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ABSTRACT
In this paper we present a novel method for performing
speaker recognition with very limited training data and in
the presence of background noise. Similarity-based speaker
recognition is considered so that speaker models can be cre-
ated with limited training speech data. The proposed simi-
larity is a form of cosine similarity used as a distance mea-
sure between speech feature vectors. Each speech frame is
modelled using subband features, and into this framework,
multicondition training and optimal feature selection are in-
troduced, making the system capable of performing speaker
recognition in the presence of realistic, time-varying noise,
which is unknown during training. Speaker identification ex-
periments were carried out using the SPIDRE database. The
performance of the proposed new system for noise compen-
sation is compared to that of an oracle model; the speaker
identification accuracy for clean speech by the new system
trained with limited training data is compared to that of a
GMM trained with several minutes of speech. Both compar-
isons have demonstrated the effectiveness of the new model.
Finally, experiments were carried out to test the new model
for speaker identification given limited training data and with
differing levels and types of realistic background noise. The
results have demonstrated the robustness of the new system.

1. INTRODUCTION

Speaker identification becomes a difficult problem when the
data used for identification is corrupted by background noise.
This problem may be further compounded by a shortage of
training data from each speaker. In this paper we consider
the problem of speaker identification in a noise corrupted en-
vironment with limited training data i.e. there is insufficient
data to build a statistical model e.g. a GMM for each speaker.

With limited training, a GMM speaker model may be ob-
tained by adapting a universal background model (UBM) [1].
However, this approach is only possible if a UBM already
exists. In this paper, we consider the applications without
assuming the availability of an UBM for model adaptation,
and assuming limited training speech for each speaker (e.g.,
of the scale of a few seconds). Recent work in the area of
speaker recognition with limited training data has focused
on building similarity, rather than probability, based speaker
models. Fuzzy vector quantisation has been used to build
speaker models that can be trained using only several sec-
onds of data per speaker [2]. This approach can be extended
by assigning different weights to different codewords repre-
senting a speaker, where the weights are dependent on each
codeword’s discriminative ability [3]. When speaker models
are built with very limited training data, there may be signifi-

cant overlap of data between the models. Removing the over-
lapping features has been shown to improve recognition per-
formance by making each speaker model more discrimina-
tive [4]. Another non-statistical approach is to build speaker
models using a linear classifier based on a variant of linear
discriminant analysis (LDA). The work in [5] has attempted
to overcome the problem of limited training data with LDA.
In this paper, we present a new similarity-based approach to
the limited training data problem. Our new similarity takes a
form of a modified cosine similarity. Furthermore, we build
a recognition system based on this new similarity which is
capable of offering robustness to background noise with lim-
ited training data.

Speaker recognition becomes a much more difficult prob-
lem in the presence of environmental noise. This is because
noise changes a speaker’s acoustic features, making them dif-
ferent to those seen during training. Several approaches have
been tried to improve the noise robustness of speaker recog-
nition. With a priori knowledge of the noise characteristics
it is possible to filter noise from speech, using techniques
such as Kalman filtering [6] or spectral subtraction [7]. In-
stead of trying to remove background noise, it is possible
to attempt to extract noise-robust features, e.g. RASTA fea-
tures [8] from the speech signal. Missing feature theory may
be used to ignore parts of speech corrupted by background
noise [9] [10]. This may be extended using multicondition
training to address full-band noise corruption [11]. Most of
the above approaches have found use in statistical speaker
models (e.g. GMMs or HMMs). In this paper, we consider
noise compensation within our new similarity-based recog-
nition system. We build on previous work, by combining
missing feature theory with multicondition training. This al-
lows our system to recognise a speaker in the presence of
time-varying, unknown background noise with very limited
speaker training data.

