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ABSTRACT

Recently, we introduced a frequency domain measure - the power
transfer function - to predict the convergence rate, system stability
bound and the steady-state behavior across time and frequency of
a least mean square based feedback/echo cancellation algorithm in
a general multiple-microphone and single-loudspeaker system. In
this work, we extend the theoretical analysis to the normalized least
mean square and recursive least squares algorithms. Furthermore,
we compare and discuss the system behaviors in terms of the power
transfer function for all three adaptive algorithms.

1. INTRODUCTION

Acoustic feedback/echo problems occur when the microphone of
a sound system picks up the acoustic output signal from its own
loudspeaker. In practical applications such as public address sys-
tems, teleconferencing systems and hearing aids, the acoustic feed-
back/echo problem can cause significant degradation of the system
performance.

Feedback/echo cancellation by means of adaptive filters is one
of the most widely used methods to deal with the acoustic feed-
back/echo problem, see e.g. [1, 2] and the references therein. A
range of different adaptive algorithms have been proposed includ-
ing the least mean square (LMS), normalized least mean square
(NLMS), affine projection (AP), and the recursive least squares
(RLS) algorithms to mention a few [3].

Some of the most widely used criteria for designing and eval-
uating the adaptive filters are based on the mean-square error and
mean-square deviation, see e.g. [3]. Although very useful, they are
typically time domain criteria. On the other hand, the acoustic feed-
back/echo paths from the loudspeaker to the microphones are often
easier described in the frequency domain by magnitude and phase
spectra. Hence, one could argue that a frequency domain measure
might be more suitable as a design and evaluation criterion.

Recently, we proposed a new frequency domain design and
evaluation criterion - the power transfer function (PTF) - and ana-
lyzed a multiple-microphone and single-loudspeaker (MMSL) sys-
tem with a beamformer [4], as shown in Fig. 1, where the PTF is
defined as the expected magnitude-squared transfer function from
point A to B. Such an MMSL system could be a teleconferencing
system, a headset system or a typical hearing aid system. In [4], the
LMS algorithm was applied in the adaptive cancellation systems to

estimate ĥi(n) used for cancelling the acoustic feedback/echo paths
hi(n). Furthermore, the PTF is directly related to the cancellation

system performance: with a perfect cancellation, i.e. ĥi(n) = hi(n),
the PTF equals to zero for all frequencies. The analysis was in-
spired by the work in [5], where a single-microphone and single-
loudspeaker system was analyzed.

In this work, we extend our previous analysis [4] of the acous-
tic feedback/echo cancellation in the MMSL system to cover the
NLMS and RLS algorithms. We derive analytical expressions for
the PTF for these two adaptive algorithms. Furthermore, we com-
pare the system behaviors, in terms of the convergence rate and
steady-state behavior, across time and frequency, for all three adap-
tive algorithms, namely the LMS, NLMS and the RLS algorithms.
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Figure 1: The multiple-microphone and single-loudspeaker sys-
tem. The power transfer function describes the expected magnitude-
squared transfer function from point A to B.

In this paper, column vectors and matrices are emphasized us-
ing lower and upper letters in bold, respectively. Transposition,
Hermitian transposition and complex conjugation are denoted by
the superscripts T , H and ∗, respectively.

2. SYSTEM DESCRIPTION

In this section, we introduce the MMSL system shown in Fig. 1.
The true but unknown feedback path from the loudspeaker to

the i’th microphone is modeled by a finite impulse response (FIR)
of order L−1,

hi(n) = [hi(0,n), . . . ,hi(L−1,n)]T . (1)

The frequency response as the discrete Fourier transform (DFT) of
hi(n) is expressed by

Hi(ω,n) =
L−1

∑
k=0

hi(k,n)e
− jωk. (2)

As in [5], we model time variations of the true feedback paths hi(n)
using a random walk model

Hi(ω,n) = Hi(ω,n−1)+ Ȟi(ω,n), (3)

where Ȟi(ω,n) ∈ C is a sample from a zero-mean Gaussian white
noise process with variance

S
ȟii
(ω) = E

[
Ȟi(ω,n)Ȟ∗

i (ω,n)
]
. (4)

In the time domain, the feedback path variation vector is

ȟi(n) = hi(n)−hi(n−1). (5)

The correlation matrix of the i’th and j’th feedback path variations
is given by

Ȟi j = E
[

ȟi(n)ȟ
T
j (n)

]

, (6)
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and we assume, for simplicity, that Ȟi j = 0L×L for i 6= j.

