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ABSTRACT

We present a diffusion-based bias-compensated recursive least
squares (RLS) algorithm for distributed estimation in ad-hoc adap-
tive sensor networks where nodes cooperate to estimate a common
deterministic parameter vector. It is assumed that both the regres-
sors and the output response are corrupted by stationary additive
noise. In this case, the least-squares estimator is biased. Assum-
ing that a good estimate of the noise statistics is available, this bias
can be removed at the cost of a larger variance of the estimator.
However, by letting nodes cooperate in a diffusion-based fashion,
it is possible to significantly reduce the variance, and furthermore
improve the stability of the algorithm. If there are estimation er-
rors in the noise statistics, the diffusion also results in a smaller
residual bias. We provide closed-form expressions for the residual
bias and mean-square deviation of the estimate (without full deriva-
tions). We also provide simulation results to demonstrate the bene-
ficial effect of diffusion.

1. INTRODUCTION

We study the problem of distributed bias-compensated least-squares
estimation over ad-hoc adaptive sensor networks, where the nodes
collaborate to estimate and track a common deterministic parameter
vector. It is assumed that both the regressors and the output response
are corrupted by stationary additive noise. In this case, the least-
squares estimator is biased, which is often undesirable. This is for
example a common problem in the analysis of auto-regressive (AR)
processes based on noisy observations.

If the noise is white, total least squares (TLS) estimation can
be applied [1], which has also been described for the case of ad-
hoc networks [2]. If accurate estimates of the noise statistics are
available, the bias can also be removed by means of the bias-
compensation principle [3]. In this paper, we use a similar bias
compensation for the case where the noise is colored and/or corre-
lated with the noise on the output response. A bias-compensated re-
cursive least-squares (BC-RLS) algorithm is proposed, based on an
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exponentially weighted least-squares estimation problem. The lat-
ter allows to track the parameter vector when it changes over time,
by putting less weight on older samples in the estimation.

The compensation of the bias usually results in an increased
variance of the estimator, which is a common observation in estima-
tion theory. However, recent developments in adaptive filtering have
demonstrated that it is possible to significantly reduce the variance,
by letting different nodes combine their local estimates with those
of their neighbors [4–8]. The mode of cooperation that is adopted
in this paper, is known as diffusion adaptation [4–7]. Simulations
will demonstrate that diffusion indeed reduces the mean-square de-
viation1 (MSD) of the algorithm, and furthermore, it reduces the
residual bias resulting from possible estimation errors in the esti-
mates of the noise statistics.

We provide closed-form expressions for the MSD and the resid-
ual bias, under some assumptions that are common in the adaptive
filtering literature. Due to space constraints, we only list the most
relevant results, without the full derivation. The latter can be found
in a complementary paper [9]. We explain how these expressions
give insight in the fact that diffusion increases stability, and de-
creases the residual bias and estimator MSD.

Notation
We use boldface letters for random quantities and normal font for
non-random (deterministic) quantities or samples of random quanti-
ties. We use capital letters for matrices and small letters for vectors.
The superscript H denotes complex-conjugate transposition. The
index i is used to denote time instants, and the index k is used to
denote different nodes in a network with a total ofN nodes. We use
E{x} to denote the expected value of x.

2. LEAST SQUARES ESTIMATION WITH BIAS
COMPENSATION

2.1 Problem Statement
Consider an ad-hoc sensor network withN nodes. The objective for
each node is to estimate a common deterministic M × 1 parameter
vector wo. At every time instant i, node k collects a measurement
dk(i) (referred to as the ‘output response’) that is assumed to be
related to the unknown vector wo by

dk(i) = uk,iw
o + vk(i) (1)

where the regressor uk,i is a 1 ×M row vector2 of length M , and
vk(i) is a sample of a zero-mean stationary noise process vk with
variance σ2

vk
. In [5–8], it was assumed that node k also has access

1The MSD is closely related to the variance of the estimator. It is de-
fined as the expected value of the squared Euclidean norm of the difference
between the true parameter vector and the estimated vector.

