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ABSTRACT

For compressed sensing with jointly sparse signals, we
present a new signal model and two new joint iterative-
greedy-pursuit recovery algorithms. The signal model is
based on the assumption of a jointly shared support-set and
the joint recovery algorithms have knowledge of the size of
the shared support-set. Through experimental evaluation,
we show that the new joint algorithms provide significant
performance improvements compared to regular algorithms
which do not exploit a joint sparsity.

1. INTRODUCTION

Compressed sensing (CS) [1, 2] is based on a sparse sig-
nal model and utilizes an under-determined system of lin-
ear equations for data acquisition and reconstruction. The
CS process is in general computationally light, and straight
forward, in the acquisition part and computationally heavy
in the reconstruction part. For the reconstruction part, we
note in the literature three classes of algorithms: convex re-
laxation based, non-convex and iterative-greedy-pursuits.

Due to the complexity in the reconstruction part of CS,
iterative-greedy-pursuit algorithms have recently attracted
much attention. Examples of such algorithms are Matching
pursuit [3], Orthogonal matching pursuit (OMP) [4], Look
ahead orthogonal matching pursuit [5] and Subspace pursuit
(SP) [6]. From a measurement vector, the main principle of
iterative-greedy-pursuit algorithms is to estimate the under-
lying support-set of a sparse vector followed by evaluating
the associated signal values. The support-set is the set of in-
dices corresponding to non-zero elements of a sparse vector.
To estimate the support set and the associated signal values,
the iterative-greedy-pursuit algorithms use linear algebraic
tools, e.g. the matched filter and least squares solution.

Recently we have seen a rising interest in solving CS for
multiple jointly sparse signals [7]. We refer to such a problem
as the joint CS problem and application scenarios referenced
in the literature are magnetoencephalography [8, 9, 10, 11],
spectrum analysis [12] and wireless sensor networks [13]. A
joint CS problem has two main aspects: (1) system set-up,
(2) signal model. Depending on these two aspects, a recon-
struction algorithm needs to be developed.

First, for the system set-up, we notice that [8] and [9]
use a single sensor (one sensing matrix) to sample signals.
Duarte et al. [7] are a bit more general and provide a system
set-up where multiple sensors are present. Next, we observe
that [8, 9] have a signal model defined in such a way that
all sparse signals have one common support-set. We refer to
the signal model of [8, 9] as the common support-set model.
On the other hand, the signal model in [7] is defined in such
a way that the signals have common and individual signal
parts. We refer to this signal model as the mixed signal
model.

This work was funded in part by VINNOVA.

We now discuss existing reconstruction algorithms for
the joint CS problem. Based on a single sensor system set-
up and a common support-set model, several greedy-pursuit
algorithms have been proposed [8, 9]. These algorithms can
not be applied for the more general multiple sensor system
set-up of [7], as well as the mixed signal model. For the
multiple sensor system set-up along with the mixed signal
model, convex relaxation as well as iterative greedy-pursuit
algorithms were proposed in [7].

In this paper, for the joint CS problem, we present a new
signal model and develop two new iterative-greedy-pursuit
algorithms. Our system set-up is the same as [7] where multi-
ple sensors are present, but the signal model is different. For
the signal model, we use common and individual support-
sets to characterize jointly sparse signals. Unlike [7], there
is no restriction on the associated signal values. We refer
to this new signal model as the mixed support-set model.
The mixed support-set model is shown to be a generalization
over all previously proposed models. To take advantage of
the mixed support-set model, we develop two new iterative-
greedy-pursuit algorithms based on regular OMP and regu-
lar SP. We refer to these new algorithms as joint OMP and
joint SP. The only knowledge the proposed algorithms use is
the cardinalities of the common and individual support-sets.
The new algorithms utilize the strategy of jointly finding the
common support-set iteratively. Through experimental eval-
uations, we show significant improvements compared to the
regular OMP and SP.

Notations: Let a matrix be denoted as A ∈ R
M×N and

a vector as x ∈ R
M×N . I is the support-set of x, which is

defined in the next section. AI is the submatrix consisting
of the columns in A corresponding to the elements in a set
I. Similarly xI is a vector formed by the components of x
that are indexed by I. The pseudo inverse of A is denoted
as A† and the matrix transpose as AT .