The estimate ĥi(n) of the i’th true feedback path is

ĥi(n) =
[
ĥi(0,n), . . . , ĥi(L−1,n)

]T
, (7)

and the corresponding estimation error vector is defined as

h̃i(n) = ĥi(n)−hi(n), (8)

with a frequency response of

H̃i(ω,n) =
L−1

∑
k=0

h̃i(k,n)e
− jωk. (9)

Each beamformer filter gi, to perform the spatial filtering, is repre-
sented by an FIR filter

gi = [gi(0), . . . ,gi(N −1)]T , (10)

and its frequency response is expressed by

Gi(ω) =
N−1

∑
k=0

gi(k)e
− jωk. (11)

The loudspeaker signal vector u(n) is defined as

u(n) = [u(n), . . . ,u(n−L+1)]T . (12)

We consider the loudspeaker signal u(n) as a zero-mean determin-
istic signal because it is measurable and thereby known in the anal-
ysis. However, as argued in [5], our results remain valid, even if the
loudspeaker signal u(n) is considered as a realization of a stochastic
process, which is statistically independent of the incoming signals
xi(n). Thus, we define the deterministic autocorrelation matrix

Ru(k) = lim
N→∞

1

N

N

∑
n=1

u(n)uT (n−k). (13)

We assume that the incoming signals xi(n) are zero-mean, station-
ary stochastic signals with correlation function

rxi j
(k) = E

[
xi(n)x j(n−k)

]
. (14)

Furthermore, the i’th microphone signal yi(n) is modeled as

yi(n) = hT
i (n−1)u(n)+xi(n). (15)

The i’th error signal ei(n) is given by

ei(n) = yi(n)− ĥT
i (n−1)u(n). (16)

The beamformer output signal ē(n) is expressed by

ē(n) =
P

∑
i=1

ēi(n) =
P

∑
i=1

N−1

∑
k=0

gi(k)ei(n−k). (17)

In acoustic echo cancellation (AEC) applications such as teleconfer-
encing systems, the forward path f(n) denotes the far-end transfer
function. Assuming an echo cancellation algorithm is applied at the
far-end, f(n) ≈ 0 in this case, these systems would effectively be
operating in a open-loop setup.

On the other hand, in acoustic feedback cancellation (AFC) ap-
plications such as public address systems and hearing aids, the for-
ward path f(n) can not be ignored, thus, these systems are operating
in a closed-loop setup.

Although we consider the open-loop setup in our analysis, as
argued in Sec. 3, the results are highly relevant for the closed-loop
setup as well.

3. REVIEW OF POWER TRANSFER FUNCTION

The PTF describes the expected magnitude-squared transfer func-
tion from point A to B in Fig. 1. The frequency responses Hi(ω,n)
of the true feedback paths hi(n) are unknown and considered as
stochastic. Hence, as in [4], we define the exact PTF of the MMSL
system as

ξ (ω,n) = E





∣
∣
∣
∣
∣

P

∑
i=1

Gi(ω)H̃i(ω,n)

∣
∣
∣
∣
∣

2




=
P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j(ω)ξi j(ω,n),

(18)

where ξi j(ω,n) = E[H̃i(ω,n)H̃∗
j (ω,n)].

Thus, the PTF ξ (ω,n) describes the cancellation performance
over time and frequency, not only for one particular cancellation

filter as e.g. the criterion mean-square deviation E[‖h̃(n)‖2], but for
the entire system.

For closed-loop AFC systems, the PTF ξ (ω,n) is part
of the expected magnitude-squared open-loop transfer func-

tion E[|OLTF(ω,n)|2] of the MMSL system expressed by

E
[
|OLTF(ω,n)|2

]
= |F(ω,n)|2ξ (ω,n), where F(ω,n) denotes the

frequency response of the forward path f(n). If |OLTF(ω,n)|2 < 1,
system stability is guaranteed [6].

