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ABSTRACT
In magnetic resonance imaging (MRI), the balanced steady-
state free precession (bSSFP) pulse sequence has shown to
be of great interest, due to its relatively high signal-to-noise
ratio in a short scan time. However, images acquired with
this pulse sequence suffer from banding artifacts due to off-
resonance effects. These artifacts typically appear as black
bands covering parts of the image and they severely degrade
the image quality. In this paper, we present a fast two-step
algorithm for estimating the unknowns in the signal model
and removing the banding artifacts. The first step consists
of rewriting the model in such a way that it becomes linear
in the unknowns (this step is named Linearization for Off-
Resonance Estimation, or LORE). In the second step, we use
a Gauss-Newton iterative optimization with the parameters
obtained by LORE as initial guesses. We name the full al-
gorithm LORE-GN. Using both simulated and in vivo data,
we show the performance gain associated with using LORE-
GN as compared to general methods commonly employed in
similar cases.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful imag-
ing technique primarily used in medical settings as a non-
invasive tool for the examination of internal structures. Since
the introduction of the technique in the 1970’s, a large num-
ber of acquisition protocols have been proposed. One of the
greatest challenges of MRI is to acquire an image with a high
signal-to-noise ratio (SNR) in a short scan time, and for this,
the balanced steady-state free precession (bSSFP) sequence
has proven to be of great interest. A detailed explanation of
bSSFP is beyond the scope of this paper, and the reader is
referred to, e.g., [1, 2]. The main drawback of bSSFP is due
to off-resonance effects, typically manifesting as banding ar-
tifacts [3]. These are a major concern, especially when using
high field strengths. Off-resonance effects can lead to signal
losses in parts of the image and techniques for improving the
image quality are necessary.

Acquiring images with different phase increments, also
called phase cycling, and combining them allows for a re-
moval of the off-resonances. Several techniques have been
proposed, for example sum-of-squares (SoS), where the
square root of the sum of the squared magnitude of the im-
ages is used; or maximum-intensity (MI), where the final im-
age is constructed by assigning to each pixel the largest mag-
nitude of the corresponding pixel in all images. See [3] and
the references therein for a more detailed explanation of the

methods. These simple methods have proven useful for mit-
igating banding artifacts but can sometime give poor results;
additionally they do not give estimates of the model parame-
ters, which can be of great interest in quantitative MRI. Re-
cently, attempts to remove the banding artifacts with the use
of a signal model have been made. In [4], the authors used
the special case occurring when setting the echo time, TE, to
zero and acquiring data with a specific choice of phase in-
crements. Then, the off-resonance effects can be removed
using an analytical solution. However, this approach appears
to be sensitive to noise and still does not provide estimates
of all unknown parameters in the model equation. Further-
more, the method cannot be generalized to more than four
phase-cycled images. In [5], the authors proposed to iden-
tify some of the unknown model parameters while fixing the
others and using a standard Levenberg-Marquardt (LM) non-
linear minimization algorithm with manual initialization for
the parameter estimation. This method 1) uses magnitude
data, which makes the estimation less tractable from a math-
ematical viewpoint; 2) changes the noise properties from a
Gaussian distribution to a Rician distribution, making the
nonlinear least squares (NLS) criterion suboptimal (i.e., bi-
ased); and 3) causes a phase ambiguity, making it difficult
to determine the off-resonance frequency. Additionally, this
approach requires prior knowledge regarding the unknown
parameters, and since these can vary significantly over an
image, the estimated parameters are not always reliable.

In this paper, we instead propose an algorithm that has no
limitations in the choice of the echo time, TE, nor the repeti-
tion time, TR, and which does not demand prior assumptions
on any of the variables. Moreover, it does not need a manual
initialization but rather uses a pixel-wise adaptive automatic
initialization. Using complex data, all unknown parameters
in the model equation are identified unambiguously, based
on a model derived from [1].

