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ABSTRACT

Provided that one keeps in mind the CRB limitations, that
is, to become an overly optimistic lower bound when the ob-
servation conditions degrades, the CRB is a lower bound of
great interest for radar system analysis and design in the
asymptotic region. Even though there are many available
CRB formulas for target parameters in the open literature,
each CRB formula has been derived under particular radar
modelling. Therefore, what is missing is a neat CRB formula
valid independently of the radar modelling and its underly-
ing approximations. The aim of this paper is to provide
a general CRB closed-form valid for all possible diversities
(temporal, spatial, code) in case of Gaussian circular deter-
ministic observations, which describe accurately an active
radar system.

1. INTRODUCTION

Minimal performance bounds allow for calculation of the best
performance that can be achieved in the Mean Square Error
(MSE) sense, when estimating parameters of a signal cor-
rupted by noise. Historically the first MSE lower bound for
deterministic parameters to be derived was the Cramér-Rao
Bound (CRB), which was introduced to investigate funda-
mental limits of a parameter estimation problem or to assess
the relative performance of a specific estimator (efficiency)
[15]. It has since become the most popular lower bound due
to its simplicity of calculation, the fact that in many cases
it can be achieved asymptotically (high SNR and/or large
number of snapshots) by Maximum Likelihood Estimators
(MLE) [15], and last but not least, its noticeable property of
being the lowest bound on the MSE of unbiased estimators.
This initial characterization of unbiased estimators has been
significantly generalized by Barankin work, who derived the
highest lower bound on the MSE (BB) of unbiased estima-
tors, which is generally incomputable analytically [1][14].

Therefore, since then, numerous works detailed in [1][14]
have been devoted to deriving computable approximations
of the BB and have shown that the CRB and the BB can
be regarded as key representatives of two general classes of
bounds, respectively the Small-Error bounds and the Large-
Error bounds. These works have also shown that in non-
linear estimation problems three distinct regions of opera-
tion can be observed. In the asymptotic region, the MSE is
small and, in many cases, close to the Small-Error bounds.
In the a priori performance region where the number of in-
dependent snapshots and/or the SNR are very low, the ob-
servations provide little information and the MSE is close to
that obtained from the prior knowledge about the problem.
Between these two extremes, there is an additional ambigu-
ity region, also called the transition region. In this region,
the MSE of MLEs usually deteriorates rapidly with respect
to Small-Error bounds and exhibits a threshold behaviour
corresponding to a ”performance breakdown”. The nature
of this phenomenon is specified by a complicated non-smooth
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behaviour of the likelihood function in the ”threshold” area
where it tends to generate outliers [15].
Small-Error bound such as the CRB are not able to handle
the threshold phenomena, whereas it is revealed by Large-
Error bounds that can be used to predict the threshold
value. Unfortunately, the computational coast of Large-
Error bounds is prohibitive in most applications when the
number of unknown parameters increases.
Therefore, provided that one keeps in mind the CRB limita-
tions, that is, to becomes an overly optimistic lower bound
when the observation conditions degrades (low SNR and/or
low number of snapshots), the CRB is still a lower bound of
great interest for radar (or other) system analysis and design
in the asymptotic region, as it is simple to calculate and it
is usually possible to obtain general closed form expressions.
In active radar and sonar, a known waveform is transmitted,
and the signals reflected from the targets of interest are used
to estimate their parameters. Typically, the received signals
are modelled as scaled, delayed, and Doppler-shifted versions
of the transmitted signal; see, e.g., [16]. Estimation of the
time delay and Doppler shift provides information about the
range and radial velocity of the targets. The use of spatial
diversity, i.e. antenna arrays, compared with a single sen-
sor, guarantees more accurate range and velocity estimation
and allows estimation of the targets direction. Last, but no
least, waveform diversity [18] may be used to improve the
estimation of all targets parameters. Thus, it is of interest
to compute CRB expressions for active radars that are able
to take into account all possible diversities. Even though
there are many CRB formulas on this topic since numerous
works have been done in this field (see references in [15][18]),
each CRB formula is specific to some particular radar mod-
elling (narrow band arrays, narrow band transmitted signals,
temporally white noise, Doppler effect approximation,....).
Therefore, to the best of our knowledge, what is missing is a
neat CRB formula valid for any radar signals, independently
of underlying approximations. It is the aim of this paper to
provide such a general CRB closed-form for Gaussian cir-
cular deterministic observation model. Indeed nowadays,
the capability of modelling the radar cross section (RCS),
or even better the backscattering matrix, of complex target
along a given trajectory allows to refine the statistical pre-
dictions available from the Swerling amplitude fluctuation
models. Therefore, provided relevant backscattering infor-
mation is available, the most accurate statistical prediction
will be obtained from the deterministic observation model
(in comparison with he stochastic one which corresponds to
Swerling I-II targets).
As the backscattering parameters are generally complex, the
first part of the paper (Sec. II) is dedicated to outline a gen-
eralization to complex parameters of the Barankin rationale
for deriving MSE lower bounds [1] that avoids sophisticated
matrix manipulations generally used with complex param-
eters [5][19]. This approach is worth knowing at it allows
simple derivation (constrained CRB) or clarification (regu-
larity conditions) of existing results as detailed in [9]. The
second part of the paper (Sec. III and IV) is dedicated not
only to outline the derivation of a general CRB formula for
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band-limited deterministic radar observations (21) that en-
compasses all previously released CRB expressions, but also
to provide a general method optimizing its use.