In this way, by estimating the PTF ξ (ω,n), we identify the

unknown part of E[|OLTF(ω,n)|2]. Furthermore, given a de-

sired value of E[|OLTF(ω,n)|2], we could determine the maxi-
mum allowed forward path magnitude to ensure system stability as

|F(ω,n)|< 1/
√

ξ (ω,n).
In general, however, we can not calculate the PTF ξ (ω,n) di-

rectly because Hi(ω,n) is unknown. In this work, we derive a sim-
pler but accurate approximation of the PTF as

ξ̂ (ω,n) =
P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j(ω)ξ̂i j(ω,n), (19)

where

ξ̂i j(ω,n)≈ E
[
H̃i(ω,n)H̃∗

j (ω,n)
]
. (20)

4. SYSTEM ANALYSIS

4.1 Review of PTF for LMS Algorithm

In [4], we considered an MMSL system where the feedback paths
hi(n) were estimated using the LMS algorithm. We showed that,
under the assumptions of the LMS step size µ0(n) → 0, the length
of estimation filter L → ∞ and rxi j

(k) = 0 ∀ |k| > k0 ∈ N, the PTF
could be approximated as

ξ̂ (ω,n) = (1−2µ0(n)Su(ω)) ξ̂ (ω,n−1)

+Lµ2
0 (n)Su(ω)

P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j (ω)Sxi j

(ω)

+
P

∑
i=1

|Gi(ω)|2S
ȟii
(ω),

(21)

where Su(ω) denotes the power spectrum density (PSD) of the loud-
speaker signal u(n), and Sxi j

(ω) denotes the cross(auto) PSDs of the

incoming signals xi(n) and x j(n).
Furthermore, by considering Eq. (21) as a first-order difference

equation in ξ̂ (ω,n), the convergence rate describing the decay of

ξ̂ (ω,n) is expressed by the coefficient

α = 1−2µ0(n)Su(ω), (22)
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which determines the pole location of the first-order system.
The convergence rate in dB/iteration is expressed by

CR[dB/iteration] = 10log10 α. (23)

Furthermore, system stability is ensured if

|α|< 1. (24)

From Eq. (21), the steady-state behavior, in terms of a steady-state

error and a tracking error, when ξ̂ (ω,n) has converged, is

ξ̂ (ω,∞) = lim
n→∞

ξ̂ (ω,n)

= lim
n→∞

L
µ0(n)

2

P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j (ω)Sxi j

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

∑P
i=1 |Gi(ω)|2S

ȟii
(ω)

2µ0(n)Su(ω)
︸ ︷︷ ︸

Tracking Error

.

(25)

4.2 PTF for NLMS Algorithm

When using the NLMS algorithm, the update of the i’th microphone
channel is, see e.g. [3],

ĥi(n) = ĥi(n−1)+µ(n)
u(n)ei(n)

uT (n)u(n)+δ
, (26)

where µ(n) is the NLMS step size, and δ > 0 is a small positive
number often referred to as the regularization term. In the follow-
ing, we neglect this term because its function is to avoid numerical
instability. Furthermore, using the assumption of µ(n)→ 0, we can
rewrite Eq. (26) as

ĥi(n) = ĥi(n−1)+µ(n)
u(n)ei(n)

Lσ2
u

, (27)

where σ2
u is the variance of the loudspeaker signal u(n).

Now, from Eq. (27), we can see that the estimation of ĥi(n) is
equivalent to the LMS algorithm with an adjusted step size as

µ0(n) =
µ(n)

Lσ2
u

. (28)

Hence, inserting Eq. (28) in Eq. (21), we can express the PTF es-

timate ξ̂ (ω,n) of the MMSL system, when using the NLMS al-
gorithm under the assumptions of µ(n) → 0, L → ∞ and rxi j

(k) =
0 ∀ |k|> k0 ∈ N, as

ξ̂ (ω,n) =

(

1−2
µ(n)

Lσ2
u

Su(ω)

)

ξ̂ (ω,n−1)

+
µ2(n)

Lσ4
u

Su(ω)
P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j(ω)Sxi j

(ω)

+
P

∑
i=1

|Gi(ω)|2S
ȟii
(ω).

