
RECOGNIZING REAL WORLD OBJECTS USING MULTIPLE VIEWS

Costas Cotsaces and Nikos Nikolaidis

Aristotle University of Thessaloniki, Department of Informatics
University Campus, Box 451, GR-54124, Thessaloniki, Greece

and
Informatics and Telematics Institute, CERTH, Thessaloniki, Greece

email: {cotsaces,nikolaid}@aiia.csd.auth.gr

ABSTRACT
Object recognition, i.e. the classification of objects into pre-
defined categories is an important tool in many computer vi-
sion systems. Unlike other types of recognition, it must be
quite generic in order to be able to handle the great variety of
objects that can exist. An aid to the solution of this difficult
problem can be the use of information from different camera
views. Here, we have extended a robust object recognition
method in order to be able to function with information from
more than one camera, and from arbitrary viewpoints. This
method uses local feature points to construct visual vocabu-
laries which then form an input to Support Vector Machines.
We have found the multi-camera variant to produce superior
results to the single-camera one.

1. INTRODUCTION

Object recognition is quite unlike most other tasks in com-
puter vision, for example face recognition, person detection,
emotion recognition etc. This is because the word “object”
may encompass a vast variety of different entities, both on-
tologically and visually. Additionally, many objects have a
high degree of concavity, for example furniture or tableware.
A significant minority of objects are also topologically com-
plex (i.e. have holes in them). Moreover, in the case of
objects, the border between recognition (“which one”) and
categorization (“what type of”) is very blurry. This is be-
cause, unlike humans, objects do not have a distinct identity,
and many objects can have multiple nearly identical copies
(e.g cars of the same model). For the above reasons, object
recognition and categorization algorithms need to follow one
of two paths. One is to focus on one class of object e.g. cars,
desktop items etc, and develop an algorithm that exploits the
specific characteristics of this object class. The other is to be
generic enough to cover many different types of objects.

Another characteristic of object recognition is that, with
the exception of a few classes of radially symmetric ob-
jects, most objects exhibit a high visual variety from different
views, and that in general the discriminant power of different
views is generally similar. This is in contrast to areas such as
person detection and recognition. For example, a car’s side,
front and rear view are about equally useful when trying to
recognize different cars, whereas the rear view of a person is
useless when trying to recognize him.

For the above reason, the fusion of information from mul-
tiple cameras is of great help in object recognition. Thus,

The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement no 211471 (i3DPost).

we have attempted to design a system that performs object
recognition (or categorization) using information from (ini-
tially) two cameras. Instead of designing a system from
scratch, we chose to extend a successful generic single-
camera object recognition and categorization system [3]
which has been recently shown [7] to have a performance
close to the state of the art.

Surprisingly, there has been little published work on the
merits of multi-camera approaches to object recognition. The
work of Christoudias et al. [2] is the most similar to ours,
since they also use local descriptors, but they only use a sim-
ple nearest neighbor recognition scheme, and focus on fea-
ture selection. Campbell et al [1] can also be considered to
perform multi-camera object recognition, using an object’s
color and edge information. Both works however do much
of their testing using synthetic images.

In the following, in Section 2 we describe the single-
camera method that has been extended. Then in Section 3 we
give the multi-camera framework that was applied. The ex-
perimental results are given in Section 4, while conclusions
and a few directions for future work are given in Section 5.

2. SINGLE CAMERA FRAMEWORK

The single camera method used was founded on the current
trends in computer vision, specifically the use of local feature
points, and decision using Support Vector Machines (SVMs).
Since we wanted a method that is generic and not limited to a
specific domain, we chose to base single-camera recognition
on the work of Csurka et al. [3], which is sufficiently generic.
Additionally, it has been shown by Zhang et al. [7] to have a
superior performance in many tasks, especially object class
recognition, showcasing its robustness as a base for object
recognition.

