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ABSTRACT

Running consensus is a recently proposed distributed
strategy for fostering agreement among sensors of fully
flat networks, by interleaving the two stages of mea-
surements and node-to-node communications. Quickest
detection is a well-established technique for discovering
abrupt changes (if any) in the statistical distribution of
the observed data.

In this paper we tailor the running consensus idea
to the quickest detection problem, to address change-
detection issues in distributed inference systems with
random and time-varying sensors’ connections, in ar-
chitectures without fusion center. Performance bench-
marks are expressed in terms of detection delay and false
alarm rate, for which closed form approximations are
derived, yielding a simple analytical expression of the
operational characteristic of the detector. The proposed
system is tested on typical signal processing problems by
means of numerical simulations that validate the theo-
retical analysis.

Keywords—Quickest detection, Page’s test, Running
consensus.

1. INTRODUCTION

Running consensus is a gossip paradigm for sensor net-
works, originally proposed in [1], whose main feature is
the simultaneous managing of the acquisition and data-
exchange stages, that allows reaching agreement at node
level by elaborating on the time-varying dataset col-
lected by the network, elaborating on classical gossip
protocols [2–5]. Running consensus has been recently
recognized as an efficient way to perform distributed de-
tection in non-parallel, fully flat architectures, that is,
when no fusion center is available [6,7]. Extensions and
applications to random and time-varying networks have
been proposed in [8].

The typical way of operation for such decentralized
detectors prescribes that the sensors acquire data, ex-
change their local information, that, suitably processed,
lead to agreement about a final decision that is (asymp-
totically with time) common to all nodes.

In this paper, we focus on detecting abrupt changes
in the data distribution, usually referred to as quickest
detection. This is a classical problem, that emerges in
practical scenarios where a sudden change in the state of
the nature is to be reported as soon as possible. Page’s

test is a well-established signal processing technique for
quickest change detection, relying upon the so-called
CUSUM statistic [9–11].

Departing from the classical centralized application
of Page’s tests, the investigation has been extended in
several directions, including transient changes, partially
unspecified statistical models, different optimization cri-
teria constraints, quantized data. Useful entry points for
these topics can be, among many others, [10–12].

However, as far as we can tell, quickest change de-
tection for fully distributed detection in sensor networks
has not received the same degree of attention in the top-
ical literature. This motivates us in pursuing the basic
idea behind this work, that of merging the running con-
sensus update rule with Page’s test recursion.

The remainder of this paper is so organized. In
Sect. 2 we pose and formalize the problem, also includ-
ing the basic relevant facts about Page’s test. Section 3
contains the main results of the proposed strategy. Sec-
tion 4 collects a summary of the results of the numerical
simulations used for testing the algorithm, in the con-
text of typical change detection problems. Conclusive
remarks are provided in Sect. 5.

2. PROBLEM FORMALIZATION

The basic change detection problem considered in this
work is now formalized according to a very classi-
cal setup [9, 10]. In the following, the index j ∈
{1, 2, . . . ,M} identifies a specific sensor, while n ≥ 1
is the (discrete) time index. The n−th observation xn,j

collected by the j−th node follows the null-hypothesis
distribution f0(x) until a deterministic but unknown
time n0. From n0 (included) on, the distribution for
all j suddenly changes to f1(x).

The goal of the network is to discover the change as
soon as possible, with a constraint on the average time
between false alarms. Throughout the paper, we make
the basic assumption of statistical independence across
time and across sensors. We have, for all j,

f0(x) : x1,j , x2,j , . . . , xn0−1,j

↘
f1(x) : xn0,j , xn0+1,j , . . .

Note that, at each time slot n, the network globally
collects a vector of observations:

xn = [xn,1, xn,2, . . . , xn,M ].
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2.1 Classical parallel architecture

If a fusion center is available, the quickest detection
problem can be addressed by means of the well-known
Page’s test [9], which is basically made of the following
three elements.

• The CUSUM log-likelihood of the data is

n∑
i=1

M∑
j=1

log
f1(xi,j)

f0(xi,j)
. (1)

• Page’s recursion rule is defined as

Sn = max

⎧⎨
⎩0, Sn−1 +

M∑
j=1

log
f1(xn,j)

f0(xn,j)

⎫⎬
⎭ , (2)

where S0 = 0. We explicitly note that the log-
likelihood resets each time it falls below zero, which
is thus the point from which Page’s test restarts.

