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ABSTRACT

In many applications non-Gaussian noises, such as babble
noise, can be observed. In this paper we present a mini-
mum mean square error (MMSE) estimation of the speech
spectral amplitude. It principally allows for arbitrary speech
spectral amplitude probability density function (pdf) models
(Rayleigh, Chi, ...), while the pdf of the noise DFT coeffi-
cients is modeled by a Gaussian mixture (GMM). Applying
for both approaches an idealized a priori SNR estimator that
works well in babble noise, we can show clear improvements
compared to the MMSE spectral amplitude estimator with
Gaussian noise assumption.

1. INTRODUCTION

In speech enhancement, a low level of speech distortion
can be achieved by employing an appropriate speech model.
Classically, the discrete Fourier transform (DFT) coefficients
of the speech signal are commonly modeled by a Gaussian
distribution [1, 2]. However, the actual speech content in
a noisy signal can be better preserved by applying different
speech amplitude priors, such as super-Gaussian [3], or more
general, generalized gamma [4].

In analogy, further reduction of the residual noise level can
be obtained by a proper selection of the noise model. In [3] it
was shown that the histogram of the noise DFT coefficients
is closer to a Gaussian distribution then it is the case for the
speech DFT coefficients. However, this is not true for spe-
cial noises, such as babble or fan noise. Therefore, instead
of a Gaussian distribution [2, 3], in [4, 5] a Gaussian mixture
model (GMM) of the noise DFT coefficients were employed
in the context of a minimum mean sqare error (MMSE) esti-
mator.

The system proposed in [5] has the disadvantage, that it does
not have the “classical” speech enhancement structure with
the noise power and SNR estimation steps. Therefore, it is
quite inflexible against varying speech and/or noise power.
The estimator proposed in [4] was designed for multichan-
nel speech enhancement. It was shown that using the GMM
noise model and a generalized gamma model for the speech,
the proposed system cannot be separated into a beamformer
and a postfilter. However, the performance of the new esti-
mator was not evaluated.

Modeling the noise DFT coefficients by means of Gaus-
sian mixtures has the advantage that—with an infinite num-
ber of mixtures—any distribution can be approximated per-
fectly. Such a model is suitable for environments with non-
stationary non-Gaussian noise, such as interfering talkers
(babble noise).

In this contribution we develop an MMSE estimator for
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speech enhancement under a non-Gaussian noise assumption
which will be reflected by a GMM. For ease of comparison
to [1], a Gaussian model of the speech DFT coefficients is
employed.

The paper is organized as follows: Section 2 will address the
problem of the noise spectral statistics. In Section 3, a short
review of a reference MMSE estimator with Gaussian noise
model will be given. Section 4 will present the new MMSE
estimator based on a noise GMM, followed by the evaluation
of the proposed weighting rule in Section 5. Finally, Section
6 will give some concluding remarks.

2. NOISE MODELING

Most spectral weighting rules for noise reduction assume that
the probability density function (pdf) of the complex-valued
noise DFT coefficients is Gaussian. Only few investigations
have shown that this assumption does not hold for some noise
types, such as fan or babble noise. Although according to the
central limit theorem, the Gaussian noise model is adequate
for a wide range of stationary noises, Lotter pointed out in [3]
that there is no overall distribution, which fits for all possible
noise histograms.

2.1 Histogram Measurement

In order to investigate the properties of non-Gaussian noises,
we first measured the histogram of the DFT coefficients of
babble noises (acquired, e. g., in shops, amusement parks, ex-
hibitions, etc.) taken from the NTT Ambient Noise Database
[6]. After typical signal analysis as used for speech enhance-
ment!, the real and imaginary parts of the noise DFT coef-
ficients N € C were subsequently processed separately. In
order to make the data independent from the noise level, all
(real and imaginary) DFT coefficients of a database file of 3
minutes were scaled to unit variance. After processing the
whole data set of 24 files, histograms were computed as il-
lustrated in Figure 1. Please note the significant deviation of
the pdf of the babble noise DFT coefficients from the solid
line Gaussian pdf with the same (unit) variance.