2We adopt the notation of [5–7,10], i.e., the regressors are defined as row
vectors, rather than column vectors.
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to the regressors {uk,i}. Here, we assume that node k observes
noisy regressors {uk,i}, given by

uk,i = uk,i + nk,i (2)

with the 1×M regression vector nk,i denoting a sample of a zero-
mean stationary noise process nk with covariance matrix Rnk =

E{nH
k nk}. We assume that nk is uncorrelated with the regressors

uk,i, and that nk and vk are correlated3, yielding a non-zero co-
variance vector rnkvk = E{nH

k vk}.
The local least squares (LS) estimate of wo at node k at time

instant i, based on the noisy regressors, is the solution of the opti-
mization problem

ŵk,i = arg min
w

i∑
j=1

(dk(j)− uk,jw)2 + δ‖w‖22 (3)

where δ is a small positive number that serves as a regularization
parameter. The solution of (3) is given by

ŵk,i = R̂−1
uk,ir̂ukdk,i (4)

where

R̂uk,i =
1

i+ 1

(
i∑

j=1

uH
k,juk,j + δIM

)
(5)

r̂ukdk,i =
1

i+ 1

i∑
j=1

uH
k,jdk(j) (6)

and where IM denotes the M ×M identity matrix. The normal-
ization with 1/(i + 1) does not have an influence on ŵk,i, but its
purpose will become clear in Section 2.2. Since we use noisy re-
gressors, the LS estimate has a bias. In the case of stationary and
ergodic data, it can be verified that

ŵk = wo + wb
k (7)

wb
k = R−1

uk
(rnkvk −Rnkw

o) . (8)

where ŵk = limi→∞ ŵk,i = R−1
uk
rukdk with Ruk =

E{uH
k,iuk,i} and rukdk = E{uH

k,idk(i)}, for all i ∈ N.

2.2 Bias-Compensated Least Squares (BC-LS)
Several BC-LS algorithms have been proposed for the white noise
case (Rnk = σ2

nk
IM ), which are asymptotically unbiased when

the number of observations goes to infinity, e.g., [11]. BC-LS algo-
rithms are based on the bias compensation principle [3], i.e., if the
asymptotic bias wb

k can be estimated, it can be subtracted from the
LS estimate wLS

k,i to obtain the unbiased estimate (generalized here
to incorporate colored noise and mutually correlated noise):

ψk,i
∆
= ŵk,i + R̂−1

uk,i

(
R̂nkw

o − r̂nkvk

)
(9)

where r̂nkvk and R̂nk are estimates of rnkvk andRnk , respectively.
In the sequel, it is assumed that good estimates r̂nkvk and R̂nk are
available. In the case of white noise, these estimates can be com-
puted blindly during operation of the algorithm [11]. Otherwise,
other techniques are required, e.g., in the case of AR estimation in
speech signals, the noise statistics can be estimated during silent
periods in between words and sentences.

Since wo is unknown in (9), it has to be replaced with an esti-
mate. The common approach is then to use ψk,i−1 as an estimate
for wo in (9). We then obtain the recursive algorithm

ψk,i = ŵk,i + R̂−1
uk,i

(
R̂nkψk,i−1 − r̂nkvk

)
. (10)

3For example, this may be the case for the estimation of the prediction
coefficients of an auto-regressive (AR) process where the data is corrupted
by additive colored noise, e.g., in real-time analysis of a speech signal that
is recorded in a distributed microphone network.