2. SIMILARITY-BASED SPEAKER RECOGNITION

We consider a short training speech segment for speaker λ of
T frames Xλ = (xλ (1),xλ (2), ...,xλ (T )), where each xλ (t)
is a frame vector at time t. We assume adverse test conditions
in which the test speech may be corrupted by background
noise. To accommodate the corruption, we represent each
speech frame as F non-overlapped subbands, i.e., xλ (t) =
(xλ

1 (t),x
λ
2 (t), ...,x

λ
F(t)) where xλ

f (t) is the feature for subband
f in frame xλ (t). Improving robustness to corruption will be
discussed in the next section. In this section, we focus on
modelling the person given limited training data.

In recognition, let Y = (y(1),y(2), ...,y(Γ)) be a test
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speech segment of Γ frames from an unknown speaker. Let
C(Y,Xλ ) represent a similarity measure between the test se-
quence Y and a model sequence Xλ . We identify the un-
known person as follows, assuming text-independent train-
ing and test speech segments

λ̂ = argmax
λ

C(Y,Xλ )

= argmax
λ

Γ

∑
t=1

max
τ

C(y(t),xλ (τ)) (1)

In (1), we assume that the overall similarity between the
model and test sequences can be expressed as the sum of the
similarities between their individual frames C(y(t),xλ (τ)),
where xλ (τ) is the model frame at time τ from person λ

that matches test frame y(t). In order to perform text-
independent speaker recognition, we select, for each test
frame y(t), the best matching model frame xλ (τ) for com-
parison.

3. SIMILARITY MEASURE

We use a modified cosine similarity as the similarity measure
C(y(t),xλ (τ)) between speech frames. The standard cosine
similarity is modified to be more robust to partial feature cor-
ruption. The cosine similarity C(a,b) between two vectors
a = (a1,a2, ...,aQ) and b = (b1,b2, ...,bQ), each composed
of Q local feature vectors, can be expressed as

C(a,b) =
Q

∑
q=1

aq ·bq

||aq||||bq||
||aq||||bq||
||a||||b||

=
Q

∑
q=1

C(aq,bq)wq (2)

where C(aq,bq) = aq · bq/||aq||||bq|| is the inner product
between vectors aq and bq normalized by their respective
norms. From (2) we can see that the overall cosine similarity
is the sum of all the local cosine similarities C(aq,bq) each
weighted by wq, which equals the norms of the appropriate
local vectors compared to the norms of the overall vectors.
As the weight wq is a function of the overall norms, it will
be affected by any local corruption in either a or b. In other
words, the weighting can spread local corruptions globally.
To avoid this problem, we assume a uniform weight wq for
all the local vectors, meaning they contribute equally to the
overall similarity. Thus, we use a uniformly-weighted co-
sine similarity as the measure C(y(t),xλ (τ)) between two
frames, defined in (1). This can be written as

C(y(t),xλ (τ))'
F

∑
f=1

C(y f (t),xλ
f (τ))) (3)

Note that the cosine similarity is bounded to between−1 and
1. This property will prove useful when we later express (3)
in exponential form, as the value of the exponential will re-
main bounded, thus avoiding overflow problems.

4. ROBUSTNESS TO PARTIAL CORRUPTION

The system as currently defined, assumes that the test data is
uncorrupted. We extend the system to be resistant to partially

corrupted background noise by modifying the computation
of the similarity measure C(y(t),xλ (τ)), i.e. (3), between a
noisy test frame y(t) and a clean model frame xλ (τ).

Assume that the given test frame y(t) contains noisy sub-
bands, such that y(t) can be divided into two subsets yf (t)
and its complement yf̄ (t). In this division, yf (t) is a fea-
ture set in the frame y(t) containing uncorrupted speech sub-
bands, addressed by the subband index set f ⊆ [1,2, ...,F ].
The complement yf̄ (t) contains the rest of the speech sub-
bands which are considered unreliable due to corruption. Ro-
bustness to corruption can be achieved by replacing the full
feature set with the reliable feature subset during the calcula-
tion of the similarities. Hence, the similarity between a noisy
frame y(t) and a clean model frame xλ (τ) can be written as

C(y(t),xλ (τ))'C(yf (t),xλ
f (τ))

' ∑
f∈f

C(y f (t),xλ
f (τ)) (4)

Equation (4) is based on missing-feature theory or the
“recognition by parts” principle [11][12]. The frame-by-
frame processing indicated in (4) makes the system robust
to time-varying noise.