In order to further demonstrate the deviation of the measured
pdf’s from the Gaussian model, the kurtosis values [7]
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of the observations were computed, with y4 being the fourth
moment about the mean, and ¢ being the standard deviation

'We worked at the sample rate of 8kHz with an analysis frame length of
256 samples, a Hann window and an analysis frame shift of 128 samples.
Note that in the majority of the paper we omit frame index ¢ and frequency
bin index .
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Figure 1: Histogram of babble noise DFT coefficients (black
curve: Gaussian model, grey curve: histogram of the obser-
vation)

KRe{N}
305.95

Kim{N} | KGaussian
165.86 3

Table 1: Kurtosis of the real and imaginary parts of the ob-
served babble noise DFT coefficients with unity variance

of Re{N} and Im{N}, respectively. Re{-} and Im{-} denote
the real and imaginary part operator. The results are summa-
rized in Table 1. Kurtosis values greater than three (Gaus-
sian case) are called super-Gaussian. The indication, that the
histograms illustrated in Figure 1 are distributed highly non-
Gaussian, is confirmed.

2.2 Gaussian Mixture Model

In order to allow a flexible pdf model in the DFT domain, we
employed a Gaussian mixture model (GMM). Therefore, the
pdf of the noise DFT coefficients in a 2-dimensional notation
N = [Re{N} Im{N}]T € R? turns out to be:

M

p(N) =Y cnt (K, Em) 2
m=1
M
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with ¢, it,,, and X, representing the weight, the mean vector
and the 2 x 2 covariance matrix of the m-th of M Gaussian
modes, respectively.

It can be seen in Figure 1 that the histograms of the real and
imaginary parts are very similar. Moreover, the pdf is zero-
mean and the peak can be approximated by a sum of several
zero-mean low-variance Gaussians.

GMM parameters according to (2) can be computed by
the expectation maximization (EM) algorithm. As train-
ing data we used two thirds of the babble noise taken from
the NTT Ambient Noise Database [6]. The EM training
results showed that the covariance matrices are almost di-
agonal, the variance of the real and imaginary noise DFT
coefficients were almost equal and the means were almost
zero. Because of the peakedness of the measured histogram,
the resulting GMM had many low-variance Gaussian modes.
Therefore, the real and imaginary parts of the noise DFT co-
efficients can sufficiently well be described as independent
and identically distributed (i.i.d.) non-Gaussian. Accord-
ingly, the pdf of the complex-valued noise DFT coefficients

2

m| cn 02 | w02/ 0kum [%]
11005 | 14.84 71.98%
2 10.18 1.3 23.57%
31026 0.13 3.53%
4 1021 | 0.03 0.69%
5 1031 | 0.01 0.23%

Table 2: Parameters of the noise GMM with M = 5. The
third column represents the so-called variance contribution
of the m-th Gaussian mode of the GMM.

M| D [ DR

1 | 4274 | 414.74
2 | 5495 | 47.99
5 | 552 224

10 | 3.65 1.66
20 | 2.02 1.15

Table 3: Kullback-Leibler divergence of the Gaussian mix-
ture model with order M.

N =Re{N} + jIm{N} can be reduced to

M 2 M Cm _% INJ?
p(N) = Z Cm‘/V(Ov Gm) = Z —¢ Oin ) (3)
m=1 m=1 Gy,

with 62 being the variance of the m-th complex-valued Gaus-
sian. A summary of the GMM training results for M = 5 can
be found in Table 2. The last column of Table 2 shows the
variance contribution of each Gaussian mode to the total vari-
ance of the GMM.
The performance of the mixture model can be evaluated by
the Kullback-Leibler divergence Dg;, which is defined as

Prest (x)
Pref(X)

Dy = / Prest(x) log dx, 4
C

with prest(x) and pres(x) being the test and reference pdfs
in the complex plane x € C, respectively. The Kullback-
Leibler divergence values for different M’s were calculated
commonly for all frequency bins by means of the normalized
histograms numerically and are given in Table 3. As it can be
seen, the Kullback-Leibler divergence decreases roughly ex-
ponentially with increasing M and approximately five GMM
modes ensure a satisfying fit w.r.t. the Kullback-Leibler di-
vergence.

The kurtosis test and the trained GMM parameters proved
that the Gaussian mixture model for babble noise should be
preferred against the Gaussian model.

3. REFERENCE ESTIMATOR WITH GAUSSIAN
NOISE MODEL

This section briefly summarizes the derivation and the used
assumptions of Ephraim-Malah’s MMSE short-time spectral
amplitude estimator of speech DFT coefficients based on a
Gaussian speech and noise model [1].

