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ABSTRACT
Active Appearance Models (AAMs) are a widely used tech-

nique for face tracking. They work by minimising the difference
between an unobserved image and a synthetically generated image
created by a statistical model of the deformable object, e.g. a face.
The Fixed Jacobian algorithm is the most widely used algorithm
for fitting AAMs. A Gaussian Image Pyramid fitting technique is
used in order to make this process more robust and computationally
faster. This paper presents a new image pyramid fitting structure
specifically developed for application to an Audio-Visual Speach
Recognition (AVSR) system in which the area described by the
AAM is reduced as the iterations progress. This allows the fitting
technique to be more accurate as the fitting progresses. The new
fitting structure is implemented with the Fixed Jacobian algorithm
and then compared to a standard approach where the mouth shape
is extracted from a full face AAM. The test is performed using im-
ages from the CUAVE database. The new structure is shown to be
more accurate and robust than the full face approach, with a 14.10%
increase in the convergence of the mouth points to within a 4 pixel
average difference, while also achieving a 8.53% improvement in
the accuracy of the fit.

1. INTRODUCTION

Humans understand speech through both audio and visual cues.
Audio-Visual Speech Recognition (AVSR) aims to exploit the bi-
modal nature of speech in automatic speech recognition systems to
increase noise robustness. The extraction of mouth features, be it in
terms of shape or appearance, is of primary importance in AVSR.
The Active Appearance Model (AAM), proposed by Cootes et al[1],
is a popular algorithm used to model deformable objects, e.g. faces.

The goal of an AVSR system is to extract visemic information
from the video stream. A viseme is a unit that represents a particu-
lar sound in the visual domain. It describes the mouth positions and
movements corresponding to that speech sound. In AVSR, AAMs
are generally created from full face annotated images. The fitting is
then performed on the full face and mouth parameters are extracted
from the model[2][3]. The disadvantage to this method is that much
of the model’s energy describes variations that are not important
from a mouth perspective. A mouth only AAM would allow more
of the model to describe important variations in the mouth region.
The parameters of the model would be specific to the mouth. This
is important as it has been shown that mouth specific AAM param-
eters are reliable visual features in AVSR systems[4]. However it
has been noted that the mouth area is not a reliable area for AAM
tracking and the projection of face parameters into a mouth AAM
space is a common solution[2].

The Fixed Jacobian fitting procedure proposed by Cootes is the
most widely known method for AAM fitting. Many authors have
looked at ways in which this can be improved[5][6]. However a re-
cent study by Saragih et al. [7] showed that it is a robust method
of fitting unobserved face images compared to some of the well
known extensions to the original fitting technique. The Fixed Jaco-
bian fitting procedure is traditionally made more robust through a
multiresolution approach where a Fixed Jacobian is trained on mul-
tiple resolutions of the training images. Typically three levels are

used, ranging from full resolution to a quarter of the image resolu-
tion. Levels are created by smoothing and subsampling the original
image. This multiresolution approach is known as Gaussian Im-
age Pyramid (GIP) approach. This paper proposes a new Extended
MultiResolution Approach (EMRA) in which the area described by
the AAMs reduces as the iterations progress. This allows higher
levels of the pyramid to be more accurate at describing the mouth
shape and appearance which is of ultimate importance to an AVSR
system.

This EMRA was then tested on 432 annotated images, encom-
passing 36 different individuals from the CUAVE database[8]. This
is then compared to the standard full face GIP and results are also
given for intermediary stages between the two. The test involved
the creation of 540 AAM pyramids, with each AAM pyramid tested
on 600 different fitting initialisations. This large test clearly demon-
strates the full range of performance of the EMRA for AVSR mouth
fitting.

The novel contribution of this paper is therefore an AAM fitting
scheme targeted specifically to the AVSR problem that achieves a
significant improvement in accuracy of fit. Furthermore EMRA is
experimentally assessed on a speaker independent task, making it
suited for a wide range of AVSR systems.

This paper is organised as follows: Section 2 introduces AAMs
and the Fixed Jacobian. Section 3 details our Extended MultiRes-
olution Approach. Section 4 lays out the experimental procedure
while in Section 5 our results are presented before some conclu-
sions are drawn.