2. SIGNAL MODEL
In bSSFP imaging, the complex signal, S, at an arbitrary pixel
of the n

th image, can be modeled as [1, 2]

Sn = KMe
− TE

T2 e
i(Ω+∆Ωn)TE

1−ae
−i(Ω+∆Ωn)TR

1−bcos [(Ω+∆Ωn)TR]
+ vn,

(1)
where Ω= 2π fOR with fOR being the unknown off-resonance
frequency, ∆Ωn is the user-controlled phase increment, M is
the magnetization, K ∈ C is the coil sensitivity, and vn de-
notes the noise, which is assumed to be independent and
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complex Gaussian distributed. In this article, data was
acquired by changing the centre frequency, which mimics
phase cycling but adds a ∆Ωn in the first exponential term
of (1). Furthermore,

M = iM0
(1−E1)sinα

1−E1 cosα − (E1 − cosα)E2
2
, (2)

a = E2, (3)

b = E2
1−E1 cosα −E1 + cosα

1−E1 cosα − (E1 − cosα)E2
2
, (4)

where E1 = e
−TR/T1 , E2 = e

−TR/T2 , M0 is the unknown equi-
librium magnetization, and α is the tip angle (which will
be considered known). T1 is the spin-lattice relaxation time
and T2 the spin-spin relaxation time. It can be shown that
a ∈ [0,1] and b ∈ [0,1] due to the physical constraint that
all times are positive. To simplify the notation we intro-
duce the following variables: S0 = KMe

−TE/T2 , θ = ΩTR,
∆θn = ∆ΩnTR and θn = θ +∆θn. The general model in (1)
can then be rewritten as

Sn = S0e
iθnTE/TR

1−ae
−iθn

1−bcos(θn)
+ vn = gn(u)+ vn, (5)

where gn(u) is the noise-free data and u the vector of model
parameters. Acquiring images with different phase incre-
ments ∆θn allows us to estimate the unknown model param-
eters S0 ∈ C, a,b,θ ∈ R of (5). Even though no assumptions
are made on the increments, using four images (N = 4) with
phase shifts ∆θ = [0,π/2,π,3π/2]T is common practice and
will therefore be considered here as well. Time limits the
number of images that can be acquired in practice.

3. THE LORE-GN ALGORITHM
In order to estimate the unknown parameters and remove
the off-resonance ( fOR), we propose a two-step algorithm.
The first step is named Linearization for Off-Resonance
Estimation (LORE). The second step is a Gauss-Newton
search (GN), hence we name the full algorithm LORE-GN.
We first rewrite the model in (5) so that it becomes lin-
ear in the unknown parameters, by making use of an over-
parameterization. This enables the application of ordinary
least squares (LS) for obtaining an initial estimate. In the fol-
lowing step, the final estimates are obtained using a Gauss-
Newton iterative search, using the LORE estimate as an ini-
tial guess. This step is used for fine tuning and removing bias
due to errors in variables.

3.1 Step 1: Initial Estimation Using LORE
For the LORE algorithm, we introduce the following com-
plex parameters:

S̃n = Sne
−i∆θnTE/TR, (6)

α = S0e
iθTE/TR, (7)

β = S0ae
iθ(TE/TR−1), (8)

γ = be
iθ , (9)

where S̃n is known. This enables us to rewrite the noise-free
part of (5) as

S̃n =
α −βe

−i∆θn

1−Re(γei∆θn)
, (10)

where Re(z) denotes the real part of z; similarly Im(z) de-
notes the imaginary part. Note that if true phase cycling
were used instead of changing the centre frequency, we have
S̃n = Sn. To simplify the notation we let xr = Re(x) and
xi = Im(x). We can now express (10) in linear form:

S̃n [1− γr cos∆θn − γi sin∆θn)] = α −βe
−i∆θn . (11)

By moving the unknown variables to the right hand side and
gathering the real and imaginary parts of S̃n separately in a
vector as yn =

