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ABSTRACT

This paper considers the problem of radar waveform design in the
presence of colored Gaussian disturbance under a Peak to Aver-
age power Ratio (PAR) and an energy constraint. Firstly, we focus
on the selection of the radar signal optimizing the Signal to Noise
Power Ratio (SNR) for a given target Doppler frequency (Algo-
rithm 1). Then, we devise its phase quantized version (Algorithm
2), which forces the waveform phase to lie within a finite alphabet.
Both the problems are formulated in terms of NP-hard non-convex
quadratic optimization programs; in order to solve them, we resort
to Semidefinite Programming (SDP) relaxation and randomization
techniques, providing provable-quality sub-optimal solutions with a
polynomial time computational complexity. Finally, we analyze the
performance in terms of detection capability and robustness with
respect to Doppler shifts.

1. INTRODUCTION

In the last decade, the growth in the digital technologies and compu-
tational speed gave a great contribution toward the radar waveform
design [1, 2, 3, 4, 5], as well as the project of more involving code
techniques [6, 7, 8].

In this paper, we move a further step toward this direction, and
focus on design waveforms with a bounded transmitted Peak to Av-
erage power Ratio (PAR). This constraint, more general than uni-
modularity [9], is very reasonable for radar applications. Further-
more, it permits to constrain the excursions of the squared code
elements around their mean value. This also allows to keep un-
der control the dynamic range of the transmitted waveform which
is an important practical issue (for the current technology) because
high PAR values necessitate a linear amplifier having a large dy-
namic range and this may be difficult to accommodate. Finally, the
PAR control is also a crucial task in OFDM (Orthogonal Frequency-
Division Multiplexing) systems and the interested reader might re-
fer to [10] and references therein where this issue is addressed.

First of all, we focus on the selection of the radar waveform
optimizing the SNR in correspondence of a given expected target
Doppler frequency, under a PAR and an energy constraint (Algo-
rithm 1). Since Algorithm 1 does not impose any condition on the
waveform phase (i.e. the waveform phase can range within the con-
tinuous interval [0,2π)), we also devise its phase quantized version
(Algorithm 2) which forces the waveform phase to belong to a finite
alphabet.

Both the problems are formulated in terms of non-convex
quadratic optimization problems with a finite number of quadratic

constraints. We prove1 that these problems are NP-hard and, hence,
introduce design techniques, relying on Semidefinite Programming
(SDP) relaxation and randomization, which approximate the opti-
mal solution with a polynomial time computational complexity.

At the analysis stage, we assess the performance of the new
techniques in terms of detection probability achievable by the
Neyman-Pearson receiver and robust behavior of the detection per-
formance with respect to the target Doppler frequency.

1.1 Notation

We adopt the notation of using boldface for vectors aaa and matrices
AAA. The i-th element of aaa and the (i, j)-th entry of AAA are respectively
denoted by ai and AAAi j . The transpose operator and the conjugate

transpose operator are denoted by the symbols (·)T and (·)H re-
spectively. tr(·) is the trace of the square matrix argument, III and
0 denote respectively the identity matrix and the matrix with zero
entries, while eeek is the vector with all zeros except 1 in the k-th
position (their size is determined from the context). The letter j

represents the imaginary unit (i.e. j =
√
−1), while the letter i of-

ten serves as index in this paper. R and C are respectively the set of
real and complex numbers. For any complex number x, we useℜ(x)
and ℑ(x) to denote respectively the real and the imaginary parts of
x; |x| and arg(x) represent the modulus and the argument of x, and
x∗ stands for the conjugate of x. The Euclidean norm of the vec-
tor xxx is denoted by ‖xxx‖. The symbols ⊙ represents the Hadamard

element-wise product [11], (AAA)(k) denotes the Hadamard product
of k copies of AAA; E[·] stands for the expected value operator. The
curled inequality symbol � (and its strict form ≻) is used to denote
generalized inequality: AAA�BBBmeans that AAA−BBB is an Hermitian pos-
itive semidefinite matrix (AAA≻ BBB for positive definiteness). diag(·)
denotes the vector formed by the diagonal elements of matrix argu-
ment, whereas Diag(·) indicates the diagonal matrix formed by the
components of vector argument. Finally, v(·) denotes the optimal
value of problem (·).