2. ACTIVE APPEARANCE MODELS

Active Appearance Models describe both the shape and appearance
of a deformable model such as a face. Given a set of annotated face
images a statistical model of both the shape, x and the texture, g, is
constructed as follows:

x = x̄+Psbs (1)

g = ḡ+Pgbg (2)

where x̄ is the mean shape of the annotated data, ḡ is the mean
texture, Ps and Pg are sets of orthogonal modes of variation of
shape and texture respectively, and bs and bg are the sets of shape
and texture parameters.

Fitting AAMs is based on minimising the difference, r(p), be-
tween the pixels of a model generated face, gm, and the pixels
sampled below the current estimate of shape in the image being
searched, gs.

r(p) = gs−gm (3)

In [1] it is proposed that linear adjustments can be made in order
to minimise the cost function.

δp = Rr(p) (4)

where δp is the change required to the model parameters that
minimise the difference between the images and R is the gradient
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matrix between δp and r. R is assumed to be fixed and is termed
the Fixed Jacobian. The computational cost of the fitting procedure
is significantly reduced as it is not necessary to compute this at each
stage of the gradient descent, but instead it can be learnt once in the
training phase.

In order to make this linear assumption more robust to larger
initial displacements a Gaussian Image Pyramid is constructed. At
coarser resolutions the linear assumption is more robust but the finer
detail is removed from the model. Therefore, larger movements are
made at the coarser resolutions before being refined in the higher
resolution levels of the pyramid.

3. MOUTH SPECIFIC AAM FITTING - EMRA

The standard approach to extracting mouth feature points using
AAMs is to use a full face model and then to extract mouth fea-
ture parameters from this fit[2][3]. This can be in the form of the
mouth shape points, the pixels within a Region of Interest around
the mouth, or the shape and appearance of the mouth region fitted
can be projected into a trained mouth area AAM which is not used
during the fitting procedure[2]. This is not optimal as the Principal
Component Analysis (PCA) model used in the fitting describes fea-
tures such as the eyes and nose that are not of interest in terms of the
mouth positions. These features are important for AAM fitting and
result in a model that is robust when faced with larger perturbations.
Mouth only AAMs fail more often than full face due to their limited
size which reduces their robustness to large deviations[2].

If a mouth-only AAM could be reliably fit, it would offer a
significant advantage in that all of the model’s PCA energy would
be used to describe the mouth, and variations in its position and ap-
pearance. Therefore more subtle movements required to distinguish
between different visemes could be represented and the overall ac-
curacy of the mouth positions could be increased. More recently
the use of AAM parameters has been shown to perform better than
shape positions or appearance alone for distinguishing the different
visemes[4]. Therefore having AAM parameters that more specifi-
cally describe the structure of the mouth is advantageous. For the
Full Face Model such parameters can be obtained by projecting into
a mouth only AAM space after the full face fitting procedure is com-
plete, however in this paper it is shown that using mouth area AAMs
during the fitting phase gives an overall improvement in accuracy.

This paper proposes a new Extended MultiResolution Ap-
proach (EMRA) for further developing the pyramid structure pro-
posed in [1]. It extends the fitting pyramid to include further levels
that increase the mouth fitting accuracy of AAMs. The Fixed Jaco-
bian method is used as the fitting method as it has been shown to be
quite successful in terms of its convergence rates and its accuracy
for subject independent cases[7].

EMRA is a refinement technique whereby a full face AAM is
used to find the optimum position and then the model is refined by
further reducing the section of the face that the AAM describes. It
consists of five levels each requiring its own AAM to be trained.
A comparison of the standard 3-level Full Face fitting pyramid and
the first four levels of the proposed refinement technique is shown
in Figure 1. Figure 2 shows the composition of the fifth level of the
pyramid. The 5 levels of EMRA can be summarised as follows:

Level 1: Full Face AAM fitting with a PCA energy of 75% and
an image resolution of 0.25.
Level 2: Full Face AAM Fitting with a PCA energy of 85% and
an image resolution of 0.5.
Level 3: Mouth/Chin AAM Fitting with a PCA energy of 95%
on images of resolution of 0.5.
Level 4: Mouth/Chin AAM Fitting with a PCA energy of 95%
using the full resolution of the images.
Level 5: Sampled Mouth Points AAM with a PCA energy of
95% using full resolution images.

