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ABSTRACT

In this paper we propose a low complexity adaptive algo-
rithm for lossless compressive sampling and reconstruction of
sparse signals. Consider a sparse non-negative real signal x
containing only k << n non-zero values. The sampling pro-
cess obtains m measurements by a linear projection y = Ax
and, in order to minimize the complexity, we quantize them
to binary values. We also define the measurement matrix A
to be binary and sparse, enabling the use of a simple message
passing algorithm over a graph. We show how to adaptively
construct this matrix in a multi-stage process that sequen-
tially reduces the search space until the sparsity pattern is
perfectly recovered. As verified by simulation results, the
process requires O(n) operations and O(k log(n/k)) samples.

1. INTRODUCTION

In multiple signal processing applications, the selection of an
appropriate basis leads to a sparse representation of the data.
The Compressive Sensing (CS) framework [1, 2] established
that this sparsity can be exploited to recover the signal from
a number of samples significantly lower than the one required
by the Shannon-Nyquist theorem.

This problem considers the estimation of an unknown
sparse signal vector x € R" with minimum O-norm |[x]|o
from a vector of linear observations y = Ax where A is a
fixed random mxn real valued matrix, known as measure-
ment (or sampling) matrix. Only a small number & (the spar-
sity index) of elements of x are non-zero. The set containing
the positions of these elements is known as the support set
or the sparsity pattern, defined as S £ {i € 1,...,n : x; # 0},
with |S] = k.

The recovery of this sparsity pattern is the challenging
part of this estimation problem and, in many applications, of
fundamental interest. Several publications focus on the spar-
sity pattern recovery problem, obtaining theoretical limits of
the number of samples needed to recover the sparsity pat-
tern perfectly or to achieve a certain error performance for a
given (k,n) pair [3]. In the noiseless case, methods and the-
oretical limits do not differ from CS [4], which is intrinsically
also a sparsity support recovery problem.

While the minimization of the 0-norm is a NP complex
problem, the authors in [1,2] advocated that the original
optimization of the CS problem can be relaxed by using the
1-norm. This allowed the application of linear programming,
with tractable complexity. The key point to guarantee that
the solution is the sparsest under this relaxation is the proper
definition of the measurement matrix A. Restricted Isome-
try property (RIP) was found to be a sufficient condition for
its design [5,6]. These contributions preceded the proposal
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of many practical algorithms and measurement matrix con-
structions: greedy ones trying to solve the 0-norm minimiza-
tion, convex optimization ones for the 1-norm relaxation and
graph-based approaches, offering diverse trade-offs between
the required number of samples and complexity (see [7, §]
and references therein).

In this paper, we follow a different approach: instead
of fixing a measurement matrix with certain properties, we
propose a low complexity adaptive sampling algorithm which
constructs a matrix adapted to the sparse signal. To the au-
thors knowledge, this approach was first applied in the CS
framework in [9] and the basic concepts were introduced by
Indyk [10] within a group testing framework. Applications
of adaptive sampling methods can be found in the literature,
usually under the name of active sensing, like topography re-
construction, medical image classification or spectrum sens-
ing in communications [11,12]. This approach is related with
the adaptive source coding scheme presented in [13].

The aim of this work is to show how to construct an adap-
tive measurement matrix in a sequential multi-stage process.
We propose an adaptive algorithm based on two steps that
are repeated sequentially: first the construction of a random
sparse measurement matrix and the sampling, and next a re-
finement process which recovers part of the signal, reducing
the search space for next stage.

The measurement matrix is defined as binary and sparse,
A € 3", like in the application of expander graphs [14]
and sudocodes [15] to CS. This enables the resolution of the
problem with an affordable complexity by message passing
propagation over a graph representation of this matrix. Sim-
ulation results show that this procedure ensures the recovery
of § independently of the length of x with m = O(klog(n/k))
samples in average while it requires O(n) operations (binary
comparisons).

In this paper, the proposed approach to sparsity pattern
recovery is presented in section 2, we provide the insight that
motivates the structure and design of the binary measure-
ment matrix (section 3) and describe the proposed adaptive
algorithm (section 4). Finally some performance results are
shown and conclusions are drawn.