2.3 Bias-Compensated Recursive Least Squares (BC-RLS)
In this paper, we first modify the above estimation algorithm to
fit into an adaptive filtering context, and incorporate exponential
weighting (for tracking purposes). The exponentially-weighted LS
estimate (at node k) solves the optimization problem

ŵk,i = arg min
w

i∑
j=1

λi−j (dk(j)− uk,jw)2 + λiδ‖w‖22 (11)

where 0 � λ ≤ 1 is a forgetting factor, putting more weight on
more recent observations. The solution of this problem is again
given by (4), but the estimates R̂uk,i and r̂ukdk,i are now given by

R̂uk,i =

i∑
j=1

λi−juH
k,juk,j + δIM (12)

r̂ukdk,i =

i∑
j=1

λi−juH
k,jdk(j) . (13)

It is noted that the effective window length is equal to 1
1−λ

=∑∞
j=0

λj , and since there is no normalization for the window

length, R̂uk,i and r̂ukdk,i can be considered to be estimates of
1

1−λ
Ruk,i and 1

1−λ
rukdk,i, respectively [10].

The solution of (11) is recursively computed by means of the
recursive least squares (RLS) algorithm [10]:

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1uH
k,i

)
(14)

ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) (15)

with ŵk,0 = 0 and Pk,0 = δ−1IM . The matrix Pk,i is always equal
to R̂−1

uk,i as defined in (12).
Using this construction, (10) is transformed into the recursion

ψk,i = ŵk,i +
1

1− λPk,i

(
R̂nkψk,i−1 − r̂nkvk

)
. (16)

The factor 1
1−λ

scales R̂nk and r̂nkvk to match with the effective
window length in (12)-(13). We will refer to the above algorithm
as bias-compensated RLS (BC-RLS). It is noted that (16) reduces
to the BC-LS recursion (10) if λ = 1 and if the scaling factor 1

1−λ

in (16) is omitted. We do not provide a convergence analysis of
BC-RLS here, since it is a special case of the diffusion BC-RLS al-
gorithm when cooperation is turned off, as described in the sequel.

3. DIFFUSION BC-RLS

In a sensor network, each node k has its own node-specific BC-RLS
estimate of wo, denoted by ψk,i. However, the bias compensation
usually increases the variance of the estimator in each node. It is to
be expected that the spatial average of all the ψk,i’s will be a better
estimate for wo, with a smaller variance. This average could in
principle be computed in a distributed fashion by iterative consensus
averaging algorithms [12]. The main idea of these algorithms is to
collect the estimates {ψl,i} at the neighbors of node k at time i and
to iterate over them repeatedly by computing a weighted average of
the form:

ψk,i ←
∑
l∈Nk

aklψl,i (17)

where Nk denotes the set of neighboring nodes of node k (node k
included), and akl is the entry at row k and column l of an N ×N
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combiner matrix4 A, where A satisfies

A1 = 1 (18)

with 1 = [1 . . . 1]H and where akl = 0 if l /∈ Nk. After conver-
gence, the result of (17) becomes the actual estimate ψk,i by node
k at time i. Thus, observe that at every time instant i, multiple con-
sensus iterations can be applied to the data {ψl,i} to approximate
their mean and obtain an improved ψk,i.

Applying consensus averaging in the case of BC-RLS would
therefore result in a 2-step approach involving two time-scales: one
over i and another scale between successive i’s. First, the nodes es-
timate a local ψk,i based on (16), after which an average consensus
algorithm is started to iteratively obtain

ψi =
1

N

N∑
l=1

ψl,i (19)

at each node. However, this approach is impractical in real-time
systems with large sampling rates since the consensus averaging at
each iteration i requires a large amount of communication band-
width and processing power. By applying diffusion strategies (see,
e.g., [5]), the iterations of the consensus averaging are merged
with those of the BC-RLS algorithm. As a result, the computa-
tional complexity and communication bandwidth are significantly
reduced while the network is still endowed with learning and track-
ing abilities. The following table summarizes the diffusion BC-RLS
(diffBC-RLS) algorithm that would result from a diffusion strategy.
Observe how the left-hand side of (23) is a new variablewk,i, which
then enters into the update (22). In contrast, in a consensus imple-
mentation (apart from the second time-scale), the variables that ap-
pear on both sides of (17) are the same ψ variables. In (22)-(23), a
filtering operation is embedded into (22) to map wk,i−1 to ψk,i at
each node and all ψl,i are then combined into wk,i in (23).

