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ABSTRACT

In this paper, a novel method for analysing a bird’s song is
presented. The song of male great reed warblers is used for
developing and testing the methods. A robust method for
detecting syllables is proposed and a classification of those
syllables as compared to reference syllables is done. The
extraction of classification features are based on the use of
singular vectors in different time-frequency domains, such
as the ambiguity and the doppler domains, in addition to the
usual sonogram. The analysis is also made using multitaper
analysis where the Welch method and the Thomson multi-
tapers are compared to the more recently proposed locally
stationary process multitapers.

1. INTRODUCTION

A bird’s song is used under several circumstances. It may be
used as an identification tool, serving as a recognition sig-
nal to indicate the individual, the kinship and the species.
The song is also often used in male-male competition and
may play a role into the mate choice of a female. Hav-
ing several functions related to the biology and ecology of
birds, their songs have been greatly studied. The studies are
however impaired by the lack of methods which would au-
tomatically and more objectively analyze the song structure.
While some methods have been developed to create a sym-
metric pairwise similarity comparison within a single song
such as Song Analysis Pro, [1], the possibility to compare
two songs, whether to evaluate the song properties of the
same bird recorded at several occasions or to create a popula-
tion study, is still lacking. The properties in the song, which
cause variations and similarities from e.g., one year to an-
other and songs from the same and different populations, are
still an unexplored field, and call for modern tools.

One of the bird species that has been thoroughly studied
in terms of song complexity is the great reed warbler, which
is the largest warbler species in Europe and a species with
exceptional song capacity. A long-term study of a great reed
warbler population in Sweden is ongoing, and a main aim
is to understand the role of the song in an ecological and
evolutionary context. The song of male great reed warblers
is used in this project for developing and testing the methods.

Time-frequency analysis of non-stationary processes is
an important area with many applications and a significant
number of methods have been suggested over the years.
For analysis of bird singing, the sonogram, or the time-
frequency spectrum has been used, probably because the
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time-frequency representation is intuitive. However, in time-
frequency analysis, four possible representations can be
found, the instantaneous auto-correlation function, the am-
biguity domain and the doppler domain in addition to the
Wigner domain representation (sonogram), [2]. To actually
be able to identify similarities and differences in the bird
singing, investigation of the properties in other domains than
the time-frequency representation could be valuable.

The recording of bird singing, if not made in a labora-
tory, is difficult. The environment is often noisy, e.g., from
different wind conditions, and in addition to this, songs from
other birds further away, might disturb the recording. This
calls for robust analysis algorithms. Computationally effi-
cient robust algorithms for time-frequency analysis can be
found using e.g., multitapers. The phrase multitaper was
originally introduced by Thomson, [3], for the case of sta-
tionary processes with smooth spectra. The properties that
give uncorrelated spectra come from the windows and not
from the time-division of data. All data samples for all win-
dows as are totally overlapping and thereby more of the in-
formation in data is used than, e.g., the Welch or the WOSA
method, [4]. More recently, smoothed Wigner spectra have
been shown to approximate multitaper spectrograms, where
the multitapers and weights correspond to the eigenvectors
and eigenvalues of a time-lag kernel, [5]. Multitaper decom-
position of time-lag kernels have been analyzed from several
aspects, for existing kernels but new multitaper techniques
for non-stationary signal analysis have also been proposed,
[6, 7].

A locally stationary process (LSP) has a covariance func-
tion which is a multiplication of a covariance function of
a stationary process and a time-variable function, [8]. The
process is non-stationary with properties suitable for mod-
eling measured signals that e.g., have a transient amplitude
behavior. In this paper, the LSP multitapers, [7], is com-
pared to the more well known Thomson multitapers, [3], and
Welch method, [4] for analysis of bird singing. A classifica-
tion comparison is also made, using different time-frequency
representations, such as the Wigner domain, the ambiguity
domain and the doppler domain. In addition to this, we sug-
gest a new, robust, extraction algorithm for syllable detec-
tion in the bird singing. In section 2, a brief description of
the different time-frequency domains are given and in section
3, the spectrogram decomposition into multitaper spectra of
time-frequency kernels is presented. Section 4 describes the
syllable detection and feature extraction in the different do-
mains. Analysis and results from a noisy strophe is presented
in section5 and finally the conclusions is given in section 6.