In practical applications with unpredictable background
noise, the clean-feature index set f is unknown a priori. In
this paper, we develop an algorithm to obtain an estimate of
f subject to an optimality criterion. The algorithm includes
two steps. First, we express (4) in an equivalent exponential
form (in terms of recognition based on maximum similarity)

p(yf (t)|xλ
f (τ)) = HC(yf (t),xλ

f (τ))

= ∏
f∈f

HC(y f (t),xλ
f (τ)) (5)

where H > 1 is a positive base number. The function
p(yf (t)|xλ

f (τ)) shares the characteristics of an exponent-
type likelihood function for the test feature set yf (t) asso-
ciated with speaker λ , given the model feature set xλ

f (τ),
with unknown optimal feature index set f . Second, based on
this likelihood function, we create a ‘posterior’ probability
of the model feature set, as a function of the optimal feature
indexes. This can be written as

P(xλ
f (τ)|yf (t)) =

p(yf (t)|xλ
f (τ))

∑λ ′∑zλ ′
f

p(yf (t)|zλ ′
f )+ ε

(6)

where we assume an equal prior probability for all the speak-
ers. The sum in the denominator is over all model feature sets
of all the speakers that may match the given test feature set,
and ε is a small positive number accounting for any test set
yf (t) without matching model set xf (τ) (hence the sum ap-
proaches zero). Based on (6), the recognition rule (1) can be
modified as follows to accommodate partial speech corrup-
tion.

λ̂ = argmax
λ

Γ

∑
t=1

max
τ

max
f

logP(xλ
f (τ)|yf (t)) (7)

This expression seeks to find the most-likely speaker by
jointly maximizing the similarity of the test sequence over
all persons and all possible local feature sets.
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5. ROBUSTNESS TO FULL-BAND SPEECH
CORRUPTION

So far we have defined a system that achieves robustness to
partial feature corruption by finding an optimal estimate of
the uncorrupted feature set. To accommodate full feature
set corruption, we extend the system by combining multi-
condition model training with optimal feature estimation. In
this new framework, multicondition model training is used
to provide coarse-grained compensation for the effect of un-
known corruption. Optimal feature estimation is then used
to refine this compensation by ignoring the remaining mis-
matched local features. These two steps combined offer ro-
bustness to full-set feature corruption.

Let Xλ = (xλ (1), ..,xλ (T )) be the given speech train-
ing sequence for speaker λ , and Xλ ,l = (xλ ,l(1), ..,xλ ,l(T )),
l = 0,1, ...,L represent L + 1 multicondition training se-
quences generated from Xλ , where each Xλ ,l simulates
a different corruption condition, with Xλ ,0 corresponding
to the clean condition. These multicondition training se-
quences are combined to model test speech sequence Y =
(y(1),y(2), ...,y(Γ)) with unknown full feature set corrup-
tion. Previously, to compensate for partial corruption, we
divided each test frame y(t) into two subsets, containing the
corrupted and uncorrupted local feature sets, with respect to
the clean training data. Now, to compensate for full feature
set corruption we form L + 1 subsets of y(t), each subset
containing the features matched by a corresponding training
condition from the L+1 multicondition training data.