(29)

4.3 PTF for RLS Algorithm

Using the RLS algorithm, the cost function of the i’th microphone
channel is expressed by, see e.g. [3],

Ji(n) =
n

∑
m=1

λ n−me2
i (m), (30)

where 0 < λ < 1 denotes the forgetting factor, and the RLS update
step is expressed by

ĥi(n) = ĥi(n−1)+Z(n)u(n)ei(n), (31)

where

Z(n) =
P(n−1)

λ +uT (n)P(n−1)u(n)
, (32)

and

P(n) =
1

λ

(

P(n−1)−Z(n)u(n)uT (n)P(n−1)
)

. (33)

P(0) is typically chosen as P(0) = δI, where δ is a regularization
parameter.

Using Eqs. (31), (16), (15) and (5), the estimation error vector
defined in Eq. (8) can be expressed by

h̃i(n) =
(

I−Z(n)u(n)uT (n)
)

h̃i(n−1)

+Z(n)u(n)xi(n)− ȟi(n),
(34)

where I is the identity matrix.
We can show, under the assumption of λ → 1 and rxi j

(k) =
0 ∀ |k|> k0 ∈ N, that an approximation of the estimation error cor-

relation matrix Hi j(n) = E[h̃i(n)h̃
T
j (n)] is expressed by

Ĥi j(n) = Ĥi j(n−1)−Z(n)Ru(0)Ĥi j(n−1)

−Ĥi j(n−1)Ru(0)Z
T (n)

+
k0

∑
k=−k0

Z(n)Ru(k)Z
T (n)rxi j

(k)+Ȟi j .

(35)

Now, we use the DFT matrix F ∈ CL×L to diagonalize the Toeplitz

matrix Ĥi j(n) as L → ∞ [7]. We can show that each element in the
diagonal of the resulting matrix is

ξ̂i j(ω,n) = (1−2z(ω,n)Su(ω)) ξ̂i j(ω,n−1)

+Lz2(ω,n)Su(ω)Sxi j
(ω)+S

ȟi j
(ω),

(36)

where z(ω,n) is the element in the diagonal of 1
L
FZ(n)FH . Fur-

thermore, we can show from Eqs. (32) and (33) that

z(ω,n) =
1−λ

Su(ω)
, (37)

when-ever the matrix P(n) has converged.
Finally, using Eqs. (36), (19) and (37), the PTF estimate is

ξ̂ (ω,n) = (2λ −1) ξ̂ (ω,n−1)

+L
(1−λ )2

Su(ω)

P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j (ω)Sxi j

(ω)

+
P

∑
i=1

|Gi(ω)|2S
ȟii
(ω).

(38)

5. INTERPRETATION

5.1 PTF for NLMS Algorithm

Considering Eq. (29) as a first-order difference equation in ξ̂ (ω,n),
the convergence rate of the cancellation system when using the
NLMS algorithm is determined by

α = 1−2
µ(n)

Lσ2
u

Su(ω). (39)
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From Eq. (39), we observe that the loudspeaker signal u(n) has an
influence on the convergence rate. This is also the case when us-
ing the LMS algorithm, see Eq. (22). However, the convergence

rate is now directly proportional to the ratio between Su(ω) and σ2
u .

Changes of the absolute level of the PSD Su(ω) at all frequencies
would no longer have any effects on the convergence rate which is
the case when using the LMS algorithm, but the shaping of the PSD
Su(ω) would lead to variations in the convergence rate.

According to Eqs. (39) and (24), the value of the step size µ(n)
to ensure system stability is

0 < µ(n)<
Lσ2

u

maxω Su(ω)
. (40)

Furthermore, we can determine the steady-state behavior as

ξ̂ (ω,∞) = lim
n→∞

ξ̂ (ω,n)

= lim
n→∞

µ(n)

2σ2
u

P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j (ω)Sxi j

(ω)

︸ ︷︷ ︸

Steady-State Error

+ lim
n→∞

Lσ2
u

∑P
i=1 |Gi(ω)|2S

ȟii
(ω)

2µ(n)Su(ω)
︸ ︷︷ ︸

Tracking Error

,

(41)

where the first part is the steady-state error, when the feedback paths
remain time-invariant. If the feedback paths undergo changes over
time, an extra error contribution is introduced to the steady-state
behavior, as a tracking error, which is represented by the second
part of Eq. (41).