�
S̃r,n S̃i,n

�T , we can write (11) in matrix form
as

yn =





1 0
0 1

−cos(∆θn) sin(∆θn)
−sin(∆θn) −cos(∆θn)

S̃r,n cos(∆θn) S̃i,n cos(∆θn)
−S̃r,n sin(∆θn) −S̃i,n sin(∆θn)





T

� �� �
An





αr

αi

βr

βi

γr

γi





� �� �
x

. (12)

Note the slight over-parameterization with six parameters as
opposed to five real-valued parameters in (5). By stacking
the measurements in a vector y = [y1 · · · yN ]

T and a matrix
A =

�
AT

1 · · · AT

N

�T , where N is the number of images, we
obtain y = Ax, from which the LS estimate of x is readily
found as (see, e.g., [6]):

x̂= (ATA)−1ATy. (13)

Estimates of the sought parameters can then be obtained as

θ̂ =−∠
�

β̂/α̂
�
, (14)

â = |β̂/α̂|, (15)

b̂ = |γ̂| , (16)

Ŝ0 = α̂e
−iθ̂TE/TR. (17)

The information in γ regarding the off-resonance is not used
since γ is usually small in magnitude, leading to unreliable
estimates. We note that since the measurement noise will
also enter the regressor matrix A, these estimates will in
general be biased. However, the estimates can be used as
a reasonably accurate initial guess for the next step.

3.2 Step 2: Fine Tuning Using Gauss-Newton
Since the estimates obtained from LORE are biased, we pro-
pose to use a Gauss-Newton (GN) iterative method to min-
imize the NLS and further improve the results. GN is cho-
sen since it is simple, computationally efficient and has fast
convergence [7]. The minimization method is, however, un-
constrained, so the physical constraints on a and b cannot
be taken into account. What distinguishes this method from
other general methods is that given a good initial estimate,
here provided by LORE, GN converges to the correct opti-
mum with high probability. If the stability of GN is compro-
mised as a result of poor initial estimates, constrained opti-
mization algorithms are preferable; however, they are gener-
ally more time consuming. Due to the known periodic be-
havior of the model, some of the non-physical local minima
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can be removed by post-processing. The following relation
holds:

S0e
iθnTE/TR

1−ae
−iθn

1−bcos(θn)
=

S0e
∓iπTE/TR

e
i(θn±π)TE/TR

1+ae
−i(θn±π)

1+bcos(θn ±π)
, (18)

therefore there will be a global optimum at negative a and
b corresponding to a shifted θ and rotated S0. This fact is
used in both the custom GN algorithm and the unconstrained
LM algorithm. However, if the parameter b is small, there is
always some risk, even at high SNR, that the global minimum
occurs at a and b with different signs, and this cannot be
resolved by (18).

The NLS criterion is:

L(u) =
N

∑
n=1

|Sn −gn(u)|2. (19)

Letting r denote the residual vectorized over the measure-
ments, according to

r=

�
Re(S)
Im(S)

�
−
�
Re(g(u))
Im(g(u))

�
, (20)

the update formula for GN is

uk+1 =uk + c(JT

k
Jk)

−1JT

k
rk, (21)

where Jk is the Jacobian matrix of the vectorized model g(u)
at the current point in the parameter space uk. The step
length c is chosen by back-tracking so that the Armijo con-

dition is fulfilled, that is, c = 2−m, where m is the smallest
nonnegative integer that fulfills

L(uk+1)≤ L(uk)−µcrT

k
Jk(J

T

k
Jk)

−1JT

k
rk, (22)

where µ ∈ [0, 1] is a constant used to enforce a certain de-
crease in the criterion [8]. A stopping condition based on the
norm of the gradient �JT

k
rk� and a fixed tolerance were used.