• A decision rule prescribing that a change is declared
as soon as a threshold γ is crossed, implicitly defining
the test stopping time as

N = arg min
n

{Sn ≥ γ}. (3)

The usual optimality criterion for assessing the test
performance is that of imposing a constraint on the
false alarm rate, and accordingly minimizing the de-
tection delay. The former is defined as the reciprocal
of the average sample size under the null hypothesis,
1/E0[N ], where E0,1[·] denotes expectation computed
under distribution f0,1(x). The latter is approximated
by E1[N ], which is in fact an upper bound on the real de-
lay, corresponding to the assumption that the CUSUM
is exactly zero at time n0. The precise computation
of E1[N ] would instead require knowledge of the exact
value of the CUSUM statistic at n0, and it is usually
intractable [9, 10,13].

The above key quantities admit closed form ap-
proximations mainly relying upon neglecting the excess
over the threshold of the test statistic at the stopping
time [9,10,13]. Specifically, the false alarm rate and de-
tection delay of the centralized system (suffix c consis-
tently appended) are related to the detection threshold
via

Rc(γ) ≈
M Δ01

eγ − γ − 1
, (4)

Dc(γ) ≈
γ + e−γ − 1

M Δ10
, (5)

where Δ01 is the Kullback-Leibler divergence [10] from
f0(x) to f1(x), and Δ10 is similarly defined. By combin-
ing (4) and (5) the basic operational curve Dc(R) of the
detector, that expresses the detection delay as a func-
tion of a prescribed false alarm rate R, can be obtained.
In the regime of large γ (corresponding to small false
alarm rates), the operational curve can be conveniently
approximated by the following closed form

Dc(R) ≈
log (M Δ01/R)

M Δ10
. (6)

Note that the overall divergence pertaining to a single
time slot is M Δ, accounting for the fact that, at each
time slot, M independent observations are collected.

3. RUNNING CONSENSUS FOR
QUICKEST DETECTION

As already anticipated, the main strategy proposed in
this work for quickest distributed detection in fully flat
networks relies upon the running consensus algorithm.
Details about this latter can be found in [1, 6] and will
not be repeated here for space reasons. In the following
we limit ourselves to report the basic elements in order
to make the paper self-contained.

The network topology is formalized by an undirected
graph1 (V, En) where V = {1, 2, . . . ,M} is the vertex set
(sensors) and En the edge set that describes sensors’ con-
nections. To address the general problem of random and
time-varying sensors’ connections, we allow En to be ran-
dom and dependent upon the time slot n. Accordingly,
at each n, M data are collected by the network and a
realization of En is drawn, meaning that some subset of
V is selected, and the corresponding nodes share their
states according to a standard consensus algorithm [2].
The exchanged data are not simply the measurements,
but rather the suitable detection statistics computed by
the nodes, summarized in the state variables Sn,j .

Stressing on the flat architecture of the system, we
would like to achieve the following goals.

• Each sensor implements its own test by comparing
the local statistic Sn,j to a detection threshold γ.
The j−th test accordingly stops at a random time

Nj = arg min
n

{Sn,j ≥ γ}. (7)

• No post-detection fusion of the local decisions is al-
lowed, the data fusion being instead embodied in the
running consensus protocol.

• The decision taken by any of the sensors must be
representative of the (unavailable) global, centralized
decision. Accordingly, it must be possible to retrieve
a reliable decision by querying an arbitrary node in
the network.

These design goals basically require asymptotic
(with n) similarity of Sn,j with the centralized detec-
tion statistic Sn, for all j. To this aim, we propose the
following update rule, that is essentially borrowed from
the running consensus data-exchange protocol [1, 6]:

⎛
⎜⎜⎝

Sn,1

Sn,2

...
Sn,M

⎞
⎟⎟⎠ = Wn

⎛
⎜⎜⎝

Sn−1,1

Sn−1,2

...
Sn−1,M

⎞
⎟⎟⎠+M Wn

⎛
⎜⎜⎜⎜⎜⎝

log
f1(xn,1)
f0(xn,1)

log
f1(xn,2)
f0(xn,2)

...

log
f1(xn,M )
f0(xn,M )

⎞
⎟⎟⎟⎟⎟⎠

or, in a more compact form

Sn,j = U({Sn−1,j}
M
j=1). (8)

1Unlike the case of the classic consensus, the literature on run-
ning consensus [1,6] only deals with undirected graph network; we
comply with such assumption.
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Figure 1: Empirical realizations of the running consen-
sus statistics, in a fully connected network made of 10
sensors, operating under the pairwise averaging algo-
rithm. The distributions under the two hypotheses are
Bernoulli, xn,j ∈ {0, 1}. Under the null hypothesis the
measurements are equiprobable, while after the change
(at n0 = 750) the probability of 1 modifies to 0.51.
Thinner gray lines refer to sensors (almost superimposed
to each other), the bold red line refers to the centralized
system