The input signal y(n) of a speech enhancement system is
assumed to consist of the clean speech signal s(n) and the
additive noise signal n(n). After segmentation, window-
ing, and a DFT transform, the input signal can be rewrit-
ten as Y({,k) = S(¢,k) + N(¢,k) with ¢ being the analy-
sis frame index, k being the frequency bin index. Using
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Figure 2: Weighting rule Gg of the MMSE estimator using a
Gaussian speech and noise model [1]. Gg = 1 is highlighted
by a solid black curve.
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polar coordinates, the input signal can be reformulated as
R(£,k)e/®H) = A(€,k)el* K 4 B(0,k)e/PX) where R, A,
B, (®, o, B) are the magnitudes (phases) of the short-time
spectra Y, S, and N, respectively.

The real and imaginary parts of the noise DFT coefficients N
are assumed to be Gaussian i.i.d., therefore, p(Y|A, @) turns
out to be (again subscript G for Gaussian noise model)

1 —r—aee?
e o : Q)
Oy

YA a)=
pc(Y|A, @) p-

with GI%, being the noise variance in the DFT domain.
Applying a Gaussian model also for speech DFT coefficients,
Ephraim and Malah derived the following weighting rule [1]
(subscript G for the Gaussian noise model):

Gg = F(%)‘fM(l/z; 1;—v), (6)

§S=Gg-Y,

where I'(+) is the gamma function, v = ¥& /(1 + &), M(-) is
the confluent hypergeometric function, ¥ = R?/c7 is the a
posteriori signal-to-noise ratio (SNR), & = O'S2 /0% is the a
priori SNR, and § is the estimated speech DFT coefficient.
A plot of the weighting rule Gg can be seen in Figure 2.

4. NEW MMSE ESTIMATOR
WITH GMM NOISE MODEL

As outlined in Section 2.2, the pdf of the noise DFT coef-
ficients can be modeled by a Gaussian mixture. Therefore,
the conditional pdf of the noisy speech spectrum given the
speech spectrum can now be formulated as (subscript GMM
for the GMM noise model)

M 1 jor|2
C, — = |Y—Ae/%|
pomm(Y[A,0) = Y —T5e o : ©)
el oy,

Assuming again a Gaussian speech model and a GMM noise
model, we obtain the following expression (subscript GMM
for the GMM noise model):

Gomm
&~ o oo

OO =N
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Figure 3: Weighting rule Ggyv of the MMSE estimator us-
ing a Gaussian speech model and a noise GMM with five
Gaussian mixtures according to Table 2. Gg = 1 is high-
lighted by a solid black curve.
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(3)

with vy = Yu&n/(1 4+ &En)s Y = R*/02, &y = 62 /02 and
exp(+) being the exponential function. The derivation is sum-
marized in Appendix A. Please note, that if M = 1 than
Y = Y and &,, = £ and therefore, Gogmm = Gg. To illustrate
the resulting weighting rule Gy We assume now the noise
pdf being modeled by a GMM as given in Table 2. Please
note, that this GMM has unit variance, with fixed o3 /62 ra-

tios. Using the estimated noise power 0y, mode variances
G,%, are scaled, respectively. In Fig. 3, the resulting weight-
ing rule Ggmy is plotted in the range (Y, &) = [—20,20] dB.
Ggomm = 1 is highlighted by a solid curve.

In the Ggvm > 1 region (right from the Ggmm = 1 solid
curve in Fig. 3), the proposed weighting rule behaves more
conservative than the reference in Fig. 2, as it can also be
seen on the left of Fig. 4. Then a plateau region follows,
where the proposed weighting rule again is more conserva-
tive, this time by not suppressing that much, which ensures a
good speech preservation performance.

Towards large y’s and small &’s, where the additive noise
dominates, lower weights are needed in order to attenuate
the disturbing noise. In this area, the proposed weighting
rule behaves more aggressive than the reference, which is re-
flected by smaller weights. Therefore, a greater amount of
noise reduction can be obtained.