2. SPARSITY PATTERN RECOVERY
PROBLEM

The objective is to reconstruct a signal, which is known to
be sparse in a given basis, with as few number of measure-
ments as possible compared to the dimension of the basis.
These measurements are obtained by linear projections as
introduced in the previous section. In CS, the measurement
matrix is fixed, either randomly generated from a conve-
nient ensemble [1] or with a deterministic construction [8]
(e.g. chirps [16]) and then the reconstruction is approached
as an optimization problem. Instead, we propose an adap-
tive sampling algorithm in which the measurement matrix
is constructed in successive stages and its structure depends
on the samples obtained previously.

As a result of this adaptability, the number of measure-



ments (i.e. rows in A) depends on the signal realization.
For a perfect recovery of the sparsity pattern, samples are
added until the pattern vector is completely recovered. The
average number of samples () is then the main metric of
performance, but also the variance or the maximum number
of samples required in the worst case (m™). Alternatively, if
a constraint on the maximum number of samples is imposed,
then we are interested on the probability of perfect recovery
of the support set S.
We assume the signal to be real and non-negative, x €
2o- We also require an a priori knowledge of the sparsity

index k as an input parameter of the sampling process'. We
will show that an approximated upper bound of k, k < k™,
suffices to ensure that the pattern vector is perfectly recov-
ered (at the expense of an increased number of samples).

One of the main goals in order to make an adaptive sam-
pling scheme attractive is to reduce the computational com-
plexity as much as possible. With that in mind we design
A to be sparse and binary and we also reduce the informa-
tion provided by the samples to a binary basis. With that
purpose, notice that the sparsity pattern recovery can be re-
garded as the reconstruction of a binary sequence x’ € F"
of the same length as the sparse signal with ones at the non-
zero positions. Let us then define the following nonlinear
operator:

o ={ § 220 o)

which can be regarded as a 1-bit quantization or thresholding
detection. Applying it to the measurements (element-wise),
we observe that the signal before the linear projection is
also reduced to a binary sequence, which corresponds to the
sparsity pattern sequence x’ = g(x):

y' £ q(Ax)
y' = q(Aq(x)) = q(Ax') @

The measurement operation in this equation can be also
expressed as the OR binary operation among sets of sparsity
pattern bits x’. This establishes a direct link between this
problem and the non-linear binary source coding approach
analyzed in [17]2. From now on, we will work only with the
1-bit quantized version of x and y, x’ and y’.

For illustrative purposes, a simple example gives an idea
of the reconstruction capability loss due to this quantization.
Consider a measurement that is built adding two nonzero
elements ' = a+b. In the linear case, if other measurements
provide the knowledge of a then b can be easily obtained as
y' —a (this is how sudocodes or LDPC for CS work [15], [18]).
On the contrary, in the nonlinear binary case, knowing a = 1
provides no information about b when y' = 1. In spite of
this, simulation results show that the proposed multi-stage
process approaches the theoretical limits, while working with
a binary basis makes the algorithm complexity extremely
low.

3. RANDOM SEQUENTIAL MEASUREMENT
MATRIX CONSTRUCTION

There is a straightforward set of binary measurement ma-
trices that recover x with the minimum possible number of

Tt must be noted that k can be inferred from y with good reli-
ability assuming that n and m are large enough. We can count the
measurements equal to zero and apply the relationship in equation
(3).
2The AND operator was applied to locate the few zero compo-
nents in a sequence with a larger number of ones. It was shown
that the performance of the system can be predicted with a set of
recursive expressions.

349

samples (k4 1) [19]. These matrices are constructed as fol-
lows: if we look only at the columns indexed by the support
set S, k rows form a permutation of the identity matrix and
the remaining row is zero in those positions and is one in all
the rest, so it measures all the zero components of x.

Unfortunately, this naive matrix cannot be directly con-
structed unless we already know S. However, it tells us that
obtaining measurements that are equal to zero is the key
point in the CS approach for sparse signal recovery of non-
negative signals, specially for graph-based methods [15,18].
The idea is that if the measurement is zero then all the signal
components that contributed to that measurement are also
zero. Actually, at the expense of adding more samples than
k-+1, the recovery of all the zeros can be achieved with more
than one row, each one measuring smaller subsets of zeros
(not necessarily disjoint).