2. SYSTEMMODEL AND FORMULATION OF THE
PROBLEMS

Let us focus on a monostatic radar transmitting a linearly en-
coded pulse train and consider the signal model of [6], where
the N-dimensional column vector vvv= [v(t0),v(t1), . . . ,v(tN−1)]T of
the observations is expressed as vvv = αccc⊙ ppp+www , with α a pa-

1The proofs are herein omitted for lack of space.
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rameter accounting for channel propagation and target backscat-
tering effects, ccc the N-dimensional column vector containing

the code elements, ppp = [1,e j2πνd , . . . ,e j2π(N−1)νd ]T the temporal
steering vector, νd the normalized Doppler frequency, and www =
[w(t0),w(t1), . . . ,w(tN−1)]T the zero-mean complex circular Gaus-
sian vector of the disturbance samples, with known positive definite
covariance matrix E[wwwwwwH ] =MMM .

We are looking for codes optimizing the SNR under a constraint
on the transmitted energy, namely ‖ccc‖2 = N, and forcing an upper

bound to the PAR, namely PAR ,
[

maxi=1,...,N |ci|2
]

/
[

1
N ‖ccc‖2

]

=

maxi=1,...,N |ci|2, where ccc = [c1, . . . ,cN ]
T ∈ CN . Evidently, a

bound on the PAR is tantamount to imposing a more general con-
straint than the phase-only condition, which can be obtained letting
PAR=1.

Remind that [6] SNR= |α|2cccHRRRccc , where RRR=MMM−1⊙ (ppppppH )∗.
Note that RRR is positive definite since xxxHRRRxxx = (xxx⊙ ppp)HMMM−1(xxx⊙
ppp)> 0 for any xxx 6= 000 (which is equivalent to xxx⊙ ppp 6= 000). Hence, for
a given normalized target Doppler νd , we can formulate the Wave-
form Design Problem (WDP) in terms of the following complex
quadratic optimization program

maxccc cccHRRRccc

s.t. PAR=maxi=1,...,N |ci|2 ≤ γ
‖ccc‖2 = N

(1)

(PAR constrained WDP) where 1 ≤ γ ≤ N rules the maximum al-
lowable PAR. The resulting waveform optimizes the radar perfor-
mance in correspondence of the specific design Doppler.

Since in problem (1) the waveform phase can range within the
continuous interval [0,2π), it is of interest to consider also its phase
quantized version, forcing the waveform phase to belong to a finite
set. This observation leads to PAR constrained and phase quantized
WDP

maxccc cccHRRRccc

s.t. PAR=maxi=1,...,N |ci|2 ≤ γ
argci ∈ {0, 1

M 2π, . . . , M−1
M 2π}, i= 1, . . . ,N

‖ccc‖2 = N

(2)

(where the number of quantization levels M is an integer such that
M≥ 2), with reference to case of known normalized target Doppler.

3. PAR CONSTRAINEDWDP

Problem (1) can be equivalently reformulated as

maxccc cccHRRRccc

s.t. |ci|2 ≤ γ , i= 1, . . . ,N
‖ccc‖2 = N.

(3)

In this section, we consider (3) with γ > 1 (the case γ = 1, which
proves to be NP-hard, has already been studied in [12, 13]), which
means that the norm constraint does not vanish. Clearly, problem

(3) is a non-convex QCQP with multiple constraints2. We claim
that problem (3) with γ greater than one is NP-hard by a reduction
from an even partition problem which is known to be NP-complete.

Proposition 3.1. The radar code design problem (3) is NP-hard
with parameters RRR� 000 and γ > 1.

Due to Proposition 3.1, the radar code design problem (3) is
unlikely to admit a polynomial time solution method (which means
(3) is computational intractable in general). Thus, we will make
efforts toward the design of an approximation algorithm for (3).

2For a QCQP, non-convexity does not imply that it is hard to solve; it
turns out that, if the number of constraints is not too high, the QCQP can
be solved efficiently; in other words, the SDP relaxation of it is tight. See
[14, 15].