Let p(yf (t)|xλ ,l
f (τ)) represent the likelihood of the test

frame y(t) associated with a model frame xλ ,l(τ) corrupted
at training condition l, with index set f identifying their
matching local features. We calculate p(yf (t)|xλ ,l

f (τ)) by
replacing in (5) the model frame xλ

f (τ) with the correspond-
ing corrupted model frame xλ ,l

f (τ). Based on this likelihood
function, we can create a ‘posterior’ probability of the model
feature set xλ ,l

f (τ) at condition l, as a function of the optimal
feature subset f . This can be written as

P(xλ ,l
f (τ)|yf (t)) =

p(yf (t)|xλ ,l
f (τ))

∑
L
l′=0 ∑λ ′∑z

λ ′,l′
f

p(yf (t)|zλ ′,l′
f )+ ε

(8)

The sum in the denominator is over all model feature sets of
all the speakers, taking into account all the corrupted train-
ing conditions (including the clean training condition). As in
the previous model (6), we obtain an optimal estimate of the
unknown feature index set f at each corruption condition, by
maximising the appropriate posterior probability (8). There-
fore, the new recognition rule, which combines both mul-
ticondition training and optimal feature estimation, can be
expressed as

λ̂ = argmax
λ

Γ

∑
t=1

max
τ

log
{ L

∑
l=0

max
f

P(xλ ,l
f (τ)|yf (t))

}
(9)

In (9) the optimal feature set is estimated at each training
condition, and contributions of all the training conditions
are summed towards the overall similarity of each frame.
The above defined system offers robustness to full-band cor-
ruption without assuming knowledge of noise, and can be
trained with only limited data from each speaker.

6. EXPERIMENTS

In this section we test the performance of the proposed
system for speaker identification with limited training data
and in the presence of background noise. To the best of
our knowledge, the use of similarity-based speaker recog-
nition with modified cosine-similarity, together with optimal
feature selection and multicondition training appears to be
unique in the literature. We perform a speaker identification
experiment using the SPIDRE [13] database. Performance in
this experiment was compared to the published results of an
of an existing GMM system tested with the same database.
Speaker identification performance with very limited training
data (as little as 3 s of speech) was compared to the published
results from an existing system [2] designed for this purpose,
using the YOHO speaker database [14].

The noise compensation performance of the system has
been tested against an oracle model using speech samples
corrupted with band-limited noise. The oracle model used
prior knowledge of the noise location to remove the cor-
rupted subbands, while the test system, without knowledge
of the noise location or characteristics, selected the optimal
subbands as discussed in the above algorithms. Performance
of the system in the presence of real-world background noise
was tested by adding realistic, full-band, time-varying, noise
to test samples from the SPIDRE database at a variety of sig-
nal to noise ratios (SNRs).

6.1 Speaker identification with limited training data
We evaluate the performance of our system by comparing
identification accuracy with limited training to that of pub-
lished results produced using two different databases.

An experiment was carried out using the SPIDRE
database. The SPIDRE database, a subset of the Switch-
board database, consists of four conversation halves from 45
speakers (27 male, 18 female). We use the A1 and A2 con-
versation halves for testing and training respectively. Our
system trained with limited data was compared against a
GMM based system trained with several minutes of data per
speaker. Each speech sample was silence-stripped and di-
vided into 20 ms frames overlapping by 10 ms. Each frame
was processed through a 22-channel log mel-scale filter and
the filter outputs decorrelated with a high pass filter, giving
21 decorrelated log mel filter bank coefficients. These coef-
ficients were uniformly placed into groups of three, giving
seven subband features. First-order derivative coefficients
were included, resulting in 14-subband feature streams for
each frame, each stream containing three elements. Speaker
models were constructed using segments of speech from each
speaker of varying durations from 2 s to 30 s. Speaker iden-
tification experiments were performed using three 10 s sam-
ples of testing data from each speaker.