4. NUMERICAL RESULTS
4.1 Simulations
Monte Carlo simulations were performed in MATLAB, giv-
ing the root mean square error (rMSE) of the parameter es-
timates. The performance of the proposed algorithm was
compared to 1) an unconstrained Levenberg-Marquardt al-
gorithm (LM) as suggested by Santini et al. [5] in a similar
case, and 2) a constrained version of LM (cLM) imposing
a ∈ [0, 1] and b ∈ [0, 1], suggested by us as an improvement
of the method in [5]. The estimates obtained with LORE
were also included to illustrate the accuracy of the initial es-
timates, along with the optimum performance given by the
Cramér-Rao lower bound (CRB), see appendix A. The stan-
dard MATLAB LM implementation in the function “lsqnon-
lin” was utilized. The rMSE is defined as:

rMSE(ẑ) =

�
1
M

M

∑
m=1

|ẑm − z|2 (23)
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Figure 1: rMSE of the estimate Ŝ0 vs. SNR for the different
methods and compared to the CRB.
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Figure 2: rMSE of the estimate θ̂ vs. SNR for the different
methods and compared to the CRB.

where ẑm is the parameter estimate of simulation m and M is
the number of simulations. The parameters used in the sim-
ulations were TR = 31.2 ms, TE = 15.6 ms, T1 = 500 ms,
T2 = 50 ms, and α = 90◦, which corresponds to the model
parameters a = 0.536 and b = 0.0444. The remaining pa-
rameters were chosen as S0 = e

iπ/4 and θ = 90◦. The start
values for LM and cLM were set by assuming approximate
knowledge of the T1 and T2 parameters, since this would be
true in a non-simulated case. Unfortunately, there is no avail-
able a priori knowledge on θ or S0, so θ is set to zero and
S0 is chosen as the complex value of the maximum inten-
sity sample (pixel). The initial values in the simulations were
ã = 0.660, b̃ = 0.0461, S̃0 = 1.009−1.064i and θ̃ = 0◦. This
simulated case is in many ways simpler than the in vivo case.
For example, here the guess has a constant offset from the
true parameter values for all Monte Carlo simulations. To
give a reliable average, 1000 simulations were performed at
each SNR. The data was generated by adding complex noise
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a) b)

c) d)

Figure 3: Magnitude images of the data showing banding ar-
tifacts due to off-resonance effects (indicated by the arrows).
a), b), c) and d) correspond to images acquired at the phase
shifts ∆θ = 0, π/2, π and 3π/2, respectively.

of appropriate variance σ2 according to:

SNR =
∑N

n=1 |gn(u)|2

Nσ2 , (24)

to the simulated data obtained from gn(u) in (5). The results
for Ŝ0 and θ̂ are shown in Figs. 1 and 2, respectively. As
can be seen, for SNR above 13 dB the proposed method is
statistically efficient since it achieves the CRB. Moreover,
for this specific example, since the performance of the LM
algorithms are dependent on the initial guess, LORE-GN has
better performance than cLM at lower SNR. As expected,
using only LORE gives a higher rMSE.

The main reason why LM performs poorly, even at high
SNR, is that it sometime converges to a optimum with nega-
tive â, which leads to a shifted θ̂ and rotated Ŝ0 as mentioned
earlier. However, due to the noise and the small value of
the true b, the optimum is achieved at a positive b̂, which
means that the post-processing from Eq. (18) cannot correct
for this. The problem is not as severe for GN, which has a
good enough start value and always converges to the correct
optimum with respect to θ , for high SNR. It should be noted
that cLM does not find an optimum for any b̂ ≥ 0 when the
unconstrained LM finds a b̂ < 0. The cLM solution ends up
on the border of the constraint set. This will effectively de-
crease the rMSE of the estimate in a rather synthetic manner,
since the actual fit of the model might be poor.

A comparison of algorithm complexity in terms of com-
putation time was also performed. The proposed algorithm is
8 times faster than cLM at 15 dB, which has similar perfor-
mance in this example. This comparison inevitably depends
on the implementation but still illustrates the reduction in
computation time possible by using our application-specific
method. Note that because of the pixel-wise computations
the algorithm can easily be parallelized on multi-core com-
puters to further decrease computation time if needed.