Diffusion BC-RLS algorithm

Start with wk,0 = 0, ŵk,0 = 0 and Pk,0 = δ−1IM for each
node k ∈ J . For every time instant i > 0, repeat
1. RLS update: for every node k ∈ J , repeat

Pk,i = λ−1

(
Pk,i−1 −

λ−1Pk,i−1u
H
k,iuk,iPk,i−1

1 + λ−1uk,iPk,i−1uH
k,i

)
(20)

ŵk,i = ŵk,i−1 + Pk,iu
H
k,i (dk(i)− uk,iŵk,i−1) .

(21)

2. Bias correction update: for every node k ∈ J , repeat

ψk,i = ŵk,i +
1

1− λPk,i

(
R̂nkwk,i−1 − r̂nkvk

)
.

(22)
3. Spatial update: for every node k ∈ J , repeat

wk,i =
∑
l∈Nk

aklψl,i (23)

It is noted that the RLS estimates ŵk,i are not diffused, since their
variance is small compared to the bias-compensated estimatesψk,i.

4This combiner matrix has to satisfy some constraints to let the consen-
sus averaging algorithm converge [12]. However, since the diffusion BC-
RLS algorithm, as derived in the sequel, does not have the same conditions,
we omit them here.

4. MEAN AND MEAN-SQUARE PERFORMANCE

In this section, we address the steady-state performance of the BC-
RLS and diffBC-RLS algorithm described in Section 3. We provide
a closed-form expression for the mean-square deviation (MSD), i.e.

MSDk = lim
i→∞

E{‖w̃k,i‖2} (24)

where w̃k,i = wo − wk,i . (25)
Similar to [10], w̃k,i is treated here as a random variable, although
it is deterministic. We also provide a closed form expression for the
resulting bias if there are estimation errors in R̂nk and r̂nkvk . It
is noted that all results of diffBC-RLS also apply to the undiffused
BC-RLS algorithm (16), by choosing the combiner matrix A equal
to the identity matrix. Due to space constraints, we only list the
most relevant results of the steady-state analysis, without the full
derivation. The latter can be found in [9].

4.1 Data Model and Extra Notation
The performance analysis of adaptive filters is challenging [10], and
it is common to adopt some simplifying assumptions to gain insight
in the properties of these algorithms. It is noted that, even in cases
where these assumptions are not perfectly satisfied, the obtained
formulas are still useful to analyze the influence of different param-
eters. Even though the exact MSD’s are not provided, the formulas
usually reflect the correct trends when parameters are varied.

Assumption 1: The regressors uk,i and the additive noise com-
ponents nk,i are both zero-mean and temporally independent. Fur-
thermore, the covariance matrix Ruk,i

= E{uH
k,iuk,i} is time in-

variant, i.e., Ruk,i
= Ruk

, ∀ i ∈ N. We will therefore often omit
the index i in the sequel, when referring to random processes.

Assumption 2: All data is spatially uncorrelated, i.e., for k 6=
l : E{uH

k ul} = 0, E{uH
k ul} = 0, E{n∗knl} = 0, E{v∗kvl} = 0,

E{v∗knl} = 0 and E{uH
k dl} = 0.

Since we only address the steady state of the diffBC-RLS algo-
rithm, we investigate the steady-state behavior of the matrix Pk,i.
As i→∞, we find from (12), and the fact that P−1

k,i = R̂uk,i, that

lim
i→∞

E{P−1
k,i } =

1

1− λRuk , P−1
k . (26)

The following two assumptions are made to make the analy-
sis of diffBC-RLS tractable, and both of them are common in the
analysis of RLS-type algorithms (see for example [10]).

Assumption 3: ∃ i0 such that for all i > i0, Pk,i and P−1
k,i can

be replaced with their expected values, i.e.