Table 1 presents speaker identification accuracy as a
function of the training data duration and test data dura-
tion. The results from our system are compared with a previ-
ously published result based on a 32-mixture GMM for each
speaker trained using all the available training data (about
two minutes per speaker) [15]. From these results we can see
that identification accuracy with 30 s of training data is com-
parable with the GMM-based result. In fact when our new
system is trained with 30 s of speech and tested with 10 s of
speech its identification accuracy exceeds that of the GMM
system. In addition, we can see that testing with a larger
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Table 1: Speaker identification accuracy (%) for 5 s and 10
s testing data on the SPIDRE database with varying training
duration. This table compares our new method of similarity-
based speaker identification against a GMM trained with two
minutes of data.

Similarity-based speaker recognition GMM
Train/ 30 s 20 s 10 s 5 s 2 s ∼2min
Test
10 s 93.3 85.9 81.4 77.7 62.9 89.9
5 s 87.4 85.2 80 74.8 57.7 89.9

amount of data (moving from 5 s testing to 10 s testing) im-
proves identification accuracy. The results indicate that our
recognition system based on modified cosine similarity is a
viable method for speaker identification.

In order to test the speaker identification performance of
our proposed system with extremely limited training data, we
replicate the testing conditions in [2]. This published system
performed speaker identification using only a few seconds of
training and testing data per-speaker, by using fuzzy vector-
quantization speaker models. The first 30 speakers from the
YOHO database [14] were used in this experiment. We used
the same acoustic features as above for modelling the speech.
In common with [2] we used the same length of testing and
training data for each experiment (i.e. in the 3 s experiment,
we used 3 s of training data and 3 s testing data per speaker).
Tests were performed with 3, 6 and 12 s of testing and train-
ing data.

Table 2: Speaker identification accuracy (%) tested on the
YOHO speaker database, compared to published results from
[2] with varying training duration. (Note, the figures for 6s
and 12s quoted from [2] are estimated from Fig.2 in that pub-
lication, as the numerical values are not given).

Training duration (s) 3 6 12
Our system 84.4 91 100
(MFCC+∆+∆∆+LP-residual) 86.7 94 97
(MFCC+∆+∆∆) 80 83 94

The results from this experiment are presented in Table 2.
With 3 s of testing and training data our system has a speaker
identification accuracy of 84.4%, this improves over the ac-
curacy produced using fuzzy vector quantization (FVQ) with
MFCC+∆+∆∆ features of 80%. The accuracy of our system
is almost as good as the best result produced using FVQ with
MFCC+∆+∆∆+LP-residual features of 86.67%. From exam-
ining the results of [2] we can say that the feature-type used
has a large impact on identification accuracy. It may be the
case that our system would show improved performance if
used with different features. Table 2 shows further results for
6 s and 12 s of testing and training data. Again we can see
that the results produced by our system are comparable with
those obtained using FVQ together with MFCC+∆+∆∆+LP-
residual features.

6.2 Speaker identification with unknown noise corrup-
tion compared to an oracle model
For this experiment test samples from each speaker were cor-
rupted using band-limited noise at various different centre

frequencies and bandwidths. The oracle model used prior
knowledge of the corruption to remove the affected subbands
before performing recognition, hence performing as an ide-
alised, noise-robust system might be expected to. Our system
did not have knowledge of the characteristics of the noise
corruption and performed recognition by optimally select-
ing the subbands. In addition, a baseline system which per-
formed recognition using all the subbands was also tested;
this is referred to as the ‘do-nothing’ system.

Noise corrupted test samples were generated by adding
0 dB SNR band-limited noise to clean speech test samples
from the SPIDRE database. In this experiment the system
was trained using 30 s of clean speech and tested using five
10 s samples. In each test sample, different band-limited
noises were created to corrupt different numbers of adjacent
subbands. The results of this experiment are show in Table 3,
as a function of the number of affected subbands.

Table 3: Speaker identification accuracy (%) with variable
numbers of subbands corrupted, comparing our system to the
oracle model and ‘do nothing’ baseline. The Centre column
gives the centre frequency and the B/width column gives the
bandwidth of the corrupting noise.