3.1 Levels 1-2: Full Face AAM:
In the GIP technique large perturbations are performed in the lower
resolution levels. By using images with lower resolutions much

of the finer detail is removed thus reducing the complexity of the
model and of the optimisation process for that level. In EMRA
these low resolution face AAM levels are used to create a starting
position for more accurate mouth AAMs that can further refine the
shape returned.

The standard approach in GIP is to apply the same PCA energy
at each level (typically 95%). Hence the same amount of shape
variation is allowed for each level, the complexity reduced only by
the decreasing resolution and the loss of finer detail in the appear-
ance frame. In EMRA the complexity of the levels is further ad-
justed by varying the PCA energies at each level. By reducing the
PCA energies at these levels the fitted shape is constrained, as is
the appearance. This is similar to the work of Nguyen et al.[9] who
showed that lower PCA energies were more reliable at fitting from
larger perturbations. However in our approach, the PCA energies
are increased along with increasing levels of the pyramid, the fit-
ting technique allowing for further refinement as it approaches the
optimum solution.

Full Face - Resolution 100%

(3)

(2)

(1) (1)

(2)

Full Face - Resolution 50%

Mouth/Chin - Resolution 100%

Full Face - Resolution 25%

(3)

(4)

Figure 1: A comparison of the 3-level full face model (left) and a
4-level mouth/chin refinement of a full face model. The images in
the diagram are to scale. Even though the Mouth/Chin refinement
method has more levels, there are less pixels overall in the 4 levels
than in the 3 levels of the full face pyramid.

3.2 Levels 3-4: Mouth/Chin AAM:
The convex hull of the Mouth/Chin AAM is shown at the top right
of Figure 1. It includes both the mouth and skin pixels around the
mouth area, down to the chin. By using skin pixels around the
mouth, levels 3 and 4 are more robust at finding the exact contours
of the mouth than a mouth-only AAM. The Mouth/Chin AAMs are
used to further refine the mouth positions returned by the fitting of
the full face AAMs. The Mouth/Chin has only approximately 40%
of the appearance pixels of a Full Face AAM at the same resolution.
It also only has 44% of the shape points. This offers significant
computational advantages.

The resolution of level 3 is 50% while level 4 uses images at
full resolution. Unlike a typical multiresolution approach, level 3
has the same resolution as level 2. Between these levels the model
is projected from a Full Face space to the Mouth/Chin Space and
fitting is performed. This proved to be more accurate and robust
than increasing the resolution of the image while also projecting
between the spaces. The PCA energies for levels 3 and 4 are 95%,
the refinement process requiring enough variability to accurately
describe the mouth shape.

3.3 Level 5: Sampled Mouth Points:
One of the limitations of the Fixed Jacobian fitting technique is that
minimising the image difference does not necessarily minimise the
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shape difference. In order to place more emphasis on the shape
points, which are in general chosen to signify points of interest
(significant pixel variation), pixels are sampled around these shape
points.

In this final stage further refinement is made by sampling pixels
along the boundaries of the mouth points. When creating an AAM
a normalised frame is found that all images are warped into. This
normalised frame is constrained, in that for all the training images
the pixels associated with certain features occupy the same pixels.
Hence the mouth corners, the edges of the lips, or the tubercle, will
always be in the same position. This is the basis for the appearance
model’s creation.

This final level in EMRA exploits this attribute as the sampled
pixels are acquired by applying a mask to each image in the nor-
malised frame in order to select equivalent pixels. The mask is
shown in Figure 2. It consists of a 5x5 square of pixels around
each mouth point and a line of 5xL between two connected points,
where L is the number of pixels between these points. This line of
pixels between points encloses the lips/skin boundary and the lip/-
mouth boundaries. This AAM is therefore focussed primarily on
minimising the difference between areas of high shape importance.
It emphasises important elements of the shape, i.e. that points occur
on boundaries.

The mouth area, especially around the shape points, is highly
variable. This makes fitting such an AAM quite difficult especially
when large perturbations are required. However by using this as a
further refinement to the levels introduced earlier, the method will
only need to make small changes.

Other authors have looked at training AAMs using sampled
pixel regions. In [10] a certain subset of the pixels were chosen
by Cootes et al. during the fitting stage depending on their value.
The highest value pixels were deemed most important for the mul-
tivariate regression and other lower value pixels were removed in
order to reduce the dimensionality. Nguyen’s technique in [9] is
similar to the method presented here. The AAM models are trained
using a subset of the pixels in the face region by sampling areas
around each of the points. However the size of the region around
each box is much larger than considered here. In fact the mouth
area is fully contained within their sampling region. In EMRA the
sampled area is highly specific to the mouth points themselves and
boundaries between them. This makes it inherently less computa-
tionally expensive to train and fit than with other AAM levels at the
same resolution.