Pk,i ≈ E{Pk,i} (27)

P−1
k,i ≈ E{P

−1
k,i } . (28)

Assumption 4: ∃ i0 such that for all i > i0 :

E{Pk,i} ≈ E{P−1
k,i }

−1 = Pk = (1− λ)R−1
uk

. (29)

The last assumption is a coarse approximation, since the ex-
pected values E{P−1

k,i } and E{Pk,i} do not necessarily share the
same inverse relation as their arguments. However, for λ close to
unity and a not too large condition number for Ruk , this is a good
approximation [7, 10].

For the sake of an easy exposition, we define the following no-
tation, based on stacked variables from all nodes. Let

w̃i = col{w̃1,i, . . . , w̃N,i} (MN × 1)
rnv = col{rn1v1 , . . . , rnN vN } (MN × 1)
A = A⊗ IM (MN ×MN)
Rn = blockdiag{Rn1 , . . . , RnN } (MN ×MN)
Ru = blockdiag{Ru1 , . . . , RuN } (MN ×MN)

where ⊗ denotes a Kronecker product. All the derived quantities
(such as r̂nv , R̂n, etc.) have a similar notation for the stacked case,
but are omitted for conciseness.
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4.2 Stability in the Mean
Under the above assumptions, it can be shown [9] that
limi→∞ E{w̃i} = 0 (stability in the mean) if, and only if,

ρ
(
AR−1

u R̂n

)
< 1 (30)

where ρ(X) denotes the spectral radius of the matrix X , i.e., the
magnitude of the eigenvalue of X with largest absolute value.

Note that settingA = IMN yields the stability condition for the
BC-RLS algorithm (16) without diffusion. It is not possible to make
general statements whether diffusion (A 6= IMN ) will increase the
stability of the algorithm, since this depends on the space-time data
statistics (represented byR−1

u R̂n) and the network topology (repre-
sented byA). However, sinceA has a unity spectral radius, it often
has a ‘non-expanding’ effect. For some particular cases, it can be
mathematically verified that the stability indeed increases (i.e. the
spectral radius in (30) decreases), and we refer to Subsection 4.5 for
some examples.

4.3 Asymptotic Bias
In the derivation of the asymptotic bias of the diffBC-RLS algo-
rithm, we incorporate possible estimation errors on the noise co-
variances, say,

R̂nk = Rnk + ∆Rnk (31)
r̂nkvk = rnkvk + ∆rnkvk . (32)

It can then be shown [9] that, if the stability condition (30) holds
and if the assumptions in Subsection 4.1 are satisfied, the asymp-
totic bias of the diffBC-RLS algorithm is equal to

E{w̃i} =
(
IMN −AR−1

u R̂n

)−1AR−1
u (∆rnv −∆Rnwo).

(33)
A first important observation is that the (diff)BC-RLS algorithm

is asymptotically unbiased if ∆Rn = 0 and ∆rnv = 0, i.e., if there
is perfect knowledge of the noise covariance. The smaller the error
in R̂n and r̂nv , the smaller the resulting bias.

It is again not possible to make general statements whether
diffusion (A 6= IMN ) will decrease the bias of the algorithm.
However, if the stability increases, which is often the case, this
usually also yields a smaller bias. To see this, observe that
ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
implies that

ρ
((
IMN −AR−1

u R̂n

)−1
)
≤ ρ

((
IMN −R−1

u R̂n

)−1
)
.

(34)
This implies that a mapping based on the lefthand side of (34) is
‘more contractive’ or ‘less expanding’ than the mapping on the
righthand side (corresponding to the undiffused case). Therefore,
the bias given in (33) with A 6= IMN is often (but not necessarily)
smaller than the undiffused case (A = IMN ). Note that, if diffusion
is applied, there is an additional effect, namely an averaging oper-
ator A applied to the error vector R−1

u (∆rnv −∆Rnwo). If the
combiner matrix A is symmetric, this is a non-expanding mapping,
i.e. ‖Ax‖ ≤ ‖x‖ for all x.