Corruption Properties Accuracy (%)
Centre B/width Noisy Our Do
(Hz) (Hz) Bands System Oracle Nothing
656 175 1 68 65.3 58.7
1031 225 2 64 60 51.6
1265 325 3 46.2 45.3 28.9
2156 400 3 47.6 48 28.9

From the results in Table 3 we see that for the most part
our proposed system performed better than the oracle model
and always significantly better than the ‘do-nothing’ model.
This indicates that the system is capable of removing the
contribution of noise corrupted speech subbands from each
speaker’s score. The fact that our system could outperform
the oracle model in many cases, may be due to the fact the
oracle model removes all bands believed to be corrupted by
noise. It may be the case that some features e.g. the delta
features of some corrupted bands, are only partially corrupt
and thus are still usable for recognition. This can occur be-
cause the added noise corruption does not have a sharp cut-
off frequency. Our system may be taking advantage of this
information, ignored by the oracle model, to produce more
accurate identification scores.

6.3 Speaker identification with more realistic noise cor-
ruption
A speaker identification experiment was performed with
noise corrupted test samples, created by adding realistic non-
stationary, full-band noise at 10 dB and 15 dB SNR to each
test sample from the SPIDRE database. The background
noise types used were pop-song, restaurant, and street noise.
Noisy speaker models were created using multicondition
training, by adding low-pass filtered white noise, with a 3-
dB cutoff frequency of 2 kHz, at SNRs from 10 dB to 20
dB in 5 dB steps to each clean training segment. Tests were
carried out using three 10 s testing samples for each person.
In order to assess the contribution of multicondition train-
ing and optimal feature selection to the overall score several
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Table 4: Speaker identification accuracy (%) tested on the SPIDRE speaker database with various realistic noise types added
at variable SNRs. Tests were performed with both 5 s and 10 s of training data per speaker. These results were produced with
three 10 s samples testing data per speaker.

Noise Condition

Clean Restaurant Street Pop-song

System Training (s) 10dB 15dB 10dB 15dB 10dB 15dB

Our System 5 79.3 54.1 67.4 59.3 73.3 66.7 74.1
10 81.5 63.7 73.3 72.6 76.3 77 78.5

Optimal Feature Only 5 82.2 39.3 55.6 41.5 55.6 59.3 71.1
10 82.2 45.1 62.2 42.9 62.2 68.8 76.3

Multicondition Only 5 72.6 41.5 51.8 55.5 68.1 60 67.4
10 81.5 51.9 66.7 65.9 74.8 69.6 79.3

Do Nothing 5 80 31.9 47.7 39.3 51.9 56.3 68.8
10 83.7 42.2 57.7 42.2 61.5 65.9 76.2

versions of the system were tested. In addition to our main
system which combines optimal feature selection with mul-
ticondition training, we performed tests with optimal feature
selection only, multicondition training only, and neither tech-
nique, the last corresponding to a ‘do-nothing’ system.

The results of these experiments are presented in Table 4.
It is apparent from these results that our new system im-
proved over the do-nothing system in all the noisy test condi-
tions, and experienced a slight performance loss in the clean
condition. The table also showed the independent contribu-
tions of the multicondition training and optimal feature selec-
tion in the new system. In general, with only one exception
where multicondition training outperformed our new system,
each technique offered an improvement over the do-nothing
model, and the combination of these techniques, in our new
system, resulted in greater improvement.

7. CONCLUSIONS

In this paper we have proposed a novel method of similarity-
based speaker identification that can be used with very lim-
ited training data and in the presence of unknown background
noise. We used a modified cosine similarity measure to com-
pare speech features, and used multicondition training with
optimal band selection to accommodate unknown noise. For
clean data speaker recognition, experiments on two different
databases showed that the new system achieved comparable
performance with baselines. For speaker recognition using
noisy test data and given very limited training data, which
is a relatively new research area, our new system has shown
significantly improved robustness over the baseline systems.
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