2. MIXED SUPPORT-SET MODEL

Using the general multiple sensor system set-up (as in [7]),
we first describe the joint CS problem and then the new
mixed support-set signal model. First, for the l’th sensor,
we have the sparse signal xl which is observed for the joint
CS problem as

yl = Alxl +wl, ∀l ∈ {1, 2, ..., L}, (1)

where yl ∈ R
M×1 is a measurement vector, Al ∈ R

M×N a
measurement matrix, wl ∈ R

N×1 is the measurement error,
and M < N . Al and wl are independent across l. The
signal vector xl has Kl non-zero components with indices
Il = {i : xl(i) 6= 0}. Il is referred to as the support-set of
xl and the cardinality is |Il| = ‖xl‖0 = Kl. Using the set of
{yl}

L
l=1, the joint CS reconstruction problem endeavors for

finding {xl}
L
l=1 by exploiting some shared structure among

the l sensors defined by the underlying signal model.
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Now, we describe the new mixed support-set signal model
with a shared structure where the signal vector xl consists
of two parts

xl = z
(c)
l + z

(p)
l , ∀l ∈ {1, 2, ..., L}. (2)

In the new model (2) both z
(c)
l and z

(p)
l have independent

non-zero components. There are K
(p)
l non-zero values asso-

ciated with z
(p)
l . For simplicity we assume that the non-zero

values are located uniformly at random over the support-set

I(p)l ∈ {1, 2, . . . , N}, and ∀l ∈ {1, 2, . . . , L}. For z
(c)
l there

are similarly K(c) non-zero components with the constraint

that the support-set is shared, I(c)l = I(c), ∀l ∈ {1, 2, . . . , L}.

The elements of I(c) are the same (common) to all signals,
but unknown to the reconstructor1. This gives a support-set
Il for each set of signals as

Il = I
(c) ∪ I(p)l , ∀l ∈ {1, 2, ..., L}. (3)

We define Kl,max = |I(c)|+ |I(p)l | = K(c) +K
(p)
l . Note that

the support-sets can intersect, so Kl,max ≥ Kl.
From the set of measurement vectors {yl}

L
l=1, the task is

to find a good estimate {x̂l}
L
l=1 using the a-priori knowledge

of the cardinality of the support-sets {K(p)
l }

L
l=1 and K(c).

2.1 Generalization over existing signal models

The purpose of this section is to clarify what is new in the
mixed support-set model. Let us compare our model with
the mixed signal model of [7], where xl is composed of com-
mon and individual parts

xl = z
(c) + z

(p)
l , ∀l ∈ {1, 2, ..., L}. (4)

Here z(c) represents a common sparse signal part and z
(p)
l

represents the individual (private) signal part for the l’th

sensor. Note that z(c) is fixed for all the data set. Compar-
ing (2) and (4) we can say that the new mixed support-set
model is a generalization over the mixed signal model in the
sense that the former allows for different values in the com-
mon signal part z

(c)
l .

The common support-set model [8, 9] used in magnetoen-
cephalography has no individual signal parts at all. Their
model is

xl = z
(c)
l , ∀l ∈ {1, 2, ..., L}. (5)

Therefore our model (2) also generalizes the model (5).
The regular CS algorithms OMP and SP were not con-

structed to exploit the knowledge of a shared structure. Fur-
thermore, none of the algorithms presented in [8, 9, 7] can
solve the joint CS problem based on the new mixed support-
set model (2). Therefore, in the following two sections, we
develop two new iterative-greedy-pursuit algorithms.

3. JOINT ORTHOGONAL MATCHING
PURSUIT

In this section, based on the regular OMP algorithm, we
present a new joint OMP algorithm for solving the joint CS
problem (1). This algorithm works for multiple sensors and
is based on the new general mixed support-set model (2). For
clarity in the algorithmic notation, we define three functions
as follows

resid(y,A) , y −AA
†
y, (6)

1For easy practical implementation, we assume that the ele-

ments are uniformly distributed over I
(c) and I

(p)
l

.

max indices(x, k) , {the set of indicies corresponding to the

k largest amplitude components of x},
(7)

and

add1(s, I) , {In the N × 1 vector s, add 1 to every index

corresponding to the elements in the support-set I}.
(8)

3.1 Joint Orthogonal Matching Pursuit

We now describe the new joint OMP algorithm that uses the
new mixed support-set model. For developing the joint OMP
algorithm, we modify the regular OMP algorithm so that it
can use an estimate of the common support-set as an ini-
tial support-set. Our assumption is that over the iterations,
the estimate of the common support-set will improve. The
necessary modifications to the regular OMP is presented in
subsection 3.2.