3.1 Approximation algorithm via semidefinite programming
relaxation and randomization

To get an approximate solution (alternatively termed as a subopti-
mal solution) of (3), we consider its SDP relaxation:

maxCCC tr(RRRCCC)
s.t. Cii ≤ γ , i= 1, . . . ,N

tr(CCC) = N
CCC � 000,

(4)

which proves to be solvable3 by the strong duality theorem
[16, Theorem 1.7.1]. Evidently, problem (4) with the additional
rank constraint Rank(CCC) = 1 is equivalent to (3).

However, often, it is not the case that Rank CCC⋆ is one, which
means that the SDP relaxation (4) is not tight for (3). Therefore,
we resort to a Gaussian randomization procedure [17, 18] to pro-
duce, in polynomial time, an approximate solution to the NP-hard
optimization problem (3), based on the optimal solution CCC⋆ of the
SDP relaxation problem (4). Such a procedure requires the defini-
tion of a suitable ad hoc covariance matrix of the Gaussian distri-
bution, so that the entire randomization procedure could lead to a
feasible solution of the original problem with probability one, and
could provide mathematical tractability in assessing the quality of
the resulting solution. For this purpose, let us denote by

ddd =
√

diag(CCC⋆), (5)

(where
√

(·) denotes the element-wise square root) and by ddd−

(ddd−)i =
{

1/di, if di > 0
1, if di = 0

i= 1, . . . ,N. (6)

Additionally, let

DDD= Diag(ddd), DDD− = Diag(ddd−), (7)

and observe that, from (5)-(7),

(DDD−DDD)ii =
{

1, if di > 0
0, if di = 0

i= 1, . . . ,N.

Hence, the entries of the matrix

C̃CC
⋆
=CCC⋆+(III−DDD−DDD) (8)

comply with

(C̃CC
⋆
)ik =

{

(CCC⋆)ik, if i 6= k
(CCC⋆)ii, if (CCC⋆)ii > 0
1, if (CCC⋆)ii = 0

.

By the construction of C̃CC
⋆
, we see that the diagonal elements C̃CC

⋆

are positive and that C̃⋆
ii = 1 provided that C⋆

ii vanishes. Exploiting
the above definitions and observations, we have further important

properties about C̃CC
⋆
:

Proposition 3.2. Let CCC⋆ be a positive semidefinite matrix and ddd,

ddd−, DDD, DDD−, C̃CC
⋆
be defined as (5)-(7), (8), respectively. Then, the

matrix DDD−C̃CC
⋆
DDD− enjoys the following properties:

(i) DDD−C̃CC⋆
DDD− � 000;

(ii) the diagonal elements of DDD−C̃CC
⋆
DDD− are one.

According this proposition, DDD−C̃CC
⋆
DDD− can be a suitable choice

for the covariance matrix of a Gaussian distribution to be adopted
in our randomized approximation algorithm. Indeed, if we take

a random vector ξξξ ∼ NC(000,DDD
−C̃CC

⋆
DDD−), with probability one

(
√

C⋆
11

ξ1
|ξ1| , . . . ,

√

C⋆
NN

ξN
|ξN | ) is feasible for the PAR constrained
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Algorithm 1 Gaussian randomization procedure for radar code de-
sign problem (3)

Input: RRR, γ ;
Output: a randomized approximate solution ccc of (3);
1: solve the SDP (4) finding CCC⋆;
2: define ddd, ddd−, DDD, DDD− according to (5)-(7);
3: draw a random vector ξξξ ∈ CN from the complex normal distri-

bution NC(000,DDD
−(CCC⋆+(III−DDD−DDD))DDD−);

4: let ci =
√

C⋆
iie

j argξi , i= 1, . . . ,N.

WDP (1). Therefore, in order to produce an approximate solution
(i.e., a suboptimal solution, or a feasible solution) of (3), we propose
the following randomization procedure (in Algorithm 1).

