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ABSTRACT

Temporal dynamics is an important feature of speech that
distinguishes speech from noise, as well as distinguishing
between different speakers. In this paper, we present an
approach to maximally extract this feature of speech to im-
prove the robustness against background noise, for text-
independent speaker recognition. The new approach iden-
tifies and compares the longest matching speech segments
between the training and test speech to increase noise immu-
nity. Experiments have been conducted on the NIST 2002
SRE database in the presence of various types of noise in-
cluding fast-varying song and music. The new approach
has shown significantly improved performance over conven-
tional noise-robust techniques.

1. INTRODUCTION

In current speaker recognition systems, methods to reduce
the influence of background noise include one or combina-
tions of the following: 1) speech enhancement [1, 2, 3], 2)
robust acoustic features [4, 5, 6], and 3) noise compensa-
tion (e.g., parallel model combination, multicondition model
training, and missing-feature decoding) [7, 8, 9]. Most
methods are focused on the modeling of noise, and are ap-
plied within a Gaussian mixture model (GMM) framework
in which a GMM is used to model a speaker. A speaker’s
GMM describes the probability distribution of the speaker’s
short-time sounds (i.e., frames), but assumes statistical inde-
pendence between consecutive frames. Therefore, the GMM
fails to capture the temporal dynamics of speech, which de-
scribes how short-time sounds can be concatenated one to
another to form a realistic utterance. Long-range temporal
dynamics is one of the most important features of speech
which distinguishes speech from non-speech noise, and one
speaker’s voice from other speakers’ voices.

In this paper, we study the problem of improving noise
robustness by focusing on the modeling of speech, par-
ticularly, its long-range temporal dynamics. For text-
independent speaker recognition, how to effectively capture
long-range temporal dynamics of speech remains a focus of
research. Researchers have studied text-constrained speaker
recognition, based on common subword or word units be-
tween the training and test data [10, 11]. Alternatively, recog-
nition has been based on acoustic segments identified either
by phonetic similarity or by minimum distance [12]. Other
methods include the use of prosodic features [13] and pho-
netic refraction, expressed as phone n-gram counts [14].

In this paper, we propose a method to maximally extract
the temporal dynamics of speech, with the aim of maximiz-
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ing the noise robustness arising from this distinct feature of
speech. We achieve this by identifying and comparing the
longest matching segments between the test data and train-
ing data. Longer speech segments as whole units contain
more distinct temporal dynamics, and can be identified more
accurately from noise than shorter speech segments. There-
fore speaker recognition based on the longest matching seg-
ments effectively maximizes noise immunity, and hence re-
duces the requirement for information about the noise. In the
paper, we provide examples to demonstrate that the new ap-
proach offers improved robustness over GMM-based recog-
nizers, and robustness against nonstationary or unpredictable
noise which is difficult to model with conventional noise
modeling approaches. This work is an extension of our previ-
ous work [15] from modeling clean speech to noisy speech.
In the following, we first introduce the new longest match-
ing segment approach for speaker recognition using clean
speech, and then extend the approach to speaker recognition
using noisy speech assuming minimal information about the
noise.

2. THE LONGEST MATCHING SEGMENT
FRAMEWORK FOR SPEAKER RECOGNITION

The longest matching segment (LMS) framework is a new
approach for segment-based speaker recognition. It improves
speaker discrimination and noise robustness by maximizing
the size of speech segments to be compared between the test
and training sentences. The speech segments obtained are
of arbitrary-length of consecutive frames from speech sen-
tences, which may be of any sound made by a speaker, not
limited to a subword unit, and not necessarily phonetically
transcribable.