5. EVALUATION

In order to precisely show the merit of the proposed MMSE
estimator, the evaluation was performed with the test data
set of the babble noise signals from the NTT Ambient Noise
Database [6]. As clean speech, we employed 96 speech sig-
nals (four male and four female speakers) taken from the
NTT Multi-Lingual Speech Database [8], downsampled to 8
kHz sampling rate. The active speech level was set to —26dB
below the clipping level and the noise signal level adjusted to
the desired SNR, according to ITU-T Recommendation P.56
[9]. Next, both signals were superimposed, in order to obtain
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Figure 4: Weighting rules Gg (dashed line) and Ggymm (solid
line) for £ = —5dB and & = 5dB of the MMSE estimator
using a Gaussian speech model.

the desired SNR ratio. The signal analysis was the same as
used for the histogram measurement above: At a sampling
frequency of 8 kHz, the segmentation was done with a Hann
window, the analysis frame length was 256 samples, the anal-
ysis frame shift contained 128 samples.

Since most of the state-of-the-art noise power estimators

G]%,(E,k) such as minimum statistics (MS) [10] are designed
for tracking the spectral noise power of stationary interfer-
ers, the spontaneous fluctuations of the babble noise power
cannot be estimated well with these algorithms. Beside min-
imum statistics, we also employed the improved minima con-
trolled recursive averaging (IMCRA) algorithm [11], which
is better able to track the noise power of non-stationary
noises. In order to prove the effectiveness of the estima-
tors, we measured their so-called noise tracking performance
(NTP) measure [12], which is defined as
o2
NTP = — w(t k)] ‘ . )
K

ng’ g’ o3 (4,k)

The results at different SNR values for MS and IMCRA can
be seen in Table 4. Interestingly, in the presence of non-
stationary babble noise, MS achieves better (i. ., lower) NTP
values at higher SNRs, while IMCRA performs better at very
low SNR conditions.

The widely employed decision-directed a priori SNR esti-
mation [1] is calculated as follows:

10lo gm[

E(0,k) = (1— o) P{y(t,k) — 1}+aM, (10)
o (0 —1,k)

with P{x} = max{0,x}. This approach does not work
well for non-stationary noise, therefore, we employed the
clean speech power spectral density (PSD) [S(¢ — 1,k)|? as
numerator in (10). Employing such an idealized a priori
SNR estimator has a few advantages: On the one hand, it
yields independence from the estimated speech S. Therefore,
the use of (10) with ideal nominator ensures, that both
weighting rules are addressed with exactly the same (y, &)
pairs which allows precise comparison of the estimators Gg
and Ggmm. On the other hand, the use of an (idealized)
well-working SNR estimator makes it even more difficult
for a new weighting rule to yield substantial advantages.

The weighting rule was then computed by using the

W
9}
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m B-5dB
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2 L.
-©-Ephraim/Malah [1], MS [10]
1.5 r| =&~ Proposed algorithm, MS [10]

-B-Ephraim/Malah [1], IMCRA [11]

—8- Proposed algorithm, IMCRA [11]
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Figure 5: Performance of the new MMSE estimator com-
pared to Ephraim and Malah’s spectral amplitude estimator.

Noise power SNR [dB]
estimator -5 0 5 10 15 20
MS 5.16 | 5.17 | 520 | 5.27 | 540 | 5.64
IMCRA 5.01 | 5.16 | 5.39 | 5.78 | 6.41 | 7.35
Table 4: Noise tracking performance (NTP) measure of the

noise power estimators MS [10] and IMCRA [11] in dB for
different SNR values.

proposed MMSE estimator (8) with the noise GMM as
described in Table 2 with M = 5, realized by a table
lookup of Ggmm = f(7,£) with both y and & varying
from —20...4+20dB in 0.4dB steps. As a reference, we also
employed the MMSE estimator with a Gaussian noise model
(6). Since the use of the confluent hypergeometric function
M(-) is computationally intensive, we also realized Gg as a
table lookup, in the same fashion as Ggvm.-

We evaluated the performance of the proposed weighting
rules w.r.t. speech preservation and noise attenuation per-
formance. Given a noisy speech signal y(n) we employed
the respective clean speech §(n) and noise component 7i(n)
of the enhanced signal §(n) = §(n) + 7i(n). Through the
clean speech signal s(n) and its processed replica §(n), the
speech preservation performance was represented by the
PESQ-MOS score [13].

The SNR improvement ASNR was measured as the differ-
ence between the output and the input SNR values. The
input (output) SNR is determined as the ratio of the power
of s(n) (§(n)) to that of n(n) (7i(n)). All SNR measurements
were performed using [9] for active speech and noise level
measurements.

