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ABSTRACT
Eddy current testing (ECT) using coils is widely practised
in in-service inspection of steam generators in nuclear power
plants of pressurized water reactor type. In this paper, we
consider the shape estimate problem of magnetic deposits
given some ECT signals. The non-linearity and the ill-
posedness of this inverse problem make it quite challenging.
We focus on the axisymmetric case and build a PDE-based
direct model with Dirichlet-to-Neumann boundary operators
to describe the relationship between observed data and the
inspected component. With this direct model, we propose
an inverse algorithm of gradient descent shape optimization
type involving a regularization technique by boundary dif-
ferential operators. First numerical experiments are quite en-
couraging.

1. INTRODUCTION: INDUSTRY BACKGROUND

Steam Generators (SGs) are critical components in nuclear
power plants. Through SG tubes, heat produced in a nu-
clear reactor core and transferred by the primary loop in SG
tubes boils coolant water in the secondary loop on the shell
side into steam, which is then delivered to steam turbines.
Magnetic deposits usually observed on the shell side of SG
tubes could, however, affect the power production and even
the structure security. So eddy current inspection is applied
to detect presence, shape and/or physical nature of deposit.

In ECT, a probe consists of two coils of wire, each con-
nected to a current generator producing an alternating cur-
rent and a voltmeter measuring the the voltage change across
the coil. Once the probe is introduced in the SG tube, the
generator coil excited by the current creates a primary elec-
tromagnetic field which in turn induces a current flow in the
electrically conductive material nearby, such as the tube. The
presence of magnetic deposit will distort the flow of eddy
currents. They induce a current change in the receiver coil
which is measured in terms of impedance, called ECT sig-
nals.

We aim to estimate the deposit shape given ECT signals
by supposing that the physical nature of deposit is known.

2. PROBLEM STATEMENT

In this section, we state the deposit shape reconstruction
given ECT signals as an inverse problem based on a direct
problem with preliminary sets.

2.1 Notations
• i =

√
−1: the imaginary unit;

• ω , I, J: frequency, intensity and distribution of the pri-
mary alternating current;

• Ωi, µi, σi: domain, permeability and conductivity; i = 0
for vacuum, i = T for tube, i = D for deposit; µ0 = µT ;

• µ0, σ0: permeability and conductivity distributions in
deposit free situation, and µ , σ those in general case;

• u0, u: azimuthal components of the electric fields, respec-
tively in the deposit free case and in the general case with
contingent deposit, and u0

k or uk for those fields induced
by the coil k.

2.2 Direct problem
We suppose the rotational symmetry with respect to the axis
of the SG tube. Thus the 3-D problem in the cylindrical coor-
dinate system (r,θ ,z) turns to a 2-D case in the semi-plane,
noted R2

+ = {(r,z) : r ∈ R+, z ∈ R} (see Figure 1).
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Figure 1: 3-D and 2-D geometrical representations

By solving the direct problem proposed in Section 3, we
obtain the non-zero azimuthal components of electric fields u
(or u0) for configurations with (or without) magnetic deposit.

2.3 ECT signals
By adapting equation (10a) in [2] to our case, the impedance
measured for the coil k in the electromagnetic field induced
by the coil l writes

4Zkl =4Zl(uk) =−2π
I2

∫
ΩD

(
1

iω
µ −µ0

µµ0
1
r2 ∇(ruk) ·∇(ru0

l )

+(σ −σ0)uku0
l

)
r dr dz. (1)
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Further measurements can be obtained with different
combinations of 4Zkl , k, l = 1,2. In industry application,
as mentioned in [4], ECT signals are recorded in two modes
with a certain frequency (ω = 100kHz),

ZF3 =
i
2
(4Z11 −4Z22) differential mode,

ZFA =
i
2
(4Z11 +4Z12) absolute mode.

(2)

For exemple, Figure 2 gives the ECT signals deformed by
a rectangular deposit described in Section 5. We denote by
Z(ΩD;ζ ) either ZF3(ΩD;ζ ) or ZFA(ΩD;ζ ) (see (2)) the ECT
signals measured at the probe position ζ ∈ R.
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Figure 2: ECT signals distorted by a rectangular deposit. (a)
FA real part; (b) FA imaginary part; (c) F3 real part; (d) F3
imaginary part.