As in the GMM framework, in the LMS framework a
speaker is represented through a GMM. However, the LMS
framework moves further, by modeling the full temporal dy-
namics in each training speech sentence, and by performing
recognition based on the longest common speech segments
between the training and test data. Let G, represent a GMM
for speaker A modeling the probability distribution of the
speaker’s short-time speech frames x

Gy = {gx|k,A),w(k|A) : k=1,2,...,K} ¢))

where g(x|k,A) is the k’th Gaussian component and w(k|A)
is the corresponding weight. Based on the GMM, the LMS
approach further builds a model for each training sentence
from the speaker, to capture the full temporal dynamics in the
sentence. Let x = {x; : i = 1,2,..., I } be a training sentence
from speaker A with I, frames. This sentence can be rep-
resented by a time sequence of the Gaussian indexes, which
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address the Gaussian components in G that produce max-
imum likelihoods for the corresponding frames. This sen-
tence model can be expressed as

(kx,A) = {(kxi,A) 1 i=1,2,... Ik} 2)

where (ky;,A) indexes a Gaussian g(x|kx;,A) in G, that
produces maximum likelihood for frame x; in the training
sentence x. As can be noticed, the above representation
shares characteristics with a template. However, it provides
a smoother, and hence more robust, representation than tem-
plates by modeling each frame using a Gaussian component.
In the training stage, we create a model (ky,A) for each
training sentence x for each speaker A. All these training
sentence models for a speaker together form a model for the
speaker, used in the recognition.

In recognition, instead of comparing individual frames
as in the normal GMM framework, we identify and compare
matching segments of consecutive frames between the train-
ing and test data, as a means of increasing the speakers’ dis-
crimination and noise robustness arising from the temporal
dynamics of speech. More specifically, we perform recog-
nition based on the longest matching segments between the
training and test sentences, aiming to maximize the discrim-
ination/robustness. Lety = {y, : t = 1,2,...,T} be a test sen-
tence with T frames, and y,.; = {ye : € =1t,t+1,...,7} be a
test segment in y from frame 7 to 7. Based on (2), a train-
ing segment can be expressed as (Kx y:v, A) = {(kx,;,A) 1 i =
u,u+1,...,v}, which corresponds to the segment from frame
u to v in training sentence x for speaker A. We compare
the two segments, y;.c and (kx ..y, A), by using the posterior
probability P(Kx u:v,A|ys:z). Assuming an equal prior P for
all the training segments, P(Kx 4:v,A|yr:r) can be expressed
as:

(Y| K, A)P
p(yit)
_ p(YlIT|kX,LtIV7 A)
X Yot Y Pt Kt s A1) + (312 |9)

In the denominator, the first term corresponds to the like-
lihood that y;; matches a training segment, averaged
over all the training segments from all the training sen-
tences/speakers; the second term is the likelihood that y;.,
as a whole unit, is not seen in the training data. This likeli-
hood of unseen test segments can be calculated using a GMM
trained with training data from all the speakers [15]. Based
on (2), the segment likelihood function p(y:.z|kx u:v,A) can
be written as

P(kx,u:v>l|yn‘r) =

3

T

p(Yt:T|kx.u:wA) = Hg(yg|kx,ig;l) “@

e=t

where i is the most-likely time map between the two
segments, which maps test frames ye to training frames
(kx,ic,A), assuming iy = u and i = v. It can be shown that,
when longer (kxu.v,A) and y;.; are matched, larger poste-
rior probabilities P(kx .y, A|yr.z) are obtained [15]. There-
fore, the recognition problem can be expressed as to find the
speaker A which maximizes the sentence score I'(A;y):

1 T
F(l;y):?Zm?x max logP(kx v, Alyrz) ()
=1

x,uv €

At each test frame time ¢, the expression seeks to find the
longest matching training and test segments by jointly max-
imizing the posterior probability over all training segments
and all possible test segment lengths (i.e., 7).

3. EXTENSION TO NOISY SPEECH

Many current studies for noise-robust speaker recognition fo-
cus on the modeling of noise, within the GMM-based speaker
models. In this paper, we focus on the modeling of long-
range temporal dynamics of speech, and the combination
with models of noise, for improved noise robustness aris-
ing from the new speech/speaker model. Specifically, we
extend the above LMS approach and consider the identifi-
cation and comparison of the longest matching speech seg-
ments between the training data and noisy test data. Since
longer speech segments, when treated as whole units, can
be identified more accurately from noise than individual
frames, recognition based on the longest matching segments
increases the noise immunity.