The fundamental steps for the training phase of the
single-camera method are the following:
1. Extraction of local feature points from all (labelled) im-

ages of a training set
2. Clustering of local feature descriptors into a number of

classes
3. Computation of summary descriptor (feature vector) for

each image in the training set
4. Training of a classifier using the feature vectors of all

images
Correspondingly, the steps in the testing phase of the al-

gorithm are the following:
1. Extraction of local features from the image that is being

tested

19th European Signal Processing Conference (EUSIPCO 2011) Barcelona, Spain, August 29 - September 2, 2011

© EURASIP, 2011 - ISSN 2076-1465 927

2. Computation of the summary descriptor of the image
3. Classification of the image based on its descriptor,

through the use of the previously trained classifier
In the following the implementations of each of the above
steps will be addressed, and justifications for these imple-
mentations will be given.

The use of local feature points (also known as local de-
scriptors or keypoints) as a basis for the description of an
image is a common solution to the problems of occlusion,
clutter, and changes in illumination, scale and rotation. Local
features consist of two generally independent components, a
feature point detector, and a feature point descriptor. In the
present case, the feature point detector that was selected was
the Harris affine detector [5]. Harris affine feature points are
detected by an iterative process, by repeatedly computing lo-
cal maxima of the Harris function of the image and estimat-
ing elliptical neighborhoods thereabout. The advantage of
this detector is that is especially robust to transformations.
The feature descriptor, respectively, is the classic SIFT de-
scriptor [4]. This is a set of Gaussian derivatives computed
at 8 orientation planes over a 4× 4 grid of spatial locations,
giving a 128-dimensional vector. Its discriminance and in-
variance has been well proven.

The clustering of local feature descriptors is done in or-
der to abstract the distribution of the feature points. At this
stage, it is not necessary to derive semantically significant
clusters; all that is necessary is to give some granularity to
the distribution of the descriptors. Thus, the simplest pos-
sible classification algorithm was selected, namely k-means.
The number of classes k is decided experimentally, and gen-
erally ranges around 1000. The feature that is used for the
assignment of a specific feature point to a cluster is the 128-
dimensional feature point SIFT descriptor. At the end of the
clustering procedure, only the cluster centers are retained.

The information that has been consolidated through the
clustering needs to then be explicitly formulated into a fea-
ture vector for image that will be used for training the final
classifier. For this, again the simplest possible method was
chosen, i.e. a histogram representing the number of feature
points that were assigned to each class center is constructed.
Simplicity was chosen largely for reasons of robustness.

Finally, having characterized each image with a feature
vector (the aforementioned histogram), all that remains is
to train a classifier and use that classifier for a task of our
choice. Depending on the separation of the training example
images into classes, this could be object recognition, object
class recognition (a.k.a. object categorization), object veri-
fication etc. In the present case, as stated above, we have
chosen to implement object recognition. The classifier that
was selected was the classic Support Vector Machine (SVM).
Different types were tried, but once again the simplest lin-
ear variety was found to be most effective. Since SVMs are
intrinsically a two-class classifier, we use the classic multi-
class extension whereby a classifier is trained for each pair
of classes and the final recognition of an image is done by
a voting procedure, with classifier contributing a vote to the
class it selects.

For recognizing an object in an incoming image (testing
stage), a similar procedure is followed: Harris-affine fea-
tur points are detected, and their SIFT descriptors are ex-
tracted. These descriptors are then assigned into the previ-
ously computed cluster centers, and the number of feature
points assigned to each center forms a histogram, which is

then passed to the previously trained Support Vector Ma-
chine which makes the final decision about which object is
depicted in the image.

3. MULTICAMERA FRAMEWORK

Figure 1: Schematic of the two-camera configuration used.

We base our approach to multi-camera object recognition
on the assumption that the relative spatial configuration of the
cameras is known a priori. Such an assumption is not unrea-
sonable either in an experimental or in a production context,
since in the former it is part of the experimental setup and
in the latter it can be inferred by a number of camera cali-
bration techniques. Of course, the above assumption limits
us to static cameras, but even so the problem addressed is a
significant one. Since the problem is object recognition, we
are concerned only with the positions of the cameras with re-
spect to the object, i.e. their relative position in a coordinate
system rigidly attached to the observed object.