The M by M consensus matrices Wn, n = 1, 2, . . . ,
are iid (independent identically distributed) and doubly
stochastic. To better highlight the physical meaning of
the above matrices, let us consider the classical example
of a pairwise averaging algorithm, according to which,
at time n, a pair (h, k) of sensors is selected uniformly
at random. The corresponding realization of Wn is

Wn = I −
(uk − uh)(uk − uh)T

2
, (9)

where I is the identity matrix, and uk is a vector of all
zeros, but for the k−th entry which is unity. Using this
matrix into the update equation simply amounts to let
sensors h and k replace their state by the corresponding
arithmetic averages. Formally, in this case En = {h, k}.

Our solution for quickest detection via running con-
sensus is finally obtained by merging the update rule (8)
to the classical Page’s recursion (2), the overall recursion
(at the j−th node) becoming2

Sn,j = max{0,U(Sn−1,j)}. (10)

Before going into the details of performance eval-
uation, it is instructive to start from empirical evi-
dences. Figure 1, obtained by computer experiments,
displays the behavior of the ideal centralized statistic Sn

(bold red curve), along with the locally computed sensor
statistics Sn,j (tiny gray curves) of the running consen-
sus Page’s detectors. A general trend is observed: in a

2While the update rule U is linear, the addition of Page’s re-
set rule introduce a nonlinear effect, which is not present in the
classical gossip algorithms.

Figure 2: Network topologies for the two examples con-
sidered in Sect. 4. The circles represent the vertex set V,
while the random edge set En is selected among the pos-
sible connections shown by lines between the vertices.

first portion of the time axis, the statistics often reset
to zero; once that the change in distribution takes place
(n0 = 750), they tend to grow up to eventually cross
the detection threshold. As a matter of fact, the dif-
ferent running consensus statistics always behave quite
similarly, and, in addition, closely track the statistic of
the centralized system. This in turn implies that the
instants of detection events, i.e., the times at which the
curves cross the positive threshold, are almost the same
for the different statistics, leaving hope that the perfor-
mance of the running consensus quickest detectors may
approach the theoretical limit represented by the per-
formance of the centralized system.

This behavior can be explained as follows. Running
consensus introduces strong dependencies among nodes
by continuously propagating information across the net-
work, and this implies that the change is detected at
almost equal times at different sensors. As time elapses,
the effect is emphasized and the statistics Sn,j at differ-
ent j become closer and closer each other.

As a consequence, provided that the algorithm
evolves for a sufficiently long time, a reliable estimate of
the instant at which the distribution-change took place
can be obtained by querying any of the M nodes, and
the performance of the running consensus scheme can be
computed with reference to any of the sensors, according
to the genuinely flat nature of the system.

3.1 Performance evaluation

A complete derivation of the performance formulas is
not reported with all the details here; we refer the reader
to [7]. The arguments below, however, are sufficient for
a complete understanding of the main ideas behind the
formal derivations.

It is convenient to regard the local detection statistic
as Sn,j = Sn + en,j , where the difference between the
current state Sn,j and its centralized counterpart Sn is
measured by an error term, that is assumed for now to
be bounded, |en,j | ≤ ε, ∀n and ∀j.

Sensors initially acquire data following the distribu-
tion f0(x). Until a threshold crossing occurs (either be-
cause a real change happened, or because a false alarm
is going to be declared), the j−th sensor may have expe-
rienced a certain number of resets. This number, how-
ever, does not depend only upon Sn, but it is also de-
termined by the behavior of the error term en,j . On the
other hand, it is reasonable to assume that, for γ � ε,
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Figure 3: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Bernoulli example
considered in Sect. 4. Dots refer to simulations of the de-
tector, while the continuous, see eqs. (4)-(5), and dashed
curves, see eq. (6), show the operational characteristic
of the ideal centralized system.

the role of the centralized statistic Sn as to the thresh-
old crossing will be predominant. Formally we have the
following: Let us define

N = arg min
n

{Sn > γ − ε},

N = arg min
n

{Sn > γ + ε}, (11)

that are nothing but the stopping times pertaining to
a centralized Page’s test with modified thresholds. Ob-
viously, we have E0,1[N ] ≤ E0,1[Nj ] ≤ E0,1[N ]. Let us
focus on f1(x). Applying the last inequality, we have,
for the detection delay at the j − th sensor:

Dc(γ − ε) ≤ Dj ≤ Dc(γ + ε).