In the above LMS framework, a noisy test segment y;.; is
compared directly to a clean training segment (ky .y, 4) us-
ing the posterior probability P(kx u.v, A|yr.r). We can make
this comparison more robust to the noise in y;.; by combin-
ing noise compensation. In this paper, we use a missing-
feature based approach which assumes minimal information
about the noise. In the training stage, we simulate the test
noise by adding variable forms of noise to the clean train-
ing sentences. As such, we compare the noisy test sen-
tence with the noisy training sentences to reduce the noise-
caused mismatch. Let @,, n=1,2,...,N, represent N training
noise conditions. Thus, each Gaussian component g(x|k,A)
in the speaker’s GMM G, (1), can be expanded to a set
of Gaussian components g(x|k,A,®,), n=0,1,...,N, where
g(x]k, A, ®,) is estimated using the frames corresponding to
g(x]k, 1) but corrupted at noise condition ®,, with @y de-
noting the noise-free condition. Thus, the time sequence (2)
can be extended to model a training sentence corrupted at N
different noise conditions. This model addresses a sequence
of Gaussian sets with each set, (kx;,A,0,) :n=0,1,...,N,
modeling a frame in the training sentence x from speaker 4
corrupted at variable noise conditions @y through wy. This
can be expressed as

(ks A) = {(kxiy A, @) :n=0,1,...,N;i=1,2,.... I} (6)

Based on (6), the segment likelihood function (4) can be
rewritten as

T

p(yl:‘c|kx,u:w}') = HP()’s|kxAig7/l) (7)
E=t
where
N
POelksics A) =Y. 8(elks.ic, Ay @) P(0y) 8)
n=0

is a multicondition model of the likelihood of test frame y,
with a prior probability P(w,) for condition ®, (assumed
to be a uniform distribution in the paper). This new model
should improve upon the clean-condition model (4) by of-
fering robustness to the variable noise conditions seen in the
training.
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In the recognition stage, we can further extend the noise
robustness beyond the training conditions by deemphasiz-
ing the local frequency-band mismatches between the train-
ing and testing noise conditions. For this, we represent
each speech frame y. using an F-subband vector y, =
(Ve 1,25, Ye,F ), Where ye ¢ is the feature for the fth sub-
band. At each training noise condition ®,, we assume that
ye can be divided into two subsets. One subset, y (@), in-
cludes the subband features that are matched by the training
noise condition ®,; the other subset, the complement J¢ (@, ),
includes the rest of the subband features that are mismatched
by the training noise condition. Improved robustness can
be obtained by computing the frame likelihood (8) by re-
placing g(ye|kx.i., A, @,) based on the full feature set with
8(ve(®,)|kx,i,, A, @,) based on the matched feature set for
each condition (i.e., the missing-feature theory):

ge(@)lkxic, Avon) =[]

Ve, fEve(@n)

g(y£,f|kx,ig;;";wn) (9)

where g(ye, fkx.ic, A, @,) is the likelihood of the f’th sub-
band in frame y,, and we assume independence between the
subbands.

However, (8) is not in a form suitable for esti-
mating the optimal feature sets ye(®,), as values of
8(ve(®y)|kx iy, 0, A) for different sized ye(@,) are in dif-
ferent order of magnitude and are thus incomparable. We
can make the frame likelihood p(ye|kx i, , A ) effectively com-
parable for different feature subsets by expressing each
8(velkx, i, @n, A)P(@,) in (8) through a posterior probability.
We use the expression

g(y8|kXi ,wn,l)P((l)n)
kx.l'b‘?a)n?z' P W) = =
g0elk JE() p(ve)

:P(kxijmlb’s)l’(y(?) (]0)

p(ve)

In (10), the last term p(y) is not a function of the matching
training frame and hence can be ignored from computation;
P(ky ., @y, Aye) is the posterior probability of the training
frame (kx,,®,,A) given test frame ye, which can be ex-
pressed as

g(y£|kx,i£, a)na A)P(wn)
Zl’,n’,k’ g(y&“k/a wnUA’/)P(wn’) +6
(1D
The first term in the denominator is simply a weighted sum
of Gaussian over all the speakers’ multicondition GMMs; &
is a small positive number used to accommodate the noisy ye
without matching subbands in the training data. Using this
posterior probability, the frame likelihood (8) based on the
full set of subband features can be written as