Additionally, we will limit ourselves to the two-camera
problem. The reasons for this are multiple:
• It is easier to extract quantitative results and compare

them with the single-camera case
• It is easy to formulate a multi-camera problem as a series

of two-camera problems using a voting procedure similar
to how we merge single-camera recognizers in this work.

• When multiple cameras exist it is reasonable to expect
that two of them (the ones placed so that their axes are
perpendicular to each other) will contain the most dis-
criminative information.
Let us then assume cameras C1 and C2 as in Figure 1. As-

suming a spherical coordinate system centered on the center
of the object, the positions of the two cameras are {ρ1,φ1,θ1}
and {ρ1,φ1,θ1}. Since the key point bag recognition method
is largely scale invariant, the only relevant parameters in this
case are the angle differences, normalized to lie between 0
and 2π

∆φ =

{
φ1−φ2, if φ1 ≥ φ2
φ1−φ2 +2π, if φ1 < φ2

(1)

928

and

∆θ =

{
θ1−θ2, if θ1 ≥ θ2
θ1−θ2 +2π, if θ1 < θ2

(2)

Thus, in the general case, a different classifier would need to
be trained for each combination of ∆φ and ∆θ , i.e. for each
spatial configuration of the two cameras.

The classifier that was used is a modification of the ba-
sic keypoint bag system described in Section 2. In essence,
instead of a single keypoint histogram corresponding to the
one camera, two keypoint histograms H1 and H2 are created,
from the images corresponding to the two cameras. Each
histogram is, as before, computed by classifying the SIFT
descriptors into pre-computed bins. H1 and H2 are then con-
catenated into a combined histogram H, which is then pro-
cessed as usual by the SVM stage.

The main difference is in the training stage. Firstly, in
the training data, each training image X is labeled not only
with the identity of the object in question, but also with the
angles φx and θx from which it was imaged. An arbitrary
“frontal” pose is chosen as a zero axis. Then, local SIFT
features are extracted and the k-means centers are established
as described in Section 2, without taking camera orientation
into account. Likewise, the histograms for each image are
computed irrespective of camera orientation, using the class
centers generated by the k-means. But in order to compute
feature vectors that will form the training data of the SVM,
for each image X in the training database, other images Y
belonging to the same class are sought such that

φy−φx = ∆φ +2nπ,n ∈ {0,1} (3)

and
θy−θx = ∆θ +2nπ,n ∈ {0,1} (4)

. If many such images are found, a random one is selected,
and if none are found, the training image is discarded. Then
the histograms of the two images Hx and Hy are concatenated
into histogram H which is used to train the SVM classifier.

4. EXPERIMENTAL RESULTS

4.1 Databases used
When deciding which database to use, we initially con-
sidered using a pre-existing object database. However,
databases that provide multiple labeled views of objects gen-
erally have some disadvantages. Specifically, they contain
objects that are topologically simple, convex, and compact.
This is not representative of objects in the real world (such
as furniture), and does not demonstrate the strengths of our
method in handling difficult objects. Additionally, most such
databases are not recorded in realistic conditions with re-
spect to lighting, shadows and background clutter. There are
databases that provide such realistic conditions, such as PAS-
CAL, but unfortunately they are not multi-view.

Thus, in order to provide a challenging corpus for our
experiments we created our own database. We selected to fo-
cus on furniture, and particularly on chairs. Chairs are a re-
current object in human environments, and present particular
difficulties since they are topologically very diverse, highly
concave, and have large gaps in their silhouette.