Supposing that the deposit material is homogeneous with
known permeability µD and conductivity σD. From the ECT
signal expressions (1) and (2), the shape of the deposit ΩD
determines uk and thus the impedance measurements.

2.4 Inverse problem
In an eddy current inspection, we make a scan by moving
the probe along the axis of the SG tube from position zmin to
zmax. The inverse problem aims to approximate the unknown
deposit shape Ω∗

D given the ECT signals Z(Ω∗
D;ζ ) for zmin ≤

ζ ≤ zmax. Rather than the contrast source inverse method
that the preceding works used (see [5] and its references), we
take the shape optimization approach to minimize the cost
functional

J(ΩD) =
∫ zmax

zmin

|Z(ΩD;ζ )−Z(Ω∗
D;ζ )|2 dζ , (3)

with the gradient descent method, which requires to calculate
the shape derivative, presented in Section 4.1. Compared to
the contrast source inversion, the advantage of this approach

is that it considers the boundary of deposit and gives a precise
continuous edge as result.

Due to the ill-posedness of the inverse problem (see
for example [5]), the shape increment given by a first ap-
proach (see Section 4.2 may develop sharp oscillations dur-
ing the minimization process when the number of discretiza-
tion points of ∂Ω0

D is high. These oscillations might cause
divergence of the algorithm (see Section 5.2 for a numerical
example). This is why a regularization procedure needs to
be incorporated (readers may refer to [3] for a general intro-
duction to the regularization of inverse problems). With the
boundary regularization method showed in Section 4.3, the
shape optimization scheme becomes stable.

3. EDDY CURRENT MODEL

In this section, we solve the direct problem based on the eddy
current model. From Maxwell’s equations and the eddy cur-
rent hypothesis on small electric permittivity compared to
conductivity, that is ε � σ/ω , we get the 2-D second order
eddy current equation for azimuthal component of electric
field u in a cylindric coordinate system:

div
(

1
µr

∇(ru)
)
+ iωσu =−iωJ, in R2

+. (4)

The electric field vanishes in other directions in a rotational
symmetric case. We have also a condition at infinity and a
boundary condition at r = 0 due to symmetry:

u(r,z)→ 0 (r → ∞) , (5)
u|r=0 = 0. (6)

The unbounded domain R2
+ in (4) is, for the sake of nu-

merical resolution, reduced to Br0,z0 with r0 > 0 and z0 > 0.
Therefore, we introduce three new boundaries:

Γr0 = {(r,z) : r = r0,−z0 ≤ z ≤ z0}, and
Γ± = {(r,z) : 0 ≤ r ≤ r0, z =±z0}.

To simplify the model, we replace the condition at infinity
in r direction (5) by a homogenous Dirichlet boundary con-
dition on Γr0 for r0 large enough: u|Γr0

= 0. Similar ho-
mogeneous Dirichlet boundary conditions can also be posed
on Γ± for z0 large enough. But for the sake of numerical
precision as well as efficiency, we will introduce Dirichlet-
to-Neumann (D-t-N) operators on Γ± in a formal way.

For z0 such that the current density J = 0 for all |z| ≥ z0,
we have

div(
1
r

∇(ru))+ iωσ µu = 0 (7)

A separation of the variables u(r,z) = ρ(r)ζ (z) gives an
eigenvalue problem

ζ ′′(z)
ζ (z)

=−ρ ′′(r)
ρ(r)

− ρ ′(r)
rρ(r)

+
1
r2 − iωµσ = λ . (8)

We note λn the eigenvalues for the problem of ρ and ρn(r)
the corresponding eigenvectors. Thus

u(r,z) = ∑
n∈N

unρn(r)exp(−
√

λn(z− z0)), z ≥ z0,

and similar results for z ≤ z0.
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For any ϕ(r) defined on Γ+ with decomposition ϕ(r) =
∑n∈N ϕnρn(r), we define the D-t-N operator

T+ϕ = ∑
n∈N

(−
√

λn)ϕnρn(r).

In the same way, we can define a D-t-N operator T− on Γ−.
So for u the solution to problem (4) – (6), we have

∂u
∂ z

∣∣∣∣
Γ±

= T±(u|Γ±).