4. EXPERIMENTAL VALIDATION:

An extensive experiment was designed to compare the performance
of the original GIP to the EMRA proposed here. In order to show
the value of each additional component of the EMRA, intermediary
experiments are also performed. The different pyramid structures
tested were as follows:

Case A: 3 Level Full Face AAM Pyramid: Resolutions of .25,
.5 and 1 with a PCA Energy of 95% at each level.
Case B: 4 Level Face and Mouth/Chin AAM Pyramid: The first
two levels of case A followed by 2 Mouth/Chin AAM levels at
resolutions .5 and 1 also with PCA Energy of 95%.
Case C: 3 Level Full Face AAM Pyramid with variable PCA
Energies: 3 Full Face levels with image resolutions of .25, .5
and 1 with PCA energies of 75%, 85% and 95% respectively.
Case D: 4 Level Face and Mouth/Chin AAM Pyramid with vari-
able PCA Energies: The first two levels of case C followed by
2 Mouth/Chin AAM levels at resolutions of .5 and 1 both with
a PCA energy of 95%.
Case E: 5 Level Face, Mouth/Chin and Mouth Sample AAM
Pyramid: The 4 levels of case D followed by one level of a
mouth sample AAM with a PCA energy of 95% at a resolution
of 1.
The PCA energies above describe how much of the mouth and

texture variation are retained and also how much of the variation
is kept when these are combined into the appearance model. The

Figure 2: The final level of the pyramid is an AAM trained on sam-
ple pixels around the shape points in the mouth region. The image
above shows the pixels that are sampled by the red mask placed on
a mouth/chin region. The limited amount of pixels within the red
area results in a much less computationally expensive fitting level
than the four levels that precede it.

Figure 3: The annotated points used for the Cuave database.

Jacobians of the full face levels were trained using perturbations
of 3 pixels in translation, 10% in scale and .1 rads in rotation.
The Mouth/Chin Jacobians, being used solely for refinement, were
trained using smaller perturbations of .5 pixels in translation, 1.3%
in scale and .014 rads in rotation. The Mouth Sample Jacobains are
trained using perturbations of .5 pixels in translation, 2.6% in scale
and .03 rads in roation.

Each of these AAM pyramids were trained and tested on the
CUAVE database[8]. The CUAVE database consists of 36 speak-
ers, 19 male and 17 female, and 20 pairs of speakers speaking both
connected and continuous speech. A wide variety of subjects with
different skin tones and visual features such as spectacles, hats and
facial hair are included.

432 frontal images were hand annotated representing 12 im-
ages from each of the 36 subjects speaking individually. For each
speaker two visemes were described, each having 6 images equally
spaced over the frames of that particular viseme. The annotations
consist of 68 points as shown in Figure 3, with 19 of these points
corresponding to mouth locations.

A cross-validation test is performed on a leave one out basis,
that subject being used for testing. For the remaining 35 speakers,
6 images from each subject are chosen for training. 5 perturbations
per PCA mode were adequate to generate the Fixed Jacobian at each
level.

This test is repeated three times for each subject, requiring a to-
tal of 108 AAM pyramids for each case. Testing is performed on the
12 annotated images of the subject not included in the training of the
corresponding AAM. For each image a total of 50 perturbations are
made (a total of 64,800 test examples for each case above). These
perturbations are made on the mean model, where the mean shape
has been optimally aligned to the annotated points using Procrustes
analysis.

The 50 starting positions for each image in the test are created
by randomly perturbing this mean model in translation, rotation and
scale. The maximum translation is ±10pixels in both the x and y
coordinates, the maximum rotation is ±.1rads and the maximum
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scaling is by ±10%.

5. ANALYSIS OF RESULTS:

Convergence is defined as an average RMS difference between each
mouth point in the fitted shape less than 4 pixels from the annotated
points. The convergence accuracy is then only considered on exam-
ples that have converged below this threshold. It is worth noting that
other authors use different definitions of convergence which make it
difficult to compare results on the Fixed Jacobian. Cootes et al [11],
for example, defined convergence to occur when the mean point po-
sition error was less than 7.5 pixels per point.