2. TIME-FREQUENCY ANALYSIS

For a non-stationary process we can define the instanta-
neous autocorrelation function, (IAF),

rlt,7) = Efrlr+ )" (1= ) (M)
of the zero-mean process x(¢) where E[x] is the expected
value. We have two variables ¢t and 7 and an extension of
the Wiener-Khintchine theorem to the time-varying spec-
tral density and Fourier transforming from 7 to f, gives
W (t, f) = Frre(t,7), also called the Wigner spectrum, [2].
In the quadratic class we find the smoothed Wigner spec-
trum as the 2-dimensional convolution of the Wigner spec-
trum and the time-frequency kernel, ®(z, f), as

WE(t, f) = Wi(t, f) xxD(t, f). )

The Fourier transform of the IAF in the variable ¢ gives
Ax(v,7) = Fri(t,7), which is called the Ambiguity spec-
trum. The multiplication of an ambiguity domain kernel,
¢ (v, 1), and the ambiguity spectrum is

AXQ(V,T) :Ax(V,T)'(p(V,T), (3)

giving the filtered ambiguity spectrum. We can also refor-
mulate this as a convolution in the variable ¢ in the time-lag
domain,

er(taT):rx(taT)*p(th)v 4)
where p(z,7) is the time-lag kernel.

We may also take the Fourier transform of the ambiguity
spectrum in T or the Fourier transform of the Wigner spec-
trum in ¢ or, Dy(V, f) = FrA(V,T) = F W (t, f), which is
called the Doppler spectrum. A convolution, in the variable
f of the Doppler spectrum and the doppler kernel, (v, f),
is expressed as

D2(v.f) =Dx(v,f) *k(v,f). (5)

These four different domains for representation of a time-
varying signal is shown in a schematic overview is given in
Figure 1.

3. SPECTROGRAM DECOMPOSITION OF
TIME-FREQUENCY KERNELS

The connection between a multitaper spectrogram and a
smoothed Wigner spectrum is found using the following ap-
proach, [5]. The multitaper spectrogram is defined as
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Figure 1: The four possible domains in time-frequency anal-
ysis.

We identify the instantaneous autocorrelation function as
re(t,7) = x(t 4+ % )x*(r — 5) and the time-lag kernel

T

K
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giving the quadratic class of time-frequency distributions as

s(.f) = [ ndop—t e ards
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Defining
1+t
P (t1,12) = p(~ > 2 1), )

and if the kernel p” (1;,1,) satisfies the Hermitian property

P (t1,12) = (p" (12,11))",

then solving the integral

./Pm’(flafz)Q(fl)dfl = Aq(12)

results in eigenvalues A; and eigenfunctions g(r) which
form a complete set and can be used as weights, 0y, and mul-
titapers, /() = qx(t), k=1 ... K, in Eq. (6).

4. SYLLABLE ANALYSIS

The analysis of syllables requires a number of steps, auto-
matic detection of a syllables, feature extraction and classi-
fication. In this section, brief descriptions of the algorithms
are given. The recording of the bird singing in the example is
made in the natural environment. The recorded signal is sam-
pled with f; =44.1 kHz and decimated a factor 4. A strophe
(partly seen in Figure 2), x.(n), n =0..., is cut into the syl-
lables, x’;(n), n =0...N; — 1, where N; is varying according
to the length defined by the detection algorithm.
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Figure 2: An example of a strophe with detected and num-
bered syllables.