We define the following functional spaces:

H1
r (Br0,z0) :=

{
v : v

√
r,

v√
r
,

∂v
∂ r

√
r,

∂v
∂ z

√
r ∈ L2(Br0,z0)

}
,

H :=
{

v ∈ H1
r (Br0,z0) : v|r=0 = 0, v|ΓR = 0

}
.

So the equivalent variational formulation of the problem (4)-
(6) is:

a(u,v)−
∫

Γ+

1
µ

T+(u|Γ+)v̄r ds−
∫

Γ−

1
µ

T−(u|Γ−)v̄r ds

=
∫

Br0 ,z0

iωJv̄r dr dz, ∀v ∈ H. (9)

where

a(u,v) =
∫

BR

(
1

µr2 ∇(ru) ·∇(rv̄)− iωσuv̄
)

r dr dz. (10)

A slight modification of Poincaré inequality shows that
the sesquilinear form a(·, ·) defined on H×H by (10) is ellip-
tic. Therefore the Lax-Milgram theorem yields the existence
and uniqueness of solution to the problem (9).

The variational problem (9) is numerically solved with
the help of the finite element package FreeFem++ (see
www.freefem.org).

4. INVERSE ALGORITHM

In this section, we give an inverse algorithm for the deposit
shape reconstruction. We recall the cost functional (3) to be
minimized

J(ΩD) =
∫ zmax

zmin

|Z(ΩD;ζ )−Z(Ω∗
D;ζ )|2 dζ .

The gradient descent shape optimization involves the notion
of shape derivative (see Section 4.1). Then the minimizing
shape increment is regularized by introducing a boundary
differential operator (see Section 4.3) so that the optimiza-
tion process is stable and converges.

4.1 Shape derivative of the cost functional
Shape derivative methods are detailed in [1]. To simplify the
introduction, we only discuss the case that the deposit is pure
conductor, i.e. µD = µ0. If the original deposit domain Ω0

D is
deformed by a shape perturbation θ: ΩD = (Id+θ)Ω0

D, then
the shape derivative of J(ΩD), noted as J′(Ω0

D)(θ), is defined
by

J(ΩD) = J(Ω0
D)+ J′(Ω0

D)(θ)+o(θ), lim
θ→0

‖o(θ)‖
‖θ‖

= 0.

Analogously are defined shape derivatives Z′ and 4Z′
kl of Z

and 4Zkl (see (1)). Then we have

J′(Ω0
D)(θ)

=
∫ zmax

zmin

2ℜ
{

Z′(Ω0
D;ζ )(θ)

(
Z(Ω0

D;ζ )−Z(Ω∗
D;ζ )

)}
dζ .

From (2), we shall calculate 4Z′
kl(ΩD)(θ) indeed. Since

µ is constant, from (1), its shape derivative is

4Z′
kl(Ω

0
D)(θ) =−2π

I2

(∫
Ω0

D

(σ −σ0)u′ku0
l r dr dz

+
∫

∂Ω0
D

(θ ·n)[σ ]uku0
l r ds

)
,

(11)

where u′k = u′ is the Eulerian shape derivative of u according
to the perturbation θ:

u(ΩD;r,z) = u(Ω0
D;r,z)+u′(θ;Ω0

D;r,z)+o(θ).

Then u′ is the unique solution to the variational formulation
problem:

a(u′,v)−
∫

Γ+

1
µ

T+(u′|Γ+)v̄r ds−
∫

Γ−

1
µ

T−(u′|Γ−)v̄r ds

=
∫

∂Ω0
D

(θ ·n)iω[σ ]uv̄r ds, ∀v ∈ H. (12)

4.2 Expression of the derivative using the adjoint state
To u0

l solution to a deposit free eddy current problem, we
associate an adjoint state pl solution to the problemdiv

(
1

µr
∇(rpl)

)
+ iωσ pl = iω(σ −σ0)u0

l in Br0,z0

pl = 0 on ∂Br0,z0 .

Its equivalent variational formulation is,

a(pl ,v) =−
∫

Br0 ,z0

iω(σ −σ0)u0
l v̄r dr dz, ∀v ∈ H̃, (13)

where H̃ := {v ∈ H : v|Γ± = 0}.
From (11), (12) and (13), and some calculations, we get

4Z′
kl(Ω

0
D)(θ) =

∫
∂Ω0

D

(θ ·n)[σ ]uk(pl −u0
l )r ds.