4.4 Mean-square Performance
To define the closed-form expression of the MSD of the diffBC-
RLS algorithm, we need to define some extra variables. Consider
the eigenvalue decomposition AR−1

u Rn = QΣQ−1 where Σ is a
diagonal matrix with the eigenvalues as its diagonal elements, and
where Q contains the corresponding normalized eigenvectors in its
columns. We also define the (MN)-dimensional vector η contain-
ing the diagonal elements of ΣH (the conjugated eigenvalues) in the
same order as they appear on the diagonal. Let

Mk = AH
(
Mk,2 +MH

k,2 −Mk,1

)
A (35)

with

Mk,1 = Q−H

(
QHEkQ

11H − ηηH

)
Q−1 (36)

Mk,2 = Q−H
(
IMN − λΣH

)−1

(
QHEkQ

11H − ηηH

)
Q−1 (37)

where the double-lined fraction denotes an elementwise division of
the matrices in the numerator and denominator (i.e. a Hadamard
quotient), and where Ek = Ek ⊗ IM with Ek denoting an N ×
N matrix with zero-valued entries, except for a one on the k-th
diagonal entry. The matrix Ek serves as a selector matrix to select
the part of w̃i corresponding to the k-th node.

If ∆Rn = 0 and ∆rnv = 0, and if the stability condition (30)
holds, together with the assumptions in Subsection 4.1, it can be
shown [9] that the MSD at node k is equal to

MSDk = 1−λ
2

Tr
(
MkVR−1

u

)
(38)

where
V = diag{σ2

1 , . . . , σ
2
N} ⊗ IM (39)

σ2
k = wo Hbk − rH

nkvk
wo + σ2

vk
− bHk R−1

uk
bk (40)

bk = Rnkw
o − rnkvk . (41)

It is noted that only the matrix Mk depends on the combiner
matrixA, since it is incorporated in the eigenvalue decomposition of
AR−1

u Rn. Note that AR−1
u Rn is the same matrix that appears in

the stability condition (30). Note also that, if (30) holds, the denom-
inators in (36) and (37) cannot become zero and

(
IMN − λΣH

)
cannot become singular, i.e., the MSD is finite.

Again, it is hard to make general statements about the impact
of diffusion on the MSD at a certain node. However, from the
Hadamard quotient in (36)-(37), one can expect that the norm of
Mk will be smaller if the norm of η is small. In many cases, setting
the matrix A 6= IMN will decrease the norm of η (although this
is not true in general), and then diffusion has a beneficial influence
with respect to the MSD of the algorithm. This means that, if dif-
fusion increases the stability (i.e., the spectral radius of AR−1

u Rn

decreases), this often also improves the mean-square performance.
In Section 4.5, we will consider some special cases where it can in-
deed be mathematically verified that diffusion decreases the infinity
norm of η.

4.5 Special Cases
As explained in the previous subsections, a stability increase due to
diffusion usually also yields an improvement in terms of the MSD
and the residual bias of the diffBC-RLS algorithm. It is therefore
important that

ρ
(
AR−1

u R̂n

)
≤ ρ

(
R−1

u R̂n

)
. (42)

Without going into detail, it can be shown [9] that (42) indeed holds
in the following special cases (assuming a symmetric matrix A):
• Invariant spatial profile: This is the case where the regressor

and noise covariance matrices are the same in each node (and
each node uses the same estimate R̂nk ), i.e. Rnk = Rn,
Ruk = Ru, and R̂nk = R̂n, for k ∈ {1, . . . , N}. Although
diffusion has no influence on the stability in this case, the MSD
and residual bias can be shown to decrease in general.
• White noise on regressors: If Rnk = σ2

nk
IM and R̂nk =

σ̂2
nk
IM , for k ∈ {1, . . . , N}, it can be shown that (42) in-

deed holds. Furthermore, if the noise variances σ2
nk

are not
(too much) overestimated, it can be shown that the diffBC-RLS
algorithm is always stable for this case, i.e., (30) is always sat-
isfied.
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Figure 1: MSD curves of the BC-RLS and diffBC-RLS algorithm with λ = 0.99.