4.1 Automatic detection of syllables

The recorded strophes are very noisy, and methods used for
the detection need to be robust. A pre-filtering is made using
a bandpass FIR-filter of length 100 with cut-off frequencies
700 and 4500 Hz. An example of a filtered strophe is seen in
Figure 2. Using a fixed threshold will cause difficulties as the
recording amplitude might vary a lot, even during a strophe,
caused by e.g., changes in the wind direction. Therefore,
we have chosen an adaptive threshold that is not sensitive to
noise, nor to changing amplitude. We suggest a method us-
ing two filters, a longer and a shorter smoothing filter, where
the power, (square of the signal amplitude) is smoothed. The
longer filter is of length 200 ms and the shorter of length 20
ms. In Figure 3, an example of the different powers from
the filtering procedure is seen, the green line is the smoothed
power from the long filter and the blue line from the short
filter. We use the green line as adaptive threshold, catch-
ing slow power changes in the signal. The short filter (blue
line) catches the fast changes and the decision is based on
when this signal is a certain level above the adaptive thresh-
old (green line). This level is chosen as a certain percentage
of the maximum instantaneous power found in the signal,
and is marked by red dots in Figure 3. As default value we
use 30% of the maximum power as the amount for the green
line to be recognized as detected power of a possible syllable.
The default value of 30% should be changed to a lower value
for recordings without too much varying noise. Weaker parts
of the strophes might then also be included for analysis. Us-
ing this measure, we also avoid including syllables of other
birds singing further away, which will show up as a similar
but weaker signal, in or between the strophes.

When the samples of a possible syllable is identified, we
check if the time distance between the samples exceeds a cer-
tain limit (default 115 ms), which is defined as the minimum
distance between two different syllables. If the interval width
between two sequential detected power samples (red color)
is smaller than 115 ms, the corresponding parts of the time
signal are included in the same syllable, and all parts of the
signal is used for further analysis. This part is tricky as many
syllables show up in pairs and it is not clear if these should be
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Figure 3: The long filtered power (green line) and the short
filtered power (blue line). The red line, which is used for
the further detection of syllables show where the blue line is
extending the green line with 30 % of the maximum power
found in the strophe.

treated as two syllables or a so-called double syllable. Using
a default value of 115 ms will include double syllables in the
analysis, treated as one signal in further analysis. The min-
imum time distance could however, be changed to a smaller
value, defining shorter parts of the strophe as syllables. The
start and end time points of the defined syllable are extended
backwards and forward to include the weaker start and end
of the signal, (default 100 ms), defining the syllable x;(n),
n=0...N;—1, where N; varies between 2000 — 4000 sam-
ples using the decimated sample frequency f; = 11.025 kHz.

4.2 Feature extraction and classification

From the defined syllables, x;(n), the feature extraction is
made. Time-frequency analysis is used and different mul-
titaper techniques are applied for the computation of the
spectrogram, the ambiguity spectrum and the doppler spec-
trum. For all analysis, the real valued data x;(n) is Hilbert

transformed to the analytic time domain signal, x;(n). The
time-frequency, the ambiguity and doppler domain computa-
tions are made using a fast Fourier transform (FFT) length of
L = 1024 and a window-shift for the different computations
of 16. The window lengths of the different multitapers ap-
plied are 23 ms, (256 samples). An example of a single sylla-
ble and the resulting representations in the different domains
are seen in Figure 4. We have chosen to compare features
from these three domains for the classification of the differ-
ent syllables in a strophe. However, instead of comparing
all information in the two-dimensional matrices for different
syllables in the classification, the features are extracted as the
first singular vectors from the singular value decomposition
(SVD) of the absolute values of the time-frequency domain,
the ambiguity domain and the doppler domain respectively.
The SVD extracts the basic information of the matrix and
using just the first singular vectors reduces the influence of
the smaller changes and noise. The basic information in-
cluded in the singular vectors could be seen as a represen-
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Figure 4: Example of a syllable in a) the time domain, b)
the time-frequency domain, c) the ambiguity domain, d) the
doppler domain, computed from the LSP multitapers.

tation that also differ between the domains. E.g., studying
the time-frequency domain, a syllable and the same syllable
modulated in frequency will not give comparable singular
vectors for analysis, i.e., a classification based on this will
indicate a difference. Similarly, time differences will show
up in the other singular vector. In the ambiguity domain,
however, neither a difference in modulation of the frequency
nor a difference in time will show up, the ambiguity domain
representations are equal for time modulations as well as fre-
quency modulations of analytic signals, [2]. In the Doppler
domain, a time modulation will give equal representation but
not a frequency modulation.