In Figure 5, a comparison of the proposed and the reference
weighting rule can be seen, based on the ITU-T measures
ASNR and PESQ-MOS for different SNR values. The
optimum in Figure 5 resides in the right top corner, which
means a high SNR improvement and a good quality of the
clean speech component, simultaneously. It can generally be
said that at higher SNRs more speech preservation can be
observed, while at very low SNRs greater ASNR improve-
ment and can be attained. At very low SNRs (-5 and 0 dB)
the proposed weighting rule achieves approximately 1.5dB
enhancement in terms of ASNR and 0.5 PESQ-MOS score
improvement. Towards greater SNRs, this gap is getting
smaller. At 15 and 20dB SNR, the ASNR improvement is
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approximately 1dB, the PESQ-MOS scores are quite com-
parable. We can summarize that if a well working a priori
SNR estimator for non-stationary noises were available,
our proposed GMM-based weighting rule would allow for
further substantial improvements in low SNR conditions.

6. CONCLUSIONS

In this paper, we analyze the statistics of noise DFT coeffi-
cients in the context of non-Gaussian non-stationary noises.
We employ a Gaussian mixture, modeling the non-Gaussian
pdf of the noise DFT coefficients and present an MMSE
speech spectral amplitude estimator. It turns out that in non-
stationary non-Gaussian babble noise the proposed approach
outperforms the known Gaussian noise model-based estima-
tor. Comparison tests have been made with the clean speech
PSD being made perfectly known to the decision-directed
a priori SNR estimator for all algorithms. This leads us
to the conclusion that there is potential in the area of non-
Gaussian noise modeling, but simultaneously, there is a need
for proper noise power and particularly SNR estimators for
non-stationary noises.

A. APPENDIX: DERIVATION OF THE NEW MMSE
ESTIMATOR WITH GMM NOISE MODEL

Using the minimum mean square error (MMSE) criterion
minE{(A — A)?|Y'}, Ephraim und Malah have shown that the es-
A

timated magnitude A of the clean speech spectrum can be computed
as [1] wll

J JAp(Y|A, a)p(A, a)dadA
A=E{Alr} =22

[ | p(Y|A,@)p(A, a)dadA
00

; (11

where E{-} and p(-) denote the expectation operator and the corre-

sponding pdf, respectively.

Let us assume, that the real and imaginary parts of the speech DFT

coefficients are Gaussian i.i.d., A is statistically independent from

a, and a being uniformly distributed. A Gaussian speech model

leads then to a Rayleigh pdf of the speech amplitude yielding

1A -5
Ao)=p(at) - p(A)=—-2—e %, 12

p(4,0) = p(a) - p(A) = 5 o7° (12)

with GSZ being the speech variance in the DFT domain.

Applying a GMM as a noise model introduced in 2.2, substituting

(7) and (12) into (11), we obtain the following expression:

M _ﬁ oo 2 27 H AR 00—
Y Be om fAzef%mﬁ J e on cost a)dadA
A m=1"" 0 0 (13)
MR a0 3M (6o ’
Y e e [Ae L [ O daan
m=1 " 0
with % = a%z, + cfz Using [14, (8.431)], (13) turns out to be
M © L, A2
Zl Tyt gAze o lo(za\//vlj,','l)df‘\
A m= m
A= M g A2 ’ (14)
Z %g7%11 jA37E[0(2a\/XI)dA
m=1 % 0 "

with Iy being the modified Bessel function of the first kind and the
zeroth order.

Applying [14, (6.631)] with 4 =2 and pu = 1 for the numerator
and the denominator, respectively, as well as v =10, ot = 4, ! and
B = j2+/Vm/¥m for both of numerator and denominator, (14) can
be rewritten as

M 3
Y e WD (h) A M (s 13v)

A=m=1 = . (15)
Y e WmAuM(1515vm)
= o

According to [15, (A.1.17a), (A.1.19a)], (15) turns out to be

M 3/
Y %E*Yﬁvm;lm ZM(_I/Z; 1 —vm)
A=T(p)m=t" . (16)

M
Y Setitinl,,

'm

Finally, using that —%, + vy = —v/Eny An = (v,,,/)/,%,)R2 and
G= A/R, (16) can be reformulated as (8).
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