hai)?,
so that the performance of UPA stays constant, regardless of the
uncertainty level.

<4. (29)

WC SNR (dB)
a ~

UPA

6 —+— BSPA
—@&— MRPA-Conv|
—— MRPA-Prop

o

-3 -6 -10 -15 -20 -25
3 normalized (dB)

Figure 1: Worst-Case SNR as a function of dat N = 8.

The comparison in Fig. 1 corresponds to a system with NV =8
sub-channels with unity receive noise power at each sub-channel,
and a transmit power budget Pr such that Pr/(No?) = 8 dB. We

note that at high uncertainty, ¢ greater than —10 dB or so, the perfor-
mance of BSPA suffers badly because of the uncertainty being high
enough to cast doubt on the identity of the best sub-channel. The
UPA, on the other hand, offers a reasonable performance here, be-
cause it distributes the power uniformly over all the sub-channels —
the optimal strategy in absence of CSI. As the uncertainty decreases,
the performance of BSPA improves however, and eventually be-
comes superior to UPA. As expected, the proposed robust power
allocation with unbiasedness constraint (MRPA-Proposed) always
performs the best among all four schemes, at all uncertainty levels.

4.2 Coded BER Performance

A superior performance of the proposed scheme in terms of WC
SNR, as observed in the last sub-section, is a somewhat expected re-
sult. In this section, we present the comparison in terms of the coded
BER, which is of prime concern in many practical systems. To this
end, we employ a rate 1/3 turbo code (as specified in the LTE stan-
dard [12]). We consider the transmission of an identical fixed length
sequence of coded bits over the same channel with different power
allocation schemes. Since different schemes employ different num-
ber of active modes, but same transmit constellation (QPSK), to
enable a fair comparison, we normalize the power budget per trans-
mission slot such that the total transmit power needed for the trans-
mission of this fixed length sequence is the same for all schemes.

Fig. 2 shows the CBER comparison of the four schemes at
their respective worst-case channels as derived in Sec. 3.3, for three
different uncertainty levels, namely 6 = —10 dB, —20 dB and —30
dB. We observe that at high uncertainty (left sub-plot), UPA and the
proposed MRPA perform the best. At moderate uncertainty (center
sub-plot), proposed MRPA beats all other power assignments, while
at low uncertainty (right sub-plot), the proposed MRPA performs as
good as the BSPA. *

Finally, in Fig. 3, we present the comparison of the power al-
location schemes in terms of their average coded BER, obtained
by generating various (100) random uncertainties (instead of the
WC uncertainty), and then averaging over various (1000) transmit-
ter CSI realizations. It is worth mentioning that this comparison is
made by generating zero mean Gaussian uncertainties of bounded
norm, but without the unbiasedness constraint explicitly imposed.

It may be mentioned here that the WC performance in Fig. 2 and in
Table 1 is presented in terms of WC coded BER, so the performance of
proposed scheme is not necessarily best.

Table 1: Relative gains of proposed MRPA over other schemes at
CBER of 1077

Scheme Worst-case performance, at 5 Average performance, at 5
-10 dB -20 dB -30 dB -10 dB -20 dB -30 dB
UPA 0.0dB 0.74 dB 0.39 dB 1.05dB 1.38dB 0.85dB
BSPA oo dB 1.67dB  -0.05dB ~5dB 032dB  -042dB
MRPAcy  0.87dB  0.31dB 0.12dB -0.10dB  0.15dB 0.16 dB
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Figure 2: Coded BER at worst-case uncertainties as a function of transmit power budget at different values of 4.
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Figure 3: Average Coded BER as a function of transmit power budget at different values of 5.

It is encouraging to see that besides offering the best WC per-
formance, the proposed robust power allocation scheme also offers
a reasonably good average coded BER performance. The relative
gains of the proposed scheme in terms of WC CBER as well as av-
erage CBER at the reference coded BER of 10~ are summarized
in Table 1. It reveals that even in terms of average CBER, the per-
formance of the proposed MRPA is superior especially at moderate
uncertainty levels.

5. CONCLUSION

We conclude that the unbiasedness of estimator / quantizer via
which the transmitter CSI is obtained, provides us with a natural
constraint that restricts the size of the uncertainty class for the de-
sign of maximin robust power allocation scheme. This restriction of
the uncertainty class helps us to arrive at a robust power allocation
with an average performance that is much superior than preceding
robust designs. Obviously, the robustness is slightly reduced, but
given the unbiasedness of practical estimators, this constrained un-
certainty class provides a nice and practically relevant trade-off be-
tween robustness and conservativeness.
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