P(kx,ig7wl’l7l|y€) =

N
p(y8|kx,ig7l) o< Z P(kx,igawnvﬁ'bje) (12)
n=0

Equation (12) is in a form suitable for feature selection.
An optimal estimate of the matched feature set y.(@,), for
each training noise condition @,, can be obtained by maxi-
mizing the corresponding posterior P(ky ;. , @y, A|y) over all
possible sets y C y.. Denote by $¢(®,) such an estimate,
Ve(@,) = argmaxycy, P(kx,i,, 0n,Aly). Then, the optimal
frame likelihood, based on the optimal feature sets, can be

expressed as

N
P(velksig, A) o< Y Plkyio, @n, Al9e(@,))  (13)
n=0

Equation (13) combines multicondition training and optimal
feature selection, to offer improved robustness to noise varia-
tions outside the training conditions. This frame likelihood is
used to calculate segment likelihood (7) in the new LMS sys-
tem for searching longest matching speech segments given
noisy speech. A similar approach, termed universal com-
pensation (UC), is proposed in [9] for a GMM framework.
The above shows the extension of the UC technique into the
new LMS framework. In the following experiments, we will
compare the LMS approach and the GMM approach both
equipped with UC-based noise compensation. Therefore,
any differences in recognition accuracy between the two sys-
tems would be due to the modeling of the long-range tempo-
ral dynamics of speech in the LMS framework.

4. EXPERIMENTAL EVALUATION

The NIST SRE 2002 database, for the task of one speaker
detection, was used in the experiments. The database con-
tains cellular phone conversational speech data. The training
set consists of 330 speakers (139 male, 191 female) with an
average utterance length of about two minutes per speaker.
In our experiments, we modeled each speaker using a GMM
G, with 128 mixtures. For noise compensation, each Gaus-
sian component in the clean GMM was expanded to a multi-
condition Gaussian set, modeling variable noise conditions
(see Section 3). To simulate the unknown test noise, we
corrupted the clean training data at 42 different noise con-
ditions. These include low-pass filtered white noise with a
bandwidth of 0.5, 1, 1.5, 2, 2.5 and 3 kHz, respectively, plus
white noise without filtering; each noise type was added at
six different SNR levels: 10, 12, 14, 16, 18 and 20 dB. These
42 simulated noise conditions, plus the clean condition, form
a 43-condition GMM for each speaker. The GMM-based UC
system [9] takes this multicondition GMM, combined with
optimal subband selection at the decoding. The new LMS
approach moves further, by creating a sentence model (6),
defined on the multicondition GMM, to model the speaker;
this training sentence model, combined with segment likeli-
hood (7) and optimal subband selection (i.e., (13)), is used to
identify the longest matching segments and perform recog-
nition. Therefore, the two systems (noted as GMM+UC
and LMS+UC) differ in the modeling of speech: LMS+UC
models the speech temporal dynamics through the search for
the longest matching segments, whereas GMM+UC assumes
inter-frame independence.

There were a total of 3570 test sentences (1442 male,
2128 female) with variable durations from 15 to 45 s. Noisy
test sentences were created by adding four different types of
realistic noise at a SNR of 10 and 15 dB, respectively. The
four noises were: an engine noise (taken from NoiseX92), a
polyphonic musical ring, a pop song with mixed music with
voice of a male singer, and voice of a female as crosstalk.
These test noises each has a spectral structure significantly
different from the multicondition training noises. The ex-
perimental results, thus, would demonstrate the ability of the
proposed combination of multicondition model training and
missing-feature theory over noise conditions unseen in train-
ing. While the engine noise exhibited some characteristics

2125



Table 1: Equal error rates (%) comparing baseline GMM,
GMM+UC and the new LMS+UC approach.