We now show the steps of the joint OMP in algorithm 1.
In the k’th iteration stage, the algorithm finds a temporary

Algorithm 1 : joint OMP

Input: {Al}
L
l=1, {K

(p)
l }

L
l=1, K

(c) ,{yl}
L
l=1

Initialization:

1: k ← 0 (‘Iteration counter’)

2: I(c) ← ∅ (‘Initial common support-set’)

Iterations:

1: repeat
2: k ← k + 1
3: s← 0N×1

4: for ∀l ∈ {1, 2, ..., L} do

5: Kl,max ← K(c) +K
(p)
l − size(I(c))

6: (Il, x̂l, nl)← OMP(Al,Kl,max,yl, I
(c))

7: s← add1(s, Il)
8: end for
9: I(c) ← max indices(s, k)

10: until (k = K(c))

Output: {x̂l}
L
l=1, {Il}

L
l=1

Kl,max (step 5), which is passed on to the underlying modi-
fied OMP together with the estimated common support-set
I(c) from the previous iteration (step 6). An N -sized zero
vector s adds for each estimated support-set Il an one at
the location of the predicted non-zero element (step 7). If
the modified OMP algorithm finds one support-set element
that is common for all data, the value of s at this index
will have the maximum size of L. The indices corresponding
to the k largest elements in s are then chosen as the com-
mon support-set I(c) (step 9). Once an element is chosen,
it will be fed to the modified OMP algorithm in the next
iteration and always remain in I(c). Because a chosen index
will always remain in the common support-set, it is impor-
tant to carefully select each index to add to the common
support-set. We find that, in practice, the use of add1(·, ·)

and max indices(·, ·) allows us for a good estimate of I(c).

3.2 Modified OMP

As mentioned in subsection 3.1, we now describe the mod-
ified OMP in algorithm 2. Instead of initializing with an
empty support-set and begin iterating from the first com-
ponent as in the regular OMP, we here allow the algorithm
to take an initial support-set and continue building the final
support-set from this. This modification boils down to the
regular OMP as shown by Tropp and Gilbert [4] when the
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Algorithm 2 : OMP (including modifications)

Input: A, Kmax, y, Iini.
Initialization:

1: I0 ← Iini
2: r0 ← resid(y,AI0)
3: k ← |I0|
Iteration:

1: repeat
2: k ← k + 1
3: imax ← max indices

(

AT rk−1, 1
)

4: Ik ← Ik−1 ∪ imax

5: x̂Ik
← A

†
Ik

y

6: rk ← resid(y,AIk
)

7: until (k = Kmax)

Output:

1: Î ← Ik
2: x̂ such that x̂Ik

= A
†
Ik

y and x̂Īk
= 0

3: nr ← ‖rk‖2

initial support-set Iini = ∅. The modified OMP algorithm
starts with finding a residual (step 2 of Initialization), where
I0 = Iini. If the initial support-set Iini = ∅, the matrix AI0

is empty and the residual becomes y. At the k’th iteration
stage the modified OMP algorithm forms the matched filter,
identifies the index corresponding to the largest amplitude
(step 3) and adds this to the support-set (step 4). It proceeds
with solving a least squares problem with the selected indices
(step 5), subtracts the least squares fit and produces a new
residual (step 6). This process is updated until Kmax com-
ponents have been picked in the support-set. Normally the
regular OMP also has a stopping criterion when the resid-
ual norm is non-decreasing. We have removed this stopping
criterion to force the modified OMP such that it picks Kmax

elements.
In addition to the sparse signal estimate x̂, we also out-

put the estimated support-set and the final residual norm.
The residual norm is here given for completion and could be
used as a stopping criterion in the joint algorithm, although
we do not take this approach.

4. JOINT SUBSPACE PURSUIT

For solving the joint CS problem (1), we develop the joint
SP algorithm based on the mixed support-set model and a
modified SP algorithm. The joint SP algorithm uses the
functions (6), (7) and (8), defined in section 3.