The objective of the proposed method is to build a matrix
with that desired structure by means of an adaptive process
which concatenates random matrices sequentially. Let us see
first how a completely random binary matrix can approxi-
mate this perfect reconstruction matrix. For simplicity we
assume a matrix A = [¢1...¢;...om|T with an uniform num-
ber of ones per row d,. We choose d, << n so we force the
matrix to be sparse. A given row qﬁ;‘-r is chosen uniformly
from the set of sequences with d, ones. Its non-null compo-
nents are indexed by the set Z; 2 {v € 1,....,n : ¢j, # 0},
1Z;| = do.

Let us call po the probability of a signal component being
0. Then, when all the ones of ¢; overlap with zero compo-
nents of x', |Z;NS| = 0, the measurement y; = ¢; x’ is equal
to zero. This happens with probability:

p(IZ; N S| = 0) = pp". ®3)

and tells us the probability of recovering d, zeros of the spar-
sity pattern from a single measurement.

Obtaining one of the k desired row vectors which over-
lap only with a one of x’, i.e. |Z; N S| = 1, happens with
probability

MLHQ—D—<?>@1UM) 4

However, we also generate ambiguous vectors that will
not be useful to recover x’, the ones such that |Z; N S| > 1,
with a probability

p(IZ;NS|>1) =1-p(Z; N S| =1) - p(IZ; N S| = 0). (5)

As commented in section 2, this is the price to pay for
working exclusively in Fs.

The interesting point is that we can extract some infor-
mation of the sparsity pattern after sampling with a sparse
random matrix constructed as stated before. This brings
the idea of sequentially repeating this process. With a given
probability, every stage will reduce the search space of the
next one when some components of X" are recovered.

4. SEQUENTIAL MULTI-STAGE SAMPLING

In this section we present the proposed sampling algorithm,
which constructs the measurement matrix A as the sparsity
pattern vector is recovered. It is based on a message passing
process defined over a bipartite graph representation of the
measurement matrix. The complexity of the algorithm is
very low due to the sparsity of A and that the update rules
of the nodes can be implemented only with comparisons. It
is known that the complexity of these systems is O(n) [20].
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Figure 1: Graph Representation of the sampling

4.1 Graph Representation and Message Passing

The sampling process y' = g(Ax’) can be represented as a
bipartite or Tanner graph, as the example one in figure 1.
Left nodes represent the sparsity pattern components {z;}
while right nodes represent the quantized sampling opera-
tion, with the corresponding values {y;}. The connections
are determined by the non-zero entries of the measurement
matrix A.

The value of the sparsity pattern components can be re-
constructed over this graph employing a message passing al-
gorithm like the ones proposed in [15]. We denote this pro-
cess as refinement, and in our case reduces to a very simple
algorithm (see ” Algorithm 1”), as we work with binary quan-
tized measurements. Notice that it does not require itera-
tions nor arithmetic operations. In a general case in which
we did not apply a binary quantization, another message
passing algorithm could be employed as refinement process,
while the proposed adaptive sampling and matrix generation
procedure could still be applied.

As a result of the refinement algorithm, we obtain an
estimation of x’ with some perfectly recovered zeros and ones
and a set of unknown components that cannot be verified
(that we denote as ’?’). The proposed multi-stage process is
aimed at reducing this set to an empty one.

Considering the i-th stage, let us call A; the corre-
sponding measurement matrix and y; the obtained sam-
ples through it. Let us define the concatenation of all the
matrices generated up to this stage as the i-th aggregated
matric A? = [AT,...,AT]T and the sequence of samples
as y;a = [y;T7...7y;T]T. These samples will be employed
in a refinement process to obtain X}, an estimate of x’ at
the i-th stage, and the set of unrecovered components as
Q; £ {vel,.,n: &, =7 This set defines the search
space for the next stage, i.e. it determines the elements to
be further processed, enabling the adaptive sampling proce-
dure to concentrate only on the unknown part of the signal.