Table 1 summarises the results for each of the pyramid struc-
tures. The full face Fixed Jacobian (case A) is shown to be quite
reliable with 67.4% of the examples converging below a 4 pixel av-
erage difference. To verify the performance of the Full Face Fixed
Jacobian AAM the annotated images from CUAVE were then tested
using the original testing method noted in [11]. For this test the
mean model was perturbed up to ±15 pixels in both x and y and
10% in scale. There was no rotation of the mean model prior to
the fitting process. The test returned a convergence rate of 77.89%.
This is comparable to the 81% quoted in [11], especially given the
differing datasets that the tests were performed on.

Case
Conver-

gence
Rates

Improve-
ment

Pixel
Error

Improve-
ment

A: 67.40% - 2.93 -
B: 73.07% 5.67% 2.78 5.12%
C: 75.97% 8.57% 2.92 0.34%
D: 79.84% 12.44% 2.78 5.12%
E:

(EMRA) 81.50% 14.10% 2.68 8.53%

Table 1: Table showing the convergence rates and pixel convergence
errors of Cases A-E. A is equivalent to obtaining mouth positions
from a full face model whilst Case E is the EMRA approach. Cases
B, C and D are intermediary stages.

The converged error of the mouth points extracted from the Full
Face Fixed Jacobain is 2.93 pixels, taken as an average of the point
to point errors from each individual. The use of a Mouth/Chin re-
finement AAM in case B increases the accuracy of the average fit
by 5.12%, while also increasing the convergence rate by 5.67%.

Case C and D are equivalent to cases A and B but with a stepped
increase in the PCA accuracy of the lower full face levels. There
is no significant improvement in the average accuracy, but there is
a significant 8.57% increase in the convergence rates as expected.
With less variance contained in the first two levels of the fitting
structure, larger movements can be reliably made with less likeli-
hood of falling into local minima. The final level for case C and
case D does not differ from that of case A and B. Thus it is logical
that the average fit would be the same, as there is no more variability
in movement for the final fit.

Case E shows that the addition of the extra mouth sample AAM
level to case D improves the convergence rate by 1.66%. More
importantly for a refinement method, there is a 3.41% improvement
in convergence error over case D. The mouth sample AAM level has
a lower computational cost in fitting, with the Fixed Jacobian being
of much lower dimensionality to previous AAM levels. Hence its
addition does not significantly increase computation time.

Comparing the overall structure proposed against the standard
3 level Full Face pyramid approach (case A) there is a 8.53% im-
provement in fitting accuracy coupled with a 14.1% improvement in
the number of images that converge within our limit of an average
difference of 4 pixels. Figure 4 is a convergence accuracy plot: a
histogram showing the distribution of the convergence accuracy of
the EMRA and Full Face Fixed Jacobian approaches. As is clearly
shown a greater proportion of the EMRA samples have lower con-
vergence errors.

Figure 4: A histogram of convergence accuracy comparing the
EMRA to the Full Face Fixed Jacobian approach.

EMRA gives significant gains over the standard approach. Im-
provements are made on most of the subjects in the database. There
are eight individuals who obtain significant (> 25%) improvement
in their convergence rates with the new fitting structure. One of
the principal reasons for this is that they are better represented by
the appearance model trained solely on the mouth area which has
more variability within the mouth structure, allowing the appear-
ance model to more accurately describe the mouth shape.

However, certain individuals prove to be much more difficult
than others. The fitting ability of the Full Face Fixed Jacobian for
a male subject (S10m) and a female subject (S20f) is shown in fig-
ure 5(a). For each two cases are shown, one where the image has
not been used in training but the subject has (b), and another where
the subject is not used at all during AAM training (c). The latter
represents the person independent AAM training used in the exper-
iment noted before. For S10m the error for the image unseen fit
was 1.93 pixels, whereas for the subject unseen fit the error is 2.67
pixels.