4.1 Joint Subspace Pursuit

We here describe the new joint SP algorithm that uses the
new mixed support-set model. For developing the joint SP
algorithm, we modify the regular SP algorithm so that it
can use an estimate of the common support-set as an initial
support-set. The necessary modifications to the regular SP
is presented in subsection 4.2.

We now show the steps of the joint SP in algorithm 3.
In contrast to the joint OMP, the joint SP algorithm does
not need any iterator because it uses the sum-residual-norm
as stopping criteria. Another difference to the joint OMP is
that the joint SP algorithm has to keep track of its old data
(step 4). The maximum Kl,max (which is found in the initial-
ization) is then fed into the modified SP algorithm (step 5).
Similarly to the joint OMP, the N-sized zero vector s is used
to find the common support-set I(c) (step 6 and 9). The
sum-residual-norm is formed in (step 8). The difference to
the joint OMP is that, in each iteration, the joint SP picks
the indices corresponding to the K(c) largest components

Algorithm 3 : joint SP

Input: {Al}
L
l=1, {K

(p)
l }

L
l=1, K

(c) ,{yl}
L
l=1

Initialization:

1: rn ←∞; x̂l ← 0N×1, ∀l ∈ {1, 2, . . . L}

2: I(c) ← ∅; Il ← ∅, ∀l ∈ {1, 2, . . . L}

3: Kl,max = K(c) +K
(p)
l , ∀l ∈ {1, 2, . . . L}

Iteration:

1: repeat
2: s← 0N×1

3: for ∀l ∈ {1, 2, ..., L} do
4: (roldn , Ioldl , x̂old

l )← (rn, Il, x̂l)

5: (Il, x̂l, nl)← SP(Al,Kl,max,yl, I
(c))

6: s← add1(s, Il)
7: end for
8: rn ←

∑L

l=1 nl

9: I(c) ← max indices(s,K(c))
10: until (rn ≥ roldn )

Output: {x̂old
l }

L
l=1, {I

old
l }

L
l=1

of s (instead of the k largest, as in joint OMP). This com-

mon support-set is always of the same size K(c), but refined
through iterations. We stop when the value of the sum-
residual-norm no longer decreases.

Since the joint SP algorithm stops on the criterion of
sum-residual-norm it turns out to converge using less itera-
tions, why it is also less computationally intensive than the
joint OMP.

4.2 Modified SP

As mentioned in subsection 4.1, we here describe the mod-
ified SP in algorithm 4. The initialization phase has, com-
pared to the regular SP, been modified in a similar way as
the OMP algorithm so that it can use an initial support-set.
This algorithm boils down to the regular SP as defined by
Dai and Milenkovic [6] when Iini = ∅. At k’th iteration stage,

Algorithm 4 : SP (including modifications)

Input: A, Kmax, y, Iini
Initialization:

1: I0 ← max indices
(

ATy,Kmax

)

∪ Iini
2: r0 ← resid(y,AI0)
3: k ← 0

Iteration:

1: repeat
2: k ← k + 1
3: I′ ← Ik−1 ∪max indices

(

AT rk−1,Kmax

)

4: x̂ such that x̂I′ = A
†
I′y and x̂Ī′ = 0

5: Ik ← max indices(x̂,Kmax)
6: rk ← resid(y,AIk

)
7: until (‖rk‖2 ≥ ‖rk−1‖2)
8: k ← k − 1 (‘Previous iteration count’)

Output:

1: Î ← Ik
2: x̂ such that x̂Ik

= A
†
Ik

y and x̂Īk
= 0

3: nr ← ‖rk‖2

the modified SP algorithm forms the matched filter AT rk−1,
identifies the indices corresponding to the Kmax largest am-
plitudes followed by joining with the old support-set (step 3
of Iteration). This support-set I′ is likely to be bigger than
Kmax. The algorithm solves a least squares problem with
the selected indices of I′ and identifies the new indices cor-
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responding to the Kmax largest amplitudes (step 4 and 5 of
Iteration) followed by finding the residual (step 6). This pro-
cess is repeated until the residual norm no longer decreases.

In addition with the sparse signal estimate x̂, we also

output the estimated support-set Î and the final residual
norm.