Now let us focus on the process to construct the matrix
at the i-th stage, A;.

4.2 Design and Construction of the Matrix A,

The measurement matrix at the i-th stage is constructed
randomly according to the observations made in section
3. Instead of operating over the whole x’, it samples only
the unrecovered pattern nodes indexed by Q;_1. Moreover,
we force every connected pattern node to have degree one.
Therefore, the columns of A; will have only a one®.

The probabilities (3) and (4), tied to the probability of
recovering zeros and ones of x’, depend critically on d, and
po. The former is the degree of the sampling nodes, while
the latter is the probability of having a zero in the connected
pattern nodes.

3This forces A; to be full row rank.
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Instead of fixing a value of d, for all rows of A;, we
choose to design a probability distribution p;(d,) based on
the pattern estimated by the previous stage, X;_;. We de-
sign the matrix to balance the number of ones and zeros of
the sequence of measurements y;, obtaining a binary entropy
close to one. Therefore, the probability of obtaining a mea-
surement equal to zero expressed in (3) has to be close 1/2.

With that purpose, we find an average d, from

plo = 1/2. (6)

and then choose a distribution with the two closest inte-
gers around it and the appropriate weights such that d, =
21:1,2 dipi(dr).

We use an estimation of pg given by the a priori sparsity
index k™ of the signal and the number of components that
are already recovered:

k* — ki1
=1 - -— " 7
bo 10i 1| ™

where k;_1 is the number of ones in ;_;. At the first stage,
po=1—k"/n.

Notice that with this construction, the number of sam-
ples generated at this stage is m; = |Q;—1] Zwo %.

Algorithm 2 describes the matrix constructionoprocess
according to this design. After constructing A;, the corre-

sponding new samples y; are obtained.

Algorithm 1 Refinement

Find zeros: If a measurement is zero, all connected pat-
tern nodes are verified as zero.

Pruning: Remove all pattern nodes verified as zero.
Find ones: If the measurement is one and only one pat-
tern node is connected, verify it as one.

Algorithm 2 Generation of A;

Initialize: U = Q;_1

while |U/| > 0 do
d < select according to p;
V < choose randomly min(d, |U|) elements from U
add row to A; with ones at the positions in V
U + remove V from U

end while

4.3 Sequential multi-stage process

In the two previous subsections we have explained how to
construct the measurement matrix at every stage and how
to estimate the sparsity pattern. To define the proposed
adaptive sampling procedure, we just have to concatenate
them as an stage and sequentially repeat it. By operating
with this muti-stage procedure, the dimensionality of the
problem is reduced at each stage and a more efficient use of

Algorithm 3 Sequential multi-stage sampling

Initialize: i =1, Qo = {1,...,n},

while Q,_1 # ) or stop criterion do
Construct A;
yi = q(Ax’)
(Qi,%;) + Refinement with A{ and y;*.
i=1+1

end while
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Figure 2: (a) Average number of samples for perfect recovery
and a given sparsity ratio k/n. (b) Error and gap evolution
curves through the stages of the adaptive sampling. In both
plots 2 - 10° sparsity patterns were simulated.

the samples is made. This procedure can be continued until
the sparsity pattern is perfectly recovered (as it was proved
in [17]) or it can be stopped when the number of samples
reaches a maximum value( m = m*) or the cardinality of S
reach a given value. Algorithm 3 describes this process.
The estimated support set of the sparse signal is the sup-
port set of X, at the last stage, S = {i € 1,...,n : &, # 0}.

5. RESULTS

In this section simulation results illustrate the performance
of the proposed algorithm when samples are generated un-
til perfect recovery is achieved and also when a maximum
number of samples is imposed. In the second case, the per-
formance is measured with the following recovery metric:

SN S|
max(|S], |S])

d=d(S,38) = (8)

where & and S are the estimated and the real support set,

as defined before. Notice that & includes recovered indexes
from the support set (#; = 1) and the unrecovered positions
(27 =7) and that d = 1 when the support set is perfectly
recovered.