• White regressors: If Ruk
= σ2

uk
IM , for k ∈ {1, . . . , N} and

R̂n = Rn, i.e., a good estimate of the noise covariance is avail-
able, then it can be shown that both (42) and (30) hold.

It is noted that diffusion in general provides better results (with re-
spect to stability, bias and MSD) due to the non-expanding effect
of the combiner matrix A. The beneficial influence of diffusion is
therefore not limited to the special cases listed above. These merely
serve as “motivating” examples where the beneficial influence of
diffusion can be theoretically verified. A more general case is sim-
ulated in Section 5, where it is demonstrated that diffusion indeed
improves overall performance.

5. SIMULATION RESULTS

In this section, we provide simulation results to compare the per-
formance of the BC-RLS and diffBC-RLS algorithm. The mea-
surements dk(i) were generated according to (1), and the clean re-
gressors uk,i were chosen Gaussian i.i.d. with a covariance ma-
trix Ruk

= Q1diag{5, 4, 3, 2, 1}QH
1 , where Q1 is a random or-

thogonal matrix. The stacked vectors of the regressor noises and
the measurement noises nk,i = [nk,i vk(i)] were also chosen
Gaussian i.i.d. with a random covariance matrix E{nH

k,ink,i} =

skQ2diag{2, 1.8, 1.6, 1.4, 1.2, 1}QH
2 , where Q2 is again a random

orthogonal matrix, and where sk is a random scalar drawn from a
uniform distribution in the interval [0.1, 1]. Note that, due to the
scaling with sk, this does not correspond to a spatial invariant pro-
file, since there is a different SNR in each node. The network had
a total of N = 20 nodes, and the topology was chosen randomly
with a connectivity of 5 links per node on average. The size of the
unknown vector wo was M = 5, and the combiner matrix A was
constructed using Metropolis weights (see, e.g., [12]). All results
are averaged over 200 experiments.

In Fig. 1, the MSD is plotted as a function of the number of
measurements, both for BC-RLS (without cooperation) and diffBC-
RLS. It is observed that the MSD is significantly lower when the
nodes diffuse their estimations.

To see the effect on the bias of BC-RLS and diffBC-RLS, we
added some errors to the noise estimates R̂nk = Rnk + ∆Rnk and
r̂nkvk = rnkvk + ∆rnkvk . The errors were modelled as

∆Rnk =
√
p|Rnk | �Rk, ∆rnkvk =

√
p|rnkvk | � rk (43)

where� denotes a Hadamard product (elementwise multiplication),
the operator |.| denotes an elementwise absolute value operator, and
p is a positive scalar variable that is used to increase the error. The
entries of the M × M matrix Rk and the M -dimensional vector
were independently drawn from a normal distribution (i.e. with zero
mean and unity variance).
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Figure 2: The norm of the stacked asymptotic bias as a function of p (λ = 0.999).

Fig. 2 shows ‖E{w̃i}‖, i.e. the norm of the stacked bias, as a
function of p, both for BC-RLS (without cooperation) and diffBC-
RLS in steady state (with λ = 0.999). We observe that diffusion
indeed significantly decreases the asymptotic bias of the BC-RLS
algorithm.

6. CONCLUSIONS
We have described a diffusion-based bias-compensated RLS algo-
rithm for distributed estimation in ad-hoc adaptive networks. We
have demonstrated that the variance increase due to the bias com-
pensation can be significantly reduced by letting nodes cooperate
by means of diffusion adaptation. Furthermore, diffusion often in-
creases the stability of the algorithm, and reduces the residual bias
due to errors in the estimates of the noise statistics. This is demon-
strated with theoretical results (omitting the full derivation for con-
ciseness), and by means of Monte-Carlo simulations.
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