In the regime of large γ (i.e., of small false alarm
rate), we can neglect the effect of ε (which is 	 γ), and
obtain the approximate operational characteristic of the
running scheme:

Dr(R) ≈
log (M Δ01/R)

M Δ10
. (12)

We have assumed so far that the error is bounded.
Such assumption is usually made in sequential analy-
sis for managing the errors due to the excesses over the
thresholds, and provides simple refinements of Wald’s
approximations, see, e.g. [13]. We would like to men-
tion that an extension of these results to the case that
the errors are bounded only on the average can also be
pursued, but this would require rather advanced math-
ematical tools [14].

4. NUMERICAL EXPERIMENTS

For the classic running consensus schemes it is well-
known that the performance depends on the network
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Figure 4: Operational curve of the running-consensus
quickest detector. The detection delay is shown as func-
tion of the false alarm rate for the Gaussian example of
Sect. 4. Dots refer to simulations of the running con-
sensus strategy, while the continuous and dashed curves
pertain to the ideal centralized system. Asterisks show
the operational curve of a bank of Page’s detectors.

connectivity: if the adjacency matrix of the graph is
sparse (especially when the number of nodes is large),
then the rate of convergence towards the optimal statis-
tic slows down. We expect the same behavior for our
decentralized Page’s test. While exhaustive investi-
gations in this direction are out of the scope of this
paper, we next present a summary of the results ob-
tained by Monte Carlo simulations for two typical se-
tups, where the nodes communicate only with their di-
rect (single hop) neighbors. The two considered exam-
ples are schematically displayed in Fig. 2, where neigh-
boring sensors are connected by straight lines. The sym-
metric topology shown in the right plot serves as an
ideal benchmark, while the left plot shows a more real-
istic scenario. Note that both the network graphs are
connected.

In the first example, we assume the measurements
taken by the sensors as iid binary variables taking value
in {0, 1}, drawn from a Bernoulli distribution. The net-
work topology is depicted in the left plot of Fig. 2. Ini-
tially, the outcomes are equiprobable, while after the
change the probability of 1 slightly modifies to 0.505.
Note that the two hypotheses are “quite close”, thus
leading to a challenging detection task. It is also as-
sumed that at each time step v pairs of neighboring
sensors are selected to average their own states. In the
following examples we use v = 5.

The results of 104 Monte Carlo simulations, with
M = 10 sensors, are shown in Fig. 3, where the empirical
operational characteristic of the detector is compared to
the operational curve Dc(R) obtained by combining (4)
and (5); also shown is the closed form approximation in
eq. (6), valid for tight false alarm rates R. As it can be
seen, the match with Dc(R) in this case is excellent, and
quite accurate is also the match with (6) in the regime
of interest.

Consider now a second case study, namely, the clas-
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sical change detection problem of zero-mean Gaussian
observations with different variances. Without loss of
generality, we assume that the variance under the null
hypothesis is set to 1, and that pertaining to the distri-
bution after the change is σ2. As communication strat-
egy, we adopt here the same repeated pairwise averaging
(v = 5), but with the topology shown in the right plot
of Fig. 2.

In Fig. 4 we report the results from 104 Monte Carlo
iterations with M = 10 sensors, and a value of σ =
1.032, that is, a value very close to 1 that again leads to
a difficult detection task. Comments similar to those of
the previous example apply, and the match appears to
be satisfying for any practical purposes.

To further highlight the benefits of the (pre-
detection) data fusion achieved via running consensus,
let us consider a simpler detection scheme working in flat
architectures: a bank of Page’s detectors that indepen-
dently process the locally observed data, without any
form of on-the-fly cooperation. In this case, as soon as
one of these filters declares a change is the distribution
of the monitored phenomenon, a broadcast message is
sent to the whole system to halt the detection task, and
the decision of the quickest sensor is taken as the global
decision of the bank. As seen in fig. 4, the running con-
sensus scheme largely outperforms the bank in terms of
detection performance, even though this should be ex-
pected to be paid in the coin of communication burden.

5. SUMMARY

We address the problem of detecting a sudden change
in the distribution of the data collected by a sensor net-
work. With the further constraint that the network is
fully flat, we propose the novel paradigm of running con-
sensus for reaching agreement about a final decision.

We show that the test performance, at any node, is
asymptotically (with time) equivalent to that of an ideal
parallel architecture with fusion center. In addition, the
running consensus allows each sensor to declare a detec-
tion at approximately the same time instant, allowing
retrieval of a fully distributed and reliable estimate of
the change in the state of nature from any of the de-
ployed nodes. These characteristics are particularly at-
tractive in applications where the network operates in
dangerous environments, or when the physical topology
of the system is time-varying and makes large part of
the nodes unaccessible most of time.
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