Figure (2.a) shows the average number of samples needed
for perfect recovery of the proposed scheme (P) versus the
sparsity rate (k/n) assuming that k is exactly known, for
different values of the pair (k,n). It is compared with the
bound klog(n/k) (B). We can observe that there exists an
approximately constant multiplicative factor with respect to

m

i log(n/k)’ which is larger than

this theoretical bound g =
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Figure 3: (a) Average number of samples for perfect recovery
for n = 500 comparing results when k is known (P(k,500))
with the ones when and upper value k* = 10 is known
(P(10,500)). The bounds for nonadaptive sampling schemes
are included for comparison. (b) Probability Mass function
of the number of samples for n = 500 and several k.

1 (g= 1.5 for n =500 and g =~ 1.4 for n = 10000). We will
refer to this factor as gap hereafter.

Figure (2.b) shows the evolution of the recovery metric
versus the gap through the stages of the adaptive sampling
algorithm, i.e. for increasing number of measurements, for
different values of the pair (k,n), and k also assumed ex-
actly known. Each point of a given curve represents the
resulting gap and recovery metric at the end of a stage. We
have chosen to represent the gap instead of the number of
samples because the normalization with the bound allows us
to observe the dependence of the performance on (k,n): In
a closer look, the gap decreases when the sparsity index &
increases for a fixed length n, and also decreases with n.

The plotted curves helps us to explain the behavior of the
sequential process: While the number of samples is below
the bound (i.e. g < 1), only zeros of the sparsity pattern
are found, so the recovery metric stays at 0. However, the
knowledge of the zeros produces an avalanche effect when the
number of samples exceeds a threshold. Next stages rapidly
determine the ones of the sparsity pattern until convergence
when recovery is perfect. As it can be seen, the gap is kept
well below 2.

Figure (3.a) compares the performance of the proposed
algorithm when k is exactly known with the case in which
an upper bound is known instead (k < k™). The average
number of samples for perfect recovery versus k for n = 500
is shown and compared with the theoretical bound. As it can
be seen, when assuming k* = 10 the algorithm still works, at
the expense of adding a limited number of additional samples



E3 =

k Momp m m

4 56 50 39.3
8 96 76 64.0
12 | 136 | 98 85.2
16 | 184 | 117 | 104.4
20 | 228 | 135 | 1214

Table 1: Comparison with OMP [21] in terms of required
number of samples for n = 256 and several k.

(more the further is k from k™).

Figure (3.b) shows the probability mass function (p.m.f.)
of the number of samples for a given pair (k,n). Two millions
of samples from each distribution were simulated for k£ =
{4,6,8} and n = 500. It can be seen that the variance
increases with the sparsity index and also the p.m.f. becomes
more Gaussian-shaped. Notice that the probability mass is
concentrated around the mean; this means that the event of
requiring an much larger number of measurements to recover
S is very unlikely. In the simulations, none of the realizations
required more than 81, 95 and 117 samples for k£ = 4,6, 8,
respectively.

Results have been compared with the ones obtained em-
ploying Orthogonal Maching Pursuit (OMP) [21], which em-
ploys a Gaussian measurement matrix. Table 1 sumarizes
the maximum number of samples required for OMP (moamp)
for n = 256 and several k values as found in [21] and com-
pares it with the average and maximum number (m and m™)
of samples obtained with the proposed method. A significant
improvement can be observed.

6. CONCLUSIONS

In this paper we introduced and analyzed the design of bi-
nary and sparse adaptive measurement matrices in a multi-
stage process. We showed that the application of this method
allows to perfectly recover, with high probability, the sparsity
pattern of the signal with a limited number of measurements
O(klog(n/k)). We also showed that an upper bound of the
sparsity index suffices to recover S. At last we saw that the
number of samples required to recover a given sequence is
highly concentrated around the mean of the mass function,
hence we can stop the adaptive process and ensure that the
algorithm recovers the support set with a given (high) prob-
ability. It remains for future work to test the performance
of the scheme considering real measurements. Then an en-
hanced refinement process (as the one presented in [15]) can
be employed, possibly allowing to reduce the required num-
ber of samples.
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