We remark that in practice the randomization steps 3 and 4 can
be repeated many times, in order to obtain a solution with better
quality. As it can be directly seen, the computational cost of Algo-
rithm 1 is dominated by solving SDP (4) which has a complexity

of O(N3.5 log(1/ε)) [15], given a solution accuracy ε > 0. More-
over, it is possible to prove that the algorithm presents the following
approximation bound:

E[cccHRRRccc] = tr(RRR(DDDF(DDD−C̃CC
⋆
DDD−)DDD))≥ π

4
tr(RRRCCC⋆)≥ π

4
v((3)) (9)

where C̃CC
⋆
is defined in (8), ccc is the randomized solution output by

Algorithm 1, and the function F(·) is such that

E[zzzzzzH ] = F(ZZZ) =
π

4
ZZZ+

π

2

∞

∑
k=1

((2k)!)2

24k+1(k!)4(k+1)

(ZZZT ⊙ZZZ)(k)⊙ZZZ � π

4
ZZZ

with ZZZ � 000 and zzz a randomized vector generated setting zi = e j argξi ,
i= 1, . . . ,N, where ξξξ ∼ NC(000,ZZZ).

4. PAR CONSTRAINED AND PHASE QUANTIZEDWDP

In this section, we consider the synthesis of an approximation algo-
rithm for (2), equivalently reformulated as:

maxccc cccHRRRccc

s.t. |ci|2 ≤ γ
argci ∈ {0, 1

M 2π, . . . , M−1
M 2π}, i= 1, . . . ,N

‖ccc‖2 = N.

(10)

Clearly, when M goes to infinity, (10) becomes (3). We claim that
problem (10) is also NP-hard:

Proposition 4.1. The phase quantized code design problem (10) is
NP-hard with parameters RRR� 000 and γ > 1.

Due to the hardness of problem (10), similar to Algorithm 1, we
propose a randomized approximation algorithm based on the SDP
relaxation technique (as explained in Algorithm 2). Notice that the
SDP relaxation problem for (10) is (4) as well.

We remark that, using the related idea in [18], the approxima-
tion algorithm is applicable to the following quadratic program:

maxccc cccHRRRccc

s.t. argci ∈ {0, 1
M 2π, . . . , M−1

M 2π}, i= 1, . . . ,N
[|c1|2, . . . , |cN |2]T ∈ F

(12)

3By saying “solvable”, we mean the problem is feasible, bounded above
(for maximization problem), and the optimal value is attained [16, page 13].

Algorithm 2 Gaussian randomization procedure for radar code de-
sign problem (10)

Input: RRR, γ ,M;
Output: a randomized approximate solution ccc of (10);
1: solve the SDP (4) findingCCC⋆;
2: define ddd, ddd−, DDD, DDD− according to (5)-(7);
3: draw a random vector ξξξ ∈ CN from the complex normal distri-

bution NC(000,DDD
−(CCC⋆+(III−DDD−DDD))DDD−);

4: let ci =
√

C⋆
iiµ(ξi), i= 1, . . . ,N. where µ(x) is defined as

µ(x) =























1, if argx ∈ [0,2π 1
M )

e j2π 1
M , if argx ∈ [2π 1

M ,2π 2
M )

...

e j2π M−1
M , if argx ∈ [2π M−1

M ,2π)

. (11)

where F ⊆ RN
+ is a closed convex set. In this case, the convex

relaxation of (12) is

maxCCC tr(RRRCCC)
s.t. diag(CCC) ∈ F

CCC � 000
(13)

which can be solved efficiently due to the convexity of the problem.
As to the approximation bound for Algorithm 2, it is possible to
prove that

E[cccHRRRccc]≥ R(M)× tr (RRRCCC⋆)≥ R(M)×v((10)) (14)

where ccc is the randomized solution obtained through Algorithm 2,
and

R(M) =

{

2
π , ifM = 2
M2 sin2 π

M

4π , ifM ≥ 3
.

In words, Algorithm 2 is a randomized R(M)-approximation al-
gorithm for (10), where some examples of R(M) are R(4) = 0.6366,
R(8) = 0.7458, R(16) = 0.7754, R(32) = 0.7829, R(64) = 0.7848,
R(128) = 0.7852.