We assume a number of analysis syllables J, and a num-
ber of reference syllables J, and classify analysis syllable j,
to belong to the reference syllable j. where the minimum of
the sum of the total squared error of analysis vectors and the
reference vectors is found, i.e.,

&, (Ja) —):(UZ (n) +Z - (n))?,

10
where U7 (n) and V} (n) are the singular vectors from( thg
analysis syllable and U i (n) and V7 (n) are the singular vec-
tors from the reference syllable The variable z is equal to W
(time-frequency), A (ambiguity) or D (doppler), depending
on the domain of the analysis.

5. ANALYSIS AND RESULTS

As a first step a successful algorithm should identify simi-
lar syllables that are repeated after each other in a strophe as
belonging to the same class. In the example presented here
we use the strophe partly presented in Figure 1 and extract
the first syllable in a repetition of syllables as the reference.
We extract syllable number 1,2,8,10,14, 18 and 21 of in to-
tal 23 detected syllables (note that just the 12 first are seen
in Figure 1). In the analysis, we are now interested to see
if the following syllables on each reference syllable will be
classified to the correct class. For a successful classification
of repetition of syllables, number 3,4,5,6,7 should belong to
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Figure 5: The total square error e; ( Ja) of the time-frequency
domain using the LSP multltapers The blue color shows
small error compared to the reference syllable (y-axis) where
the red color shows large error.

syllable 2, number 9 to syllable 8, number 11, 12 to 10, num-
ber 15,16,17 to 14, number 19, 20 to 18, and finally number
22,23 to 21. We also assume that syllable 13 might be simi-
lar to syllable 1.

For the computation, a single Hanning window, the
Welch method, [4], the Thomson multitapers, [3], and the
LSP multitapers, [7], are applied. In all cases, the total win-
dow lengths are N,, = 256 samples, (23 ms). For the Welch
method, [4], a number of K=4 Hanning windows are used
with the usual overlap of 50 % between windows. A num-
ber of K=4 equally weighted spectrograms using Thomson
multitapers are also applied where the resolution bandwidth
for computation of the tapers are B = (K +3)/N,, ~ 0.0273,
which gives a resolution of about 0.3 kHz in the analysis.
The LSP multitapers, optimal to a LSP of two Gaussian func-
tions, have been shown to approximate a set of Hermite func-
tions fairly well, [7], which makes them more suitable for
implementation. The LSP defined by two Gaussian func-
tions, could also be a reasonable model for the syllables as
they usually arise and decrease smoothly. In this analysis,
the weighting applied to the set of Hermite function spectro-
grams, are o = 0.371,0.255,0.169,0.108,0.0638,0.0333,
for k = 1...6, which corresponds to the tuning variable
¢ =20, [7]. The computation of the reference syllables are
made using the same multitapers and parameter settings as
for the computation of the analysis syllables in all cases.