Figure 4: Estimate of Ŝ0, obtained from the proposed LORE-
GN method, showing no visible banding artifacts.

4.2 In Vivo Data

The dataset used in this example corresponds to the MRI scan
of a human brain using the acquisition parameters TR = 31.2
ms, TE = 15.6 ms and α = 90◦. Figure 3 shows the mag-
nitude of the data used (N = 4), including banding artifacts
(some of them indicated by the arrows). The SNR of the
data was estimated by measuring the average signal power
over the brain and comparing with the variance in the back-
ground, which gave an SNR of approximately 13 dB. Finding
the region with no tissue is done by thresholding the mag-
nitude image. This also provides a mask which is used to
exclude pixels that cannot be modeled. The LORE-GN al-
gorithm was executed on all unmasked pixels. The magni-
tude of Ŝ0 is shown in Fig. 4. The magnetization including
coil sensitivity can be explicitly obtained from Ŝ0 by using
the estimates â and b̂, however, the visualization is almost
identical in this case. The important part is that Ŝ0 is inde-
pendent of θ . As a comparison, the results of the SoS and
MI methods are shown in Figs. 5(a) and 5(b), respectively.
As can be seen, the proposed algorithm gives a uniform in-
tensity of the magnetization, with no banding artifacts. In
the competing images based on SoS and MI, weak banding
can still be seen (indicated by the arrows). The estimated
off-resonance map ( f̂OR) is shown in Fig. 6(a) (note that the
reference point is arbitrary). The phase was unwrapped using
a quality guided path following phase unwrapping algorithm
[9]. Phase unwrapping is essential to determine the linear
shifts of the resonance frequency since the phase θ can wrap
multiple times over an image. Also note that the unwrapped
θ values corresponding to Fig. 6(a) are spread in the interval
[0, 2π], which underlines the importance of a good adaptive
initial estimate. Any fixed start guess of θ will be off by π
for some pixels. By computing the phase of S0, information
about the coil sensitivity K can be obtained since M is purely
imaginary (see (2)), this is shown in Fig. 6(b). The runtime
for the full algorithm was about 20 s for 6458 pixels on a
single 3 GHz core.
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(a)

(b)

Figure 5: Results of the (a) SoS and (b) MI methods applied
to the images in Fig. 3, still showing some weak banding
(indicated by the arrows).

5. CONCLUDING DISCUSSION

A good initial guess is of great importance since there can
be multiple local optima in the NLS criterion. Using a fixed
(non pixel adaptive) initial value for an iterative NLS min-
imization can make the algorithm converge to suboptimal
solutions, even at high SNR, since the true parameters can
vary greatly over an image. This problem is solved by LORE
given high enough SNR. The suggested two-step method
LORE-GN is fast and performs well as compared to com-
peting methods. Applying the algorithm to in vivo data gives
a uniform intensity where the banding artifacts are success-
fully removed, while also providing estimates of the remain-
ing model parameters, such as the off-resonance frequency.
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Figure 6: a) Estimated off-resonance map ( f̂OR), and b) phase
of Ŝ0 (∠Ŝ0) giving information about the coil sensitivity K.

A. THE CRAMÉR-RAO LOWER BOUND (CRB)
The Fisher information matrix under the assumption of circu-
larly Gaussian-distributed, zero-mean, white complex noise
of variance σ2 is given by the Slepian-Bangs formula [6]:

I(u) =
2

σ2

N

∑
n=1

Re

��
∂gn(u)

∂u

��
∂gn(u)

∂u

�∗�
, (25)

where ∗ denotes the conjugate transpose. The CRB is given
by the inverse of the Fisher information matrix I−1(u), and
the diagonal elements give lower bounds on the variance of
the corresponding parameter estimates.
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