To summarize, a large step size µ(n) gives advantageously
higher convergence rate and better tracking ability when feedback
paths vary over time. However, the price paid is the increased

steady-state error. Furthermore, the ratio Su(ω)/σ2
u is directly pro-

portional to the convergence rate and tracking ability of changing
acoustic feedback paths, whereas the length L of the estimated feed-
back path has the opposite effect. The PSDs Sxi j

(ω) of the incom-

ing signals weighted by the frequency responses Gi(ω) and G∗
j(ω)

of the beamformer filters are directly proportional to the steady-

state error, whereas the loudspeaker signal variance σ2
u affects it

inversely.
Using Eq. (39), we can achieve a desired convergence rate by

choosing the step size according to

µ(n) = Lσ2
u

1−α

2Su(ω)
. (42)

From Eq. (41), a desired steady-state value of ξ̂ (ω,∞), ignoring the
feedback path variations for simplicity, can be achieved by choosing
the step size according to

µ(n) =
2σ2

u ξ̂ (ω,∞)

∑P
i=1 ∑P

j=1 Gi(ω)G∗
j(ω)Sxi j

(ω)
. (43)

5.2 PTF for RLS Algorithm

Similar to the NLMS case, the convergence rate for the RLS algo-
rithm is determined from Eq. (38) as

α = 2λ −1. (44)

This means that not only is the convergence rate frequency indepen-
dent, but it is also signal independent; only the forgetting factor λ
has influence on it. This differs completely from the LMS and the
NLMS algorithms.

From Eqs. (44) and (24), we can determine the range of the
forgetting factor λ to ensure the system stability as

0 < λ < 1. (45)

Finally, the steady-state behavior is determined by

ξ̂ (ω,∞) = lim
n→∞

ξ̂ (ω,n)

= L
1−λ

2Su(ω)

P

∑
i=1

P

∑
j=1

Gi(ω)G∗
j(ω)Sxi j

(ω)

︸ ︷︷ ︸

Steady-State Error

+
∑P

i=1 |Gi(ω)|2S
ȟii
(ω)

2(1−λ )
︸ ︷︷ ︸

Tracking Error

.

(46)

From Eq. (46), we observe another major difference compared to
the LMS and NLMS algorithms. The PSD Su(ω) of the loudspeaker
signal is inversely proportional to the steady-state error of the sys-
tem with time invariant feedback paths, and it has no influence on
the additional tracking error caused by time-varying feedback paths.

We conclude that decreasing the forgetting factor λ increases
the convergence rate and the tracking ability of the feedback path
variations, but it increases the steady-state error as well. Further-
more, the length L of the estimated feedback paths, as well as the
PSDs Sxi j

(ω) weighted by Gi(ω) and G∗
j(ω) are directly propor-

tional to the the steady-state error.
Using Eq. (44), we can obtain a desired convergence rate by

choosing the forgetting factor according to

λ =
1+α

2
. (47)

From Eq. (46), a desired steady-state value of ξ̂ (ω,∞), ignoring
again the feedback path variations for simplicity, can be achieved
by choosing the step size according to

λ = 1−
2Su(ω)ξ̂ (ω,∞)

L ∑P
i=1 ∑P

j=1 Gi(ω)G∗
j (ω)Sxi j

(ω)
. (48)

5.3 Statistically Identical Systems Behavior

By choosing the step sizes µ0(n) and µ(n) according to Eq. (28),
we can obtain statistically identical system behaviors in terms of
the convergence rate and steady-state behavior, at all frequencies,
for the LMS and the NLMS algorithms.

More interestingly, it is also possible to obtain statistically iden-
tical system behaviors when using the NLMS and RLS algorithms.
We can derive the relation between µ(n) and λ to obtain this, e.g.
from Eqs. (39) and (44), as

µ(n) =
Lσ2

u (1−λ )

Su(ω)
. (49)

Though, in general, this is only possible at a specific frequency,
unless the PSD Su(ω) is (partly) flat.

6. EXPERIMENTS

We conduct two simulation experiments, based on an MMSL sys-
tem with P = 3 microphones, to verify Eqs. (39), (41)-(43) for the
NLMS algorithm, and Eqs. (44), (46)-(48) for the RLS algorithm.