In Frgure 5, acolorplot of the errors in the time-frequency
domain, e ( Ja), is seen for the LSP multitapers. The darkest
blue color represent zero error where the analysis syllable is
matched to the reference syllable corresponding to the same
number, i.e., 1 belong to 1, 2 belong to 2, 8 belong to 8 and so
on. However, it is also clearly seen that many of the follow-
ing syllables of a reference syllable give small errors as well,
e.g., syllable 3,4,5,6 and 7 also correspond fairly well to syl-
lable number 2. We can then see the pattern of blue boxes,
e.g, syllable 8 and 9 belong to reference syllable 8, and 10,
11 and 12 belong to 10 (although here the errors between 11
and 10 are larger). It can also be noted that the error is fairly
large when comparing to other reference syllables (red and
yellow colors). For this case and these multitapers, the clas-
sification is easily done without errors. The reason for the
easy classification in the time-frequency domain is of course
that modulation in especially frequency will cause great dif-
ferences in the comparison. However, this is not necessarily
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Figure 6: The total square error e‘}r (ja) of the ambiguity do-
main using the LSP multitapers. The blue color shows small
error compared to the reference syllable (y-axis) where the
red color shows large error.

wanted when comparing several different birds for finding
similarities and differences in their singing. Using ambiguity
domain analysis might give better tools for this. An exam-
ple of the LSP multitapers applied for the ambiguity domain
analysis is seen in Figure 6, which shows the same pattern as
in Figure 5, for the darkest blue colors, and in this case, all
three of 10,11 and 12 correspond in a more similar way to
10 (similar blue color). However, we also see that analysis
syllables 10-12, 14-17, 18-20, all show such similarities that
they all might be classified to reference syllable 10,14 and
18. Additionally, analysis syllables 2-7 are similar to refer-
ence syllable 10 and analysis syllables 10-12 are similar to
reference syllable 2, which give us a total new view on what
is a similarity and a difference. Further analysis with differ-
ent birds is needed to see if the classification in this domain
might be preferable for a certain material.

Finally, we compare the four different methods, single
Hanning window (Hann), Welch method (Welch), Thom-
son multitapers (Thomson) and LSP multitapers (LSP), for
robustness and analyze the mean value and standard devi-
ation in the classification. The only method giving actual
errors in the classification was the single Hanning window
with 4 syllables erroneously classified in the doppler domain,
and 1 syllable erroneously classified in the time-frequency
and ambiguity domain respectively. None of the multitaper
methods gave errors in the classification in any of the do-
mains. This clearly shows the importance of robustness in the
analysis methods where multitapers could be recommended.
The mean value and standard deviation of the minimum to-
tal square errors min;, ej-r( Ja) for all analysis syllables where
Ja 7 Jr» are computed for the different methods and domains.
The multitaper methods give similar results, clearly better
than the single Hanning window. For all domains, the multi-
taper methods order with the smallest error for the LSP mul-
titapers, followed by the Thomson multitapers and the Welch
method.

6. CONCLUSIONS AND DISCUSSION

A novel method of syllable detection and classification of
bird singing is presented. Also, different multitaper tech-
niques are compared for time-frequency analysis of syllables
and it is shown that multitaper techniques give a more ro-
bust classification. The locally stationary process multitapers
gave the smallest error compared to the Thomson multita-
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| Method [ LSP | Thomson | Welch [ Hann |

Mean Value-W 137 .140 .146 374
STD-W .0886 .106 116 274

Mean Value-A .0126 0138 0147 | .0194
STD-A .00981 .00965 .0101 | .0111

Mean Value-D .0487 .0638 0715 .167
STD -D .0345 0414 0466 | .109

Table 1: The mean values and standard deviation of the to-
tal square errors min;, e*’lir (jq) for all analysis syllables where
Ja # Jr, for different methods and for different domains. Ex-
tension -W’ is the time-frequency domain, *-A’, the ambi-
guity domain and *-D’ the doppler domain.

pers and Welch method. It is also proposed that the analysis
and classification should be made in some other domain than
the usual time-frequency representation (sonogram), e.g., the
ambiguity or the doppler domain. Further analysis is how-
ever needed to be able to define the most appropriate domain.
This might also depend on whether the evaluation is on the
song properties of a same bird recorded at several occasions
or a population study. For the extraction of classification fea-
tures, the first left and right singular vectors value of the ab-
solute value of the spectrum in respective domain is used.
Other possibilities of classification features from the differ-
ent spectra are left for further studies.
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