Thus, for impedance in the differential mode ZF3,

Z′
F3(Ω

0
D)(θ)

=
iπ
I2

∫
∂Ω0

D

(θ ·n) [σ ]
(
u1(p1 −u0

1)−u2(p2 −u0
2)
)

r ds,

and for that in the absolute mode ZFA,

Z′
FA(Ω

0
D)(θ)

=
iπ
I2

∫
∂Ω0

D

(θ ·n) [σ ]
(
u1(p1 −u0

1)+u1(p2 −u0
2)
)

r ds.
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Let us define:

gF3(r,z) =
∫ zmax

zmin

ℜ
{(

u1(p1 −u0
1)−u2(p2 −u0

2)
)
(r,z;ζ )

(
Z(Ω0

D;ζ )−Z(Ω∗
D;ζ )

)
(−i)

}
dζ ,

gFA(r,z) =
∫ zmax

zmin

ℜ
{(

u1(p1 −u0
1)+u1(p2 −u0

2)
)
(r,z;ζ )

(
Z(Ω0

D;ζ )−Z(Ω∗
D;ζ )

)
(−i)

}
dζ .

(14)
Then the shape derivative of the cost functional becomes

J′(Ω0
D)(θ) =−2π

I2

∫
∂Ω0

D

(θ ·n) [σ ]gr ds, (15)

where the function g is either gF3 or gFA according to the
chosen measuring mode.

To ensure that the cost functional decreases, we can take
a perturbation of the geometry Ω0

D such that:

θ|∂Ω0
D
= [σ ]g|∂Ω0

D
rn. (16)

The perturbation can be calculated in the whole domain by
solving the interior problem{

−4θ = 0 in Ω0
D,

θ = [σ ]g|∂Ω0
D

rn on ∂Ω0
D,

and the exterior problem
−4θ = 0 in V \Ω0

D,

θ = 0 on ∂V ,

θ = [σ ]g|∂Ω0
D

rn on ∂Ω0
D,

where n is always the outward normal unit of Ω0
D and V is

a neighbourhood of Ω0
D. The vector field θ is extended by

zero outside V to ensure that the shape perturbation would
not change other geometrical configuration.

One easily verifies that

J′(Ω0
D)(θ) =−2π

I2

∫
∂Ω0

D

|θ|2 ds ≤ 0.

4.3 Regularization
As mentioned in Section 2.4, a regularization is needed since
the shape increment given by (16) may cause singularity on
∂Ω0

D. We propose to use the H1(∂Ω0
D) boundary regulariza-

tion by solving the following problem for λ ∈ H1(∂Ω0
D)

2:

λ−α4∂Ω0
D
λ= [σ ]g|∂Ω0

D
rn on ∂Ω0

D, (17)

where 4∂Ω0
D

is the boundary Laplace-Beltrami operator and
α > 0 is a regularization parameter. The equivalent varia-
tional formulation of (17) is,∫

∂Ω0
D

(
λ ·ψ+α∇∂Ω0

D
λ ·∇∂Ω0

D
ψ
)

ds

=
∫

∂Ω0
D

[σ ]grn ·ψds, ∀ψ ∈ H1(∂Ω0
D)

2.
(18)

Compared to the right-side term in (16), we gain two reg-
ularity orders with λ. We will take a shape perturbation θ
such that

θ|∂Ω0
D
= λ. (19)

It is also a descent direction since we have, by taking ψ =
λ= θ|∂Ω0

D
in (18),

J′(Ω0
D)(θ) =−2π

I2

∫
∂Ω0

D

(
|θ|2 +α

∣∣∣∇∂Ω0
D
θ
∣∣∣2) ds ≤ 0.

(20)
We can also extend θ|∂Ω0

D
to the whole domain as above.

4.4 Algorithm
The inversion procedure is done as follows:
• Initialization with a deposit domain Ω0

D.

• Step k :

1. Solve the direct problem (9) and the adjoint problem
(4.2) with the actual deposit domain Ωk

D.