For our training set, 8 distinct chairs were selected as
shown in Figure 2. For each chair, 16 different camera ori-
entations were defined, by sampling φ by 45◦ increments

Figure 2: Example of the images captured for the chairs
database.

and selecting two different values of θ , 0◦ and 45◦. In all
cases, r was constant at 1.5m Within each orientation, 6 dif-
ferent photographs were taken, by randomly varying φ and
θ within ±10◦ and r by ±15cm. We thus gathered 96 im-
ages per object. For the sake of realism, the images were not
taken against a completely blank background. However, care
was taken to avoid the presence of other objects or significant
background clutter. In general, the objects in question took
up approximately 50% of the area of each image (including
gaps in the objects).

Figure 3: Example of some images from the COIL database.

However, in order to provide results comparable to other
algorithms, we also tested our method on the standard COIL-
100 database [6], which consists of simple mostly convex
objects taken upon a black background. It comprises 100 ob-
jects taken from 72 different angles in 5◦ degree increments,
but having no variation in the θ direction, examples of which
are shown in Figure 3.

4.2 Experiments
The goal of our experimental setup was the comparison of
the performance of the single camera baseline method with
the multi-camera one. A straight comparison of the accu-
racy rates would be unfairly favorable to the multi-camera
method, since it has access to more information than the

929

single-camera one. A fair comparison would be between the
result of the multi-camera recognizer and the result of the
merging of two single-camera classifiers, each operating on
one of the two images that form the input to the multi-camera
recognizer. This is the approach that we have followed here.
Specifically, when the two single camera results are different,
the merging is achieved by selecting the one with the greatest
SVM margin.

In our own database the goal was to recognize which
chair is shown in each picture. We trained both methods
using a random subset, containing 2/3 of the images. In
the case of the single-camera method, all images in this sub-
set were used whereas for the multi-camera one, the images
were matched into pairs. Then the other 1/3 of the images
were used for testing. This is repeated three times.

The result of the combination of the two single-camera
classifiers was an accuracy of 96%, while the two-camera
classifier had an accuracy of 100%, having made no mis-
takes. There was no detectable difference in execution time
— it remained at about 2sec on a single core of an Intel Core
2 computer running at 2.33 GHz.

In the case of COIL, we also performed experiments us-
ing 2/3 cross-validation as in the previous section. The two-
camera version achieved a recognition rate of 99,4% while
the merging of single-camera classifiers resulted in a recogni-
tion rate of 97,2%. The above results show that the proposed
two-camera extension improves the single camera baseline
algorithm, achieving almost perfect recognition at least for
the databases that were used.

5. CONCLUSIONS

We have extended an effective single-camera object recogni-
tion method to the two-camera problem, by explicitly includ-
ing the relative position of the two cameras into the training
of our classifier. Our experimental results show a clear im-
provement on a fairly difficult dataset, as well as a standard
one. It should be noted here that the method can be readily
extended to an arbitrary number of cameras. Further work
may include the adaptation of this framework to work not
only for recognition of objects but also for detection in clut-
tered scenes.

REFERENCES

[1] N. D. F. Campbell, G. Vogiatzis, C. Hernández, and
R. Cipolla. Automatic 3d object segmentation in mul-
tiple views using volumetric graph-cuts. Image Vision
Comput., 28(1):14–25, 2010.

[2] C. M. Christoudias, R. Urtasun, and T. Darrell. Unsuper-
vised feature selection via distributed coding for multi-
view object recognition. In Interntational Conference on
Computer Vision and Pattern Recognition (CVPR 08),
2008.

[3] G. Csurka, C. Dance, L. Fan, J. Willamowski, and
C. Bray. Visual categorization with bags of keypoints.
In ECCV International Workshop on Statistical Learn-
ing in Computer Vision, 2004.

[4] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60:91–110, 2004.

[5] K. Mikolajczyk and C. Schmid. An affine invariant inter-
est point detector. Computer Vision ECCV 2002, pages
128–142, 2002.

[6] S. Nene, S. K. Nayar, and H. Murase. Columbia object
image library (coil-100). Technical report, 1996.

[7] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid.
Local features and kernels for classification of texture
and object categories: A comprehensive study. Int. J.
Comput. Vision, 73:213–238, June 2007.

930