5. PERFORMANCE ANALYSIS

This section is devoted to the performance analysis of the proposed
waveform design techniques in correspondence of different values
for the design parameters (namely, the PAR constraint γ , the number
of phase quantization levels M, etc.). To this end, we assume a

disturbance covariance matrix MMM = ∑
Nc

i=1 βippp(νd,i)ppp(νd,i)
H + βnIII,

which counts for both clutter and thermal noise, where the number
of discrete clutter scatterers Nc = 10, their strength βi = β = 103,

νd,i = (i−1)/(2Nc), i= 1, . . . ,10, and βn = 10−2.
The analysis is conducted in terms of Pd of the GLRT re-

ceiver [6] (or equivalently the standard matched filter with pre-
whitening, followed by squared modulus operation and threshold
comparison) for a prescribed target normalized Doppler frequency
ν̄d (design parameter for Algorithms 1 and 2), namely Pd(α, ν̄d) =

Q
(

√

2|α|2cccHRRR(ν̄d)ccc,
√

−2lnPf a

)

, whereQ(·, ·) is the Marcum Q

function [19], assuming a false alarm probability Pf a = 10−6. Ad-
ditionally, due to the randomization procedures involved into Al-
gorithms 1-2, the aforementioned performance metrics have been
averaged over 500 independent trials.

In Figure 1, we plot Pd , achieved using the code devised ac-
cording to Algorithm 1, versus |α|2, for N = 10, some values of γ
(precisely, γ ∈ {1,1.3,1.6,1.9,2.2,2.5}), and ν̄d = 0.1. The curves
highlight that greater and greater PAR parameters lead to better and
better Pd values. Such behaviour was indeed expected, because in-
creasing γ (namely, imposing a less restrictive PAR constraint on
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Table 1: Average CPU time in seconds required to solve problems
(4).

γ 1 1.3 1.6 1.9 2.5
SDP (4) 0.083 0.104 0.097 0.085 0.086
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Figure 1: Pd versus |α|2 for Pf a = 10−6 , ν̄d = 0.1, N = 10 and
γ ∈ {1,1.3,1.6,1.9,2.2,2.5}. Algorithm 1 - PAR constrained code.

the devised code) is tantamount to increasing the size of the fea-
sible set of the problem. However, after a threshold value for γ ,
depending on the maximum eigenvalue of the covariance matrixMMM,
the PAR constraint becomes inactive and no additional performance
improvements can be observed. Indeed, an optimal solution to (1)
coincides with an optimal solution to

maxccc cccHRRRccc

s.t. ‖ccc‖2 = N,

so that the optimal waveform becomes proportional to the eigenvec-
tor of RRR corresponding to the maximum eigenvalue.

In Figure 2, we plot Pd of the code designed according to Algo-
rithm 2 versus |α|2 for N = 10, ν̄d = 0.1, some values of the PAR
parameter γ ∈ {1,1.3,1.6,1.9,2.2}, and M = 4 levels for the phase
quantization. As in Figure 1, increasing γ leads to better and better
detection levels.

In Figures 3, we focus on corresponding approximation bounds
of both the algorithms. We assume N = 10, ν̄d = 0.1, M = 4 and
compare the performance of Algorithms 1 and 2 with the Pd curves
obtained exploiting their approximation bounds defined by (9) and
(14) respectively (i.e. using (9) or (14) in the first argument of the
Marcum Q function in place of the respective quadratic form). Each
subplot refers to a specific value of the PAR parameter γ . The plots
highlight that Algorithm 1 performs better than Algorithm 2, which
quantizes the phase of the transmitted waveform on four different
levels. The performance loss of the latter with respect to the former
is kept within 1 dB, for Pd = 0.9, and is quite acceptable considering
also the less demanding hardware implementation of a phase quan-
tized waveform. It is also interesting to observe that the Pd curves
obtained using the approximation bound provide a quite good ap-
proximation of the actual detection performance, for all the consid-
ered values of the parameter γ and for both the considered algo-
rithms. As a matter of fact, the lower bound approximation is at
most 2 dB far from the true Pd curve.