The same simulation procedures are used in both experiments.
In each simulation run, the incoming signals xi(n) and the loud-
speaker signal u(n) are new realizations of Gaussian white noise se-

quences shaped by first-order FIR shaping filters hx1
(n) = [1,0.3]T ,
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Figure 2: NLMS algorithm: the simulation results and the predic-
tions using Eqs. (a) (39) and (41). (b)-(c) (42)-(43).

hx2
(n) = [1,−0.2]T , hx3

(n) = [1,0.5]T and hu(n) = [1,−0.3]T , re-
spectively. The beamformer filters gi and the feedback path filters

hi(n) are modeled as fixed first-order FIR filters g1 = [1,0.36]T ,

g2 = [1,−0.32]T , g3 = [1,0.23]T , h1(n) = [1,0.14]T , h2(n) =
[1,−0.4]T and h3(n) = [1,0.21]T , respectively. The verification of
the predicted results using the derived expressions is possible be-
cause we know the true feedback paths hi(n). Hence, we can use
Eqs. (18), (8), (9) and (11) to compute the true PTF from the sim-
ulations. In both experiments, 100 simulation runs are performed
to obtain an averaged ξ (ω,n), and each simulation run has a du-

ration of 104 iterations. The initial feedback path estimates are

ĥi(0) = 0L×1, where L = 32.

In the first experiment, the true feedback paths are fixed during
the first half of the simulations, whereas random walk variations
with variances σ2

h1
= 0.0384, σ2

h2
= 0.0332 and σ2

h3
= 0.0024 are

added during the second half. A fixed step size µ(n) = 2−4 is used
for the NLMS algorithm, whereas a forgetting factor λ = 0.999 is
used for the RLS algorithm.

The simulated and predicted results, at a representative exam-
ple frequency ω = 2πl/L, where l = 7, are shown in Figs. 2(a) and
3(a), respectively. In both cases, the simulation results confirm the
predicted convergence rate and steady-state behavior with/without
the feedback path variations. Furthermore, despite the underlying
asymptotic assumptions of L → ∞, µ(n) → 0 and λ → 1 in the
analysis, we observe that the derived expressions are accurate for

practical values as L = 32, µ(n) = 2−4 and λ = 0.999.

In the second experiment, for the NLMS algorithm, we use Eqs.
(42)-(43) to compute the step size µ(n) to achieve a desired conver-
gence rate of −0.005 dB/iteration and a steady-state value of −6
dB, respectively. Similarly, for the RLS algorithm, we use Eqs.
(47)-(48) to determine the forgetting factor λ to achieve the same
behaviors. The feedback paths are fixed in this experiment, other-
wise the same settings as in the first experiment are used.

The simulated and predicted results at the frequency bin l = 7
are shown in Figs. 2(b)-(c) and 3(b)-(c), respectively. Again, the
simulation results confirm the derived expressions.

Furthermore, the statistically identical behaviors demonstrated
in Figs. 2(b)-(c) and 3(b)-(c) can be explained by the fact that µ(n)
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(c) Desired Steady−State Value = −6 dB
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Predicted Steady−State Value: Time Inv. Sys.

Predicted Steady−State Value: Time Var. Sys.

Figure 3: RLS algorithm: the simulation results and the predictions
using Eqs. (a) (44) and (46). (b)-(c) (47)-(48).

and λ were chosen in accordance with Eq. (49).

7. CONCLUSIONS

In this work, we extended our previous work [4] based on the LMS
algorithm. Specifically, we derived analytic expressions for the con-
vergence rate, system stability bound and the steady-state behav-
ior, in terms of the power transfer function, when using the NLMS
and RLS algorithms for acoustic feedback/echo cancellation, in a
multiple-microphone and single-loudspeaker system with a beam-
former. Furthermore, we demonstrated that with an appropriate step
size choice, the LMS and NLMS algorithms are statistically iden-
tical, whereas the behavior of the RLS algorithm is generally dif-
ferent than the LMS and NLMS algorithms, and we identified con-
ditions for obtaining statistically identical behaviors for the NLMS
and RLS algorithms.
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