S20f represents the most difficult subject for AAM fitting in the
CUAVE database, with very large distinguishing mouth features not
present in other subjects. This subject achieves approximately 0%
convergence rate for all AAM cases in the experiment, including
case A. In both cases of the fit, the scale, translation and rotation
perform well. In the image unseen fit, facial features such as the
eyes are fitted well, however the mouth detail has clearly not been
seen in training. This results in a mouth fit error of 4.32 pixels.
This result is important as even when the subject has been used in
training, an unseen image of that subject returns a fit that would not
pass our convergence criteria. When the subject is unseen the fit is
quite bad, the model struggling to fit the distinguishing features of
the subject returning a mouth fit error of 8.67 pixels. This prompts
the question of how well the 3 level Full Face AAM (case A) could
represent the annotated shape. This would represent the optimum
fit that the Fixed Jacobian could return.

To quantify the ability of the model to represent the different
annotated shapes in CUAVE a leave one out experiment was per-
formed. The annotated shapes of the unseen test subject were then
projected into the AAM space to see how accurately the model
could describe the mouth shape. However these projections are not
absolute bounds, they are optimal in the sense of the Full Face shape
and appearance. In some cases the Fixed Jacobian may reduce the
mouth pixel error over other parts of the full face shape. This results
in a somewhat lower mouth shape error at the expense of the overall
face shape error, a process which can also work in reverse. In gen-
eral the Fixed Jacobian of a Full Face Model will minimise the error
over all pixels, and hence all shape points. Therefore the optimal
projection of the full shape provides a good measure of how well
the PCA space of a Full Face model can represent a given mouth
shape.

The average mouth pixel error of the converged examples was
2.6102. This is found by averaging the optimal projection into a

1962



Full Face AAM space for each individual. This number represents
the optimal result obtainable for a full face AAM. The result of the
proposed EMRA was 2.68 pixels as opposed to 2.93 for the stan-
dard GIP approach (see Table 1). The technique therefore reduces
the error of the standard GIP approach by 78% when compared to
the optimal average pixel error. It shows the benefit of AAM refine-
ment, in cases where small deformable objects need to described.
If the region around the object can be described then a refinement
process can be more robust at returning an accurate result.

As expected the images upon which the fits were not successful
had optimal point to point errors of greater than 4 pixels. The sub-
jects are too far away from the base position. Therefore the Fixed
Jacobian cannot succeed in its fit under the targets set. However
once the mouth shape can be accurately described by the appear-
ance model it is found that the Fixed Jacobian performs well.

Increasing the PCA energies of the appearance model would
theoretically increase its ability to represent the different mouth
shapes. However at higher accuracies (> 95− 97% of the shape
and appearance) there is a tail off in the ability of the Fixed Jaco-
bian to fit. Such a cost curve contains more local minima and is less
robust at fitting.

A refinement process, such as EMRA, can focus the modes of
the model to describe the areas of interest, while still using more
robust lower levels to make larger perturbations. In essence, this
approach avoids the pitfalls associated with the Fixed Jacobian at
large PCA energies, but offers an improved fit in a specific region
of interest.

6. CONCLUSION

In this paper, EMRA, a new Fixed Jacobian fitting structure for ex-
tracting mouth positions from unseen images, has been presented.
As the levels progress, the PCA energy is increased allowing for
more variability, while the area that the model describes decreases.
This allows for higher variation within the model with lower com-
putational costs, while still maintaining the robustness of a full face
model during the initial iterations where it is most important.

It is shown that EMRA performs significantly better than a stan-
dard 3 level full face model in both convergence rates and conver-
gence accuracy of the mouth region. The convergence rate is in-
creased by 14.1% where a boundary indicating convergence is set
at 4 pixel, while the accuracy of these converged examples is in-
creased by 8.53%.

(a) Initial Image (b) Image Unseen (c) Subject Unseen

Figure 5: The fitting ability of the Full Face Fixed Jacobian for a
male subject (S10m) and a female subject (S20f).

Though the new fitting structure improves the overall perfor-
mance of the Fixed Jacobian technique, it does not correct some
of the major issues with it. It was found that once the appearance
model was able to represent a shape within the 4 pixel boundary,
then the fixed jacobian was quite effective at fitting. However for
certain individuals the model cannot represent the shape within this
boundary.

Though the results quoted here show an improvement in terms
of average point to point error over a sizeable database, the next
stage is to compare the EMRA’s visemic recognition accuracy
against that of the standard 3-level Full Face Fixed Jacobian. This
will establish whether a better mouth fit in terms of pixel accuracy
can be translated into higher recognition performance in an AVSR
system.
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