In the last part of this section, we investigate the effects of
the number of quantization levels. Specifically, in Figure 4, we
plot Pd versus |α|2 for ν̄d = 0.1, γ = 1.3, and several values of
M (M ∈ {2,4,8,16}). As expected, increasing the number of quan-
tization levels, leads to better and better performances until M ≤ 8.
Then, a saturation effect is experienced and the performance ob-
tained by the phase quantized Algorithm 2 ends up coincident with
that provided by Algorithm 1, which, as already pointed out, as-
sumes code elements with phases ranging in a continuous interval.
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Figure 2: Pd versus |α|2 for Pf a = 10−6, ν̄d = 0.1,M = 4, N = 10,
and γ ∈ {1,1.3,1.6,1.9,2.2}. Algorithm 2 - PAR constrained Phase
quantized code.

Finally, before concluding this section, we provide in Table 1
the average CPU time required to solve the SDP problem (4) which
is the most computational expensive step of Algorithms 1 and 2 . All
the experiments were conducted on a desktop computer equipped
with a Intel Core 2 Quad Q9400 CPU (2.66 GHz). The results high-
light that the computational time is quite modest and acceptable for
all the considered values of γ . Nevertheless, it is also worth point-
ing out that the waveform design must not necessary be performed
on-line. It can be also implemented off-line producing a waveform
library [5] and then during the operation a waveform from the li-
brary is selected for that particular scenario.

6. CONCLUSIONS

In this paper, we have considered radar waveform design in the pres-
ence of colored Gaussian disturbance under a PAR and an energy
constraint. First of all, we have focused on the selection of the radar
signal optimizing the SNR in correspondence of a given expected
target Doppler frequency (Algorithm 1).Then, since Algorithm 1
does not impose any condition on the waveform phase, we have
also introduced its phase quantized version (Algorithm 2), forcing
the waveform phase to belong to a finite alphabet. Both the prob-
lems have been formulated in terms of non-convex quadratic op-
timization programs with a finite number of quadratic constraints.
Due to the NP-hard nature of the problems, we have introduced
design techniques, relying on SDP relaxation and randomization
techniques, which provide high quality sub-optimal solutions with
a polynomial time computational complexity.

At the analysis stage, we have evaluated the performance of
the devised algorithms, considering both the detection probability
achieved by the Neyman-Pearson detector, as well as the effects
of the possible phase quantization, showing the trade off existing
between the number of quantization levels and some simplicity in
circuitry implementation.

Possible future research tracks might concern the generalization
of the waveform design problem so as to account for an additional
similarity constraint with a known code sequence. This new ap-
proach will pave the way to a joint control of both the PAR and the
waveform ambiguity function. Unfortunately, the additional con-
straint cannot be easily handled and the design of a solution method
to the resulting optimization problems is still an open issue.

REFERENCES

[1] A. Farina, “Waveform Diversity: Past, Present, and Future”,
Third International Waveform Diversity & Design Confer-
ence, Plenary Talk, Pisa, June 2007.

[2] M. Wicks, “A Brief History of Waveform Diversity”, Pro-
ceedings of the IEEE 2009 Radar Conference, Pasadena, May
2009.

439



−14 −12 −10 −8 −6 −4 −2 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

|α|
2
[dB]

Figure 3a: Pd versus |α|2 for Pf a = 10−6 , ν̄d = 0.1,M = 4, N = 10
and γ = 1. Algorithm 1 - PAR constrained code (solid line). Ap-
proximation Bound of Algorithm 1 (dashed o-marked curve). Al-
gorithm 2- PAR constrained Phase quantized code (dashed-dotted
line). Approximation Bound of Algorithm 2 (dotted x-marked
curve).

−14 −12 −10 −8 −6 −4 −2 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

|α|
2
[dB]

Figure 3b: Pd versus |α|2 for Pf a = 10−6, ν̄d = 0.1,M = 4, N = 10
and γ = 2.5. Algorithm 1 - PAR constrained code (solid line). Ap-
proximation Bound of Algorithm 1 (dashed o-marked curve). Algo-
rithm 2- PAR constrained Phase quantized code (dash-dotted line).
Approximation Bound of Algorithm 2 (dotted x-marked curve).

[3] Special issue on “Adaptive Waveform Design for Agile Sens-
ing and Communications”, Edited by A. Nehorai, F. Gini, M.
S. Greco, A. Papandreou-Suppappola, and M. Rangaswamy,
IEEE Journal of Selected Topics in Signal Processing, Vol. 1,
no. 1, pp. 2-213, June 2007.