2. Calculate the cost functional with (3) and the accord-
ing g function with (14).

3. Get a descent direction θk (see (19)) with a regular-
ization procedure (17), calculate the shape derivative
of the cost functional J′(Ωk

D)(θ
k) with (20).

4. Compare with the chosen optimization criteria. If
they are not satisfied, go to step k+ 1 with a deposit
domain

Ωk+1
D = (Id+θk)Ωk

D.

5. NUMERICAL TEST

We give some numerical test results in this section.

5.1 Application to a parametric problem
In the first place, we use a parametric case to test the shape
optimization algorithm in Section 4.4. If we know a priori
that the deposit domain is rectangular in the semi-plan R2

+
with fixed height (in the z direction), then it is parameterized
by its length in the r direction. In the absolute mode (FA) of
impedance measurement, we set:
• σD = 1×104 S ·m−1, µD = µ0;
• Fixed height is 10mm;
• Target length is 5mm; initialization with 1mm in length.

The exact shape and the initialization are shown in Figure
3a. After 92 iterative steps, we obtain the final shape shown
in Figure 3b. Its length is 4.89mm. A more general case is
considered by only supposing the rectangular shape, but with
unknown height as well as length. The exact shape and the
initialization are shown in Figure 3c and the reconstruction
after 24 steps is given in Figure 3d.

We remark that no regularization is needed in this case,
since we have set strong hypothesis on the deposit shape (as
rectangular).

5.2 Application to a general problem
Let us consider the general case now. In Figure 4a, the tar-
get deposit in green is always rectangular, but included in a
neighbourhood V , which is the support of the shape pertur-
bation. We can find the boundary ∂V outside the deposit.
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(a) (b) (c) (d)

Figure 3: Reconstruction for parameterized problems with
rectangular deposit target. (a)-(b) case with unknown length;
(c)-(d) case with unknown height and length. In green: target
shape. In black: (a), (c) initializations; (b), (d) reconstruc-
tions.

Since we do not know the domain shape a priori, we choose
to initialize with a small semi-disc (in black).

An optimization process without regularization ends up,
after 104 iterative steps, by the presence of sharp oscilla-
tions on the boundary, shown in Figure 4b. That shows the
ill-posedness of the inverse problem and the instability of
the shape optimization scheme for minimizing the cost func-
tional.

With the boundary regularization method introduced in
Section 4.3, the inverse algorithm gets stable and converges.
We obtain the deposit shape shown in Figure 4c, after 60
iterative steps. The reconstructed shape represents a good
approximation of the target in terms of volume. The inverse
algorithm cannot recover the two angles of the rectangular
since they are far from the probe, that the integration effect
(see (1)) and the boundary regularization “smooths” their im-
pact on ECT signals.

(a) (b) (c)

Figure 4: General problem with rectangular deposit target.
In green: target shape. In black: (a) initialization; (b) re-
construction without regularization; (c) reconstruction with
regularization.

We can consider other shape reconstructions as semi-disc
(Figure 5) with the same inverse algorithm. To test the ro-
bustness of the method, we take two different initializations
shown in Figure 5a and in Figure 5c. Both reconstructions
(Figure 5b and Figure 5d) turn to be good approximations of
the target shape.

6. CONCLUSION AND FUTURE WORKS

In this paper, we introduced an inverse problem, based on
a direct eddy current model, to characterize the shape of

(a) (b) (c) (d)

Figure 5: General problem with semi-disc shaped deposit tar-
get. In green: target shape. In black: (a)-(b) initialization
with small semi-disc and reconstruction; (c)-(d) initialization
with small rectangular and reconstruction.

magnetic deposits outside the SG tubes by using ECT sig-
nals. The inverse algorithm by gradient descent shape op-
timization makes use of the shape derivative and is regular-
ized, because of its ill-posedness, by introducing a boundary
Laplace-Beltrami operator. Compared to the contrast source
inverse method in preceding works, the shape optimization
method gives a shape estimate with precise continuous edge.
Reconstruction results with a priori information (parameter-
ized shape for exemple) are quite satisfying. General recon-
struction gives a good volume valuation.

Extensions, which may bring both mathematical and nu-
merical difficulties, will be considered in our future works:
more complicated geometrical configuration, physical nature
of deposit as unknown factor to be reconstructed in the in-
verse problem, generalization to the 3-D case, etc.
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