5. SIMULATION RESULTS

In the simulations we are interested in finding how much per-
formance can be gained by exploiting the mixed support-set
model with the new algorithms (joint OMP and joint SP)
over the regular algorithms (regular OMP and regular SP).
We report the results for clean and noisy measurement cases.
In the noisy case we have chosen signal-to-measurement-

noise-ratio (SMNR) 20 dB, i.e., 10 log10
E{‖x‖22}

E{‖w‖22}
= 20. Note

that we drop the subscript l because we are averaging over
all sensors l.

To compare the algorithms, we use two performance mea-
surements. The first performance measure is the signal-to-
reconstruction-noise-ratio (SRNR) which is defined as

SRNR = 10 logE

{

‖x‖22
‖x− x̂‖22

}

. (9)

The second performance measure is the the distortion

d(I, Î) = 1 − (|I ∩ Î|/|I|) which measures the performance
of the support-set estimation [14]. The distortion of the
support-set is a valuable performance measurement since the
algorithms we compare endeavor to estimate the underlying
support-set. Considering a large number of realizations (data

vectors), we can compute the average of d(I, Î). We define
the average support-cardinality error (ASCE) as follows

ASCE = E

{

d(I, Î)
}

= 1− E

{

|I ∩ Î|

|I|

}

. (10)

Next we describe the simulation setup. In any CS setup,
all sparse signals are expected to be exactly reconstructed if
the number of measurements are more than a certain thresh-
old value. The computational complexity to test this uniform
reconstruction ability is exponentially high. Instead, we can
rely on empirical testing, where SRNR and ASCE is com-
puted for random measurement matrix ensemble. We define
the fraction of measurements

α =
M

N
. (11)

Using α, the testing is performed as follows:

1. Given the signal parameter N , choose an α (such that M
is an integer).

2. Randomly generate a set of M × N sensing matrices
{Al}

L

l=1 where the components are drawn independently

from an i.i.d. Gaussian source (i.e. am,n ∼ N
(

0, 1
M

)

)
and then scale the columns of Al to unit-norm.

3. Generate support-sets I(c) and {I(p)l }
L
l=1 of cardinality

K(c) and {K(p)
l }

L
l=1, respectively. The support-sets are

uniformly chosen from {1, 2, ..., N}.

4. Randomly generate a set of signal vectors {xl}
L
l=1 fol-

lowing (2), where {z(c)l }
L
l=1 and {z(p)l }

L
l=1 corresponding

to the non-zero components (support-sets determined in
step 3). The non-zero components in the vectors are cho-
sen independently from a Gaussian source.

5. Compute the measurements yl = Alxl + wl, ∀l ∈
{1, 2, ..., L}. Here wl ∼ N (0, σ2

l IM ).

6. Apply the CS algorithms on the data {yl}
L
l=1.

In the simulation procedure above, for each l ∈ {1, 2, . . . , L},
Q sets of sensing matrices are created. For each data set and
each sensing matrix, P sets of data vectors are created. In
total, we will average over L · Q · P data to evaluate the
performance.

5.1 Parameters and simulation set-up

For the plots presented in this paper, we have chosen: N =

500, K(c) = 10, and ∀l,K(p)
l = K(p) = 10. We have chosen

L = 10 for which we have chosen number of Al’s to 50 (i.e.
Q = 50) and the number of data-sets x to 50 (i.e. P = 50),
giving a total number of 10·50·50 = 25000 data for statistics.
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Figure 1: SRNR for clean measurements with K
(c) = 10, K(p) = 10.
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Figure 2: SRNR for noisy measurements with SMNR = 20 dB,

K
(c) = 10, K(p) = 10.

5.2 Analysis of the simulation results

We provide four figures showing the results of the numerical
simulations.

Figure 1 and Figure 2 shows the SRNR of the recon-
structed signal for a clean and a noisy (SMNR = 20 dB)
measurement case, respectively. In the clean case, we no-
tice that the joint OMP performs almost 15 dB better than
the regular OMP at α = 0.15. In the noisy case this num-
ber is slightly lower with about 10 dB improved performance
(still α = 0.15). Corresponding numbers for the SP-based
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Figure 3: ASCE for clean measurements with K
(c) = 10, K(p) = 10.
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Figure 4: ASCE for noisy measurements with SMNR = 20 dB,

K
(c) = 10, K(p) = 10.

algorithm is about 10 dB improvement for the clean mea-
surements and 8 dB improvement for the noisy case, both at
α = 0.15.