[4] R. Calderbank, S. Howard and B. Moran, “Waveform Di-
versity in Radar Signal Processing”, IEEE Signal Processing
Magazine, Vol. 26, no. 1, pp. 32-41, February 2009.

[5] D. Cochran, S. Suvorova, S. Howard and B. Moran, “Wave-
form Libraries”, IEEE Signal Processing Magazine, Vol. 26,
no. 1, pp. 12-21, February 2009.

[6] A. De Maio, S. De Nicola, Y. Huang, S. Zhang, and A. Farina,
“Code Design to Optimize Radar Detection Performance un-
der Accuracy and Similarity Constraints”, IEEE Transactions
on Signal Processing, Vol. 56, no. 11, pp. 5618-5629, Novem-
ber 2008.

[7] A. De Maio, S. De Nicola, Y. Huang, D. Palomar, S. Zhang,
and A. Farina, “Code Design for Radar STAP via Optimiza-
tion Theory”, IEEE Transactions on Signal Processing, Vol.
58, no. 2, pp. 679-694, February 2010.

[8] A. De Maio, Y. Huang, and M. Piezzo, “A Doppler Robust
Max-Min Approach to Radar Code Design”, IEEE Transac-
tions on Signal Processing, Vol. 58, no. 9, pp. 4943-4947,
September 2010.

−14 −12 −10 −8 −6 −4 −2 0 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

|α|
2
[dB]

 increasing M

Figure 4: Pd versus |α|2 for Pf a = 10−6, ν̄d = 0.1, γ = 1.3, and
M ∈ {2,4,8,16}. Algorithm 2 - PAR constrained Phase quantized
code (dashed-dotted lines). Algorithm 1 - PAR constrained code (o-
marked curve). Notice that the curve of Algorithm 1 overlaps with
that referring to Algorithm 2 for M = 8 and M = 16.

[9] A. De Maio, S. De Nicola, Y. Huang, Z. Q. Luo, and S. Zhang,
“Design of Phase Codes for Radar Performance Optimization
with a Similarity Constraint”, IEEE Transactions on Signal
Processing, Vol. 57, no. 2, pp. 610-621, February 2009.

[10] T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power
Ratio Reduction Techniques for OFDM Signals,” IEEE Trans.
on Broadcasting, Vol. 54, no. 2, pp. 257-268, February 2008.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, 1985.

[12] S. Zhang and Y. Huang, “Complex Quadratic Optimization
and Semidefinite Programming,” SIAM Journal on Optimiza-
tion, Vol. 16, no. 3, pp. 871 - 890, 2006.

[13] A. So, J. Zhang, and Y. Ye, “On Approximating Complex
Quadratic Optimization Problems Via Semidefinite Program-
ming Relaxations,” Mathematical Programming, Series B,
Vol. 110, no. 1, pp. 93 - 110, June 2007.

[14] Y. Huang and S. Zhang, “Complex Matrix Decomposition
and Quadratic Programming”,Mathematics of Operations Re-
search, Vol. 32, no. 3, pp. 758-768, Aug. 2007.

[15] Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, and S. Zhang,
“Semidefinite Relaxation of Quadratic Optimization Prob-
lems,” IEEE Signal Processing Magazine, Vol. 27, no. 3, pp.
20 - 34, May 2010.

[16] A. Nemirovski, “Lectures on Modern Convex Optimization”,
Class Notes, Georgia Institute of Technology, Fall 2005.

[17] M. X. Goemans and D. P.Williamson, “Improved Approxima-
tion Algorithms for Maximum Cut and Satisfiability Problem
using Semi-Definite Programming,” Journal of the ACM, Vol.
42, pp. 1115 - 1145, 1995.

[18] S. Zhang, “Quadratic Maximization and Semidefinite Relax-
ation,”Mathematical Programming, Ser. A, Vol. 87, no. 3, pp.
453 - 465, 2000.

[19] S.M. Kay, Fundamentals of Statistical Signal Processing: De-
tection Theory, Englewood Cliffs, NJ: Prentice-Hall, 1998,
vol. II.

440