Noise type [ SNR (dB) [ GMM | GMM+UC | LMS+UC

Engine 10 35.18 28.57 23.07
15 26.58 21.99 18.43

Musical ring 10 28.49 23.30 18.04
15 21.87 19.12 15.55

Pop song 10 22.14 20.21 17.64
15 18.18 17.70 15.52

Crosstalk 10 21.11 18.12 17.01
15 18.15 16.91 15.70

Clean 14.90 16.44 14.05

of slow variation, the other two types of noise, song and mu-
sical ring, were highly nonstationary. The speech was di-
vided into frames of 20 ms with a frame period of 10 ms.
Each frame was modeled using 12 decorrelated log filterbank
outputs uniformly divided into six subbands, with the addi-
tion of the corresponding first-order derivatives. We com-
pared three recognition systems: 1) a baseline GMM system
trained using clean data alone, 2) a GMM system with the
UC method for noise compensation (GMM+UC) [9], and 3)
the new LMS system with the UC method for noise compen-
sation (LMS+UC). The comparison demonstrates that mod-
eling the noise with the UC method (i.e., from GMM to
GMM+UC) improves the recognition accuracy, and addi-
tionally, modeling the temporal dynamics of speech with the
LMS method (i.e., from GMM+UC to LMS+UC) further ad-
vances the recognition accuracy.

Fig. 1- 5 present the DET curves comparing the three
systems under each type of the test noises (including clean
speech condition), as a function of the SNR. Table 1 summa-
rizes the corresponding equal error rates (EER). As indicated
in Fig. 1- 3 and Table 1, the GMM system with UC based
noise compensation (GMM+UC) offered improved recogni-
tion accuracy over the baseline GMM in all the noise con-
ditions. The new LMS+UC system, which combines mod-
eling speech temporal dynamics and UC based noise com-
pensation, further boosted the recognition accuracy from the
GMM+UC system in all the noise conditions. The improve-
ments by the LMS+UC system are quite significant in some
noise conditions. For example, for both the musical ring and
pop song noises, LMS+UC at SNR = 10 dB even outper-
formed GMM+UC at a higher SNR=15 dB (EER = 18.0%
vs. 19.1%, and 17.6% vs. 17.7%, respectively). For the en-
gine noise at SNR = 10 dB, LMS+UC reduced the EER of
the baseline GMM by over 34% relatively. This is almost
twice the reduction by the GMM+UC system (~18% rela-
tive). In the case of crosstalk noise which is even more dif-
ficult compared to other test noise conditions,the proposed
system achieved over 6% and 7% relative improvement over
GMM+UC for 10 and 15 dB SNR conditions respectively.
As pointed out, all the improvements are due to the capture
of long-range temporal dynamics of speech in the LMS+UC
system. Finally, for clean speech test, the new LMS+UC
outperformed the matched-condition baseline GMM. Further
experiments using the clean trained LMS achieved an EER
of 12.4% for clean data test. This is slightly better than our
previous clean test LMS result based on fullband MFCC fea-
tures [15].
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Figure 1: DET curves for the engine noise, comparing base-
line GMM, GMM+UC and the new LMS+UC, as a function
of SNR (dB).
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Figure 2: DET curves for the musical ring noise.

In this paper we have demonstrated that for speaker
recognition under additive noise conditions, the LMS ap-
proach combined with the UC technique is superior to the
GMM approach equipped with the same UC technique. This
proves the importance of long term temporal dynamics for
speaker recognition over short term features under noisy con-
ditions. We have shown in [15] that MAP adaptation can be
incorporated into the LMS speaker model; this has outper-
formed the conventional baseline GMM-UBM system and
obtained an EER among the best for a single system for the
NIST SRE 2002 task, without additional noise corruption.
Hence there is a scope for further improving the noise robust-
ness by incorporating maximum a posteriori (MAP) adapta-
tion into the LMS+UC system described in this paper. This
topic is under investigation.

5. CONCLUSION

We have presented an approach for robust speaker recogni-
tion in unknown/unpredictable noise environments. The new
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Figure 3: DET curves for the pop song noise.
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Figure 4: DET curves for the crosstalk noise.
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Figure 5: DET curves for clean speech test comparing base-
line GMM, GMM+UC and the new LMS+UC.

method maximizes the extraction of the temporal dynamics
of speech for speech and noise distinction. Experiments were
conducted for speaker recognition in various noise conditions
including fast-varying song and music. The new approach
demonstrated significantly improved performance over con-
ventional noise-robust techniques.
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