In Figure 3 and Figure 4 we similarly show the ASCE of
the reconstructed signal for a clean and a noisy (SMNR =
20 dB) case. In the noisy case, we notice that none of the
algorithms can perfectly find the support-set, as expected.
We also notice that the joint OMP very quickly converges
to its best performance. Also, the joint OMP is significantly
better than all the other algorithms at low α’s.

It is interesting to notice that the performance gain of
joint OMP over regular OMP is higher than the gain of joint
SP over regular SP. The reason for this is understood by
how the algorithm picks the common support-set. The joint
OMP picks one common support-set component at each it-
eration and hence iterates 10 times. In each iteration the
regular OMP is called once for each sensor. The joint SP on
the other hand, starts with an estimate of the full common
support-set and iteratively refines it. Thus, the joint OMP is
more careful when choosing the support-set and progresses
at a slower pace compared to the joint SP. It was observed
during the experiments that because of this difference in im-
plementation, the joint OMP has a significantly higher com-
putational complexity.

6. CONCLUSION

In this paper, a new mixed support-set model and two new
greedy pursuit algorithms was proposed. We find that the
model is a generalization of existing signal models presented
in the literature earlier. To solve the joint CS problem based
on this model, we developed two new algorithms, joint OMP
and joint SP, based on regular OMP and SP, respectively. By
experimental evaluations, we conclude that greedy pursuit
algorithms can exploit joint sparsity information embedded
in data.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory,
vol. 52, no. 4, pp. 1289 –1306, April 2006.

[2] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incom-
plete frequency information,” IEEE Trans. Inf. Theory,
vol. 52, no. 2, pp. 489 – 509, Feb. 2006.

[3] S. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” in IEEE Trans. Signal Processing,
vol. 41, no. 12, Dec. 1993, pp. 3397 –3415.

[4] J. Tropp and A. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans.
Inf. Theory, vol. 53, no. 12, pp. 4655 –4666, Dec. 2007.

[5] S. Chatterjee, D. Sundman, and M. Skoglund, “Look
ahead orthogonal matching pursuit,” in Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP), May 2011.

[6] W. Dai and O. Milenkovic, “Subspace pursuit for compres-
sive sensing signal reconstruction,” IEEE Trans. Inf. Theory,
vol. 55, no. 5, pp. 2230 –2249, May 2009.

[7] M. Duarte, S. Sarvotham, D. Baron, M. Wakin, and R. Bara-
niuk, “Distributed compressed sensing of jointly sparse sig-
nals,” Proc. Asilomar Conf. Signals, Sys., and Comp., pp.
1537 – 1541, Oct. 2005.

[8] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse
solutions to linear inverse problems with multiple measure-
ment vectors,” in IEEE Trans. Signal Processing, vol. 53,
no. 7, Jul. 2005, pp. 2477 – 2488.

[9] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst,
“Atoms of all channels, unite! Average case analysis of multi-
channel sparse recovery using greedy algorithms,” J. Fourier
Anal. and Appl., vol. 14, no. 5, pp. 655–687, 2008.

[10] I. Gorodnitsky and B. Rao, “Sparse signal reconstruction
from limited data using focuss: a re-weighted minimum norm
algorithm,” IEEE Trans. Signal Processing, vol. 45, no. 3, pp.
600 –616, Mar. 1997.

[11] J. Phillips, R. Leahy, and J. Mosher, “Meg-based imaging of
focal neuronal current sources,” IEEE Trans. Med. Imaging,
vol. 16, no. 3, pp. 338 –348, June 1997.

[12] D. Sundman, S. Chatterjee, and M. Skoglund, “On the use
of compressive sampling for wide-band spectrum sensing,”
Proc. IEEE Int. Symp. Signal Processing and Inf. Tech. (IS-
SPIT), Dec. 2010.

[13] A. Yang, M. Gastpar, R. Bajcsy, and S. Sastry, “Distributed
sensor perception via sparse representation,” Proc. of the
IEEE, vol. 98, no. 6, pp. 1077 –1088, June 2010.

[14] G. Reeves and M. Gastpar, “A note on optimal support re-
covery in compressed sensing,” Proc. Asilomar Conf. Signals,
Sys., and Comp., pp. 1576 –1580, nov. 2009.

372