2. CRAMÉR-RAO BOUND FOR MIXED (REAL
AND COMPLEX) PARAMETERS

The notational convention adopted is as follows: a, a, A
indicates respectively a scalar, a vector and a matrix quan-
tity. The matrix/vector conjugate is indicated by a super-
script ∗ and the matrix/vector transpose conjugate is indi-

cated by a superscript H . If θ = (θ1, θ2, . . . , θP )
T , then:

∂
∂θ

=
(

∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θP

)T
. ⊙ denotes the Hadamard prod-

uct. ⊗ denotes the Kronecker product. 1 (x) denotes the
constant real-valued function equal to 1. x denotes:

x = x if x ∈ RQ

x =

(
x
x∗

)
if x ∈ CQ\RQ(

xc

xr

)
=

(
xc

x∗
c

xr

)
if xc ∈ CQ \ RQ, xr ∈ RQ′

(1)

Regarding the definition of Hermitian product ⟨ | ⟩, we
adopt the convention used in books of mathematics [4]
where a sesquilinear form is a function in two variables on
a complex vector space U which is linear in the first vari-
able and semi-linear in the second. This convention allows

to define the Gram matrix G
(
{u}

[1,Q]
, {c}

[1,P ]

)
(P × Q

complex matrix) associated to 2 families of vectors of U,
{u}

[1,Q]
= {u1, . . . ,uQ} and {c}

[1,P ]
= {c1, . . . , cP } as the

one verifying [4]:⟨
Q∑

q=1

xquq |
P∑

p=1

ypcp

⟩
= yHG

(
u

[1,Q]
, c

[1,P ]

)
x (2)

where x = (x1, . . . , xQ)
T ,y = (y1, . . . , yP )

T . For notational

convenience G
(
{u}

[1,Q]

)
= G

(
{u}

[1,Q]
, {u}

[1,Q]

)
. Beware

that most reference signal processing books [15] adopt the
opposite convention for sesquilinear form, that is to be semi-
linear in the first variable and linear in the second. As a
consequence, the equivalent form in ”signal processing no-
tation” of any inequality introduced in the present paper is
obtained by transposing inequality terms (matrices).

2.1 Differentiability on real or complex field

The sets of complex (C) and real (R) numbers being two
fields, the differentiability of a vector of functions f (θ) :

(k′)
P → kQ where k′ ≡ C or R and k ≡ C or R can be

characterized by the following property:

f (θ + dθ) = f (θ)+
∂f (θ)

∂θT
dθ + o (dθ) ,

{
o (dθ) = dθ ⊙ ε (dθ)
lim

∥dθ∥→0
∥ε (dθ)∥ = 0

(3)
where ∥ ∥ is the canonical Hermitian (or Euclidian) norm on

(k′)
P

and kQ: ∥x∥ =
√∑

i |xi|2. Actually, (3) still holds if

θ have mixed components (complex and real): θ =
(
Re {θc}T , Im {θc}T ,θT

r

)T
θ =

(
θT
c , (θ

∗
c)

T ,θT
r

)T , θc ∈ CPc , θr ∈ RPr .

Then, any functions of θ can be written in a dual form:{
f (θ) : R2Pc+Pr → kQ

f (θ) = h
(
θ1
c ,θ

2
c ,θr

)∣∣
(θc,θ∗

c ,θr)
: C2Pc × RPr → kQ ,

where h
(
θ1
c ,θ

2
c ,θr

)
= f

(
θ1
c+θ2

c
2

,
θ1
c−θ2

c
2j

,θr

)
. Therefore, if

f ( ) and h ( ) are differentiable (1)(3):

∂f (θ)

∂θT
dθ =

∂f (θ)

∂θT
dθ (4)

provided that θc and θ∗
c are formally considered as inde-

pendent variables for derivation. Note that identity (4) still
holds if Pr = 0 or Pc = 0.

2.2 Unified derivation

Throughout the present paper, unless otherwise stated, x
denotes the random observation vector of dimension N ,
Ω denotes the observations space and L2 (Ω) denotes the
complex Hilbert space of square integrable functions over
Ω. The probability density function (p.d.f.) of x is de-
noted p (x;θ) and depends on a vector of P real parameters
θ = (θ1, . . . , θP ) ∈ Θ, where Θ denotes the parameter space.
Additionally, we assume that the observation vector x corre-
sponds to a parametric observation model involving Pr ≥ 0
real unknown parameters (delays, directions of arrival, ...)
and Pc ≥ 0 complex unknown parameters (spatial trans-
fer functions components, complex amplitudes, ...) where
2Pc + Pr = P , leading to a p.d.f. of the dual form:

p (x;θ) , θ =
(
Re
{
θT
c

}
, Im

{
θT
c

}
,θT

r

)T
(5)

p (x;θ) , θ =
(
θT
c , (θ

∗
c)

T
,θT

r

)T
(6)

In the following we will only consider the form (6) since
it includes (5) when Pc = 0. Let θ0 be a selected value

of the parameter θ, and ĝ
(
θ0
)
(x) an estimator of g

(
θ0
)

where g (θ) = (g1 (θ) , . . . , gQc (θ) , gQc+1 (θ) , . . . , gQ (θ))T

is a vector of Q functions of θ, the first Qc ones being
complex-valued functions, the last Qr = Q−Qc being real-
valued functions, where Qc ∈ [0, Q]. Then, the statistical
performance of any estimator of g

(
θ0
)
is fully characterized

- including characterization of real and imaginary parts [9] -
in the MSE sense, by the computation of:

MSEθ0

[
δT ĝ

(
θ0
)
(x)
]
=
∫
Ω

∣∣∣δT
(
ĝ
(
θ0
)
(x)− g

(
θ0))∣∣∣2 p (x;θ0) dx,

which is a norm deriving from an Hermitian product ⟨ | ⟩θ0 :

MSEθ0

[
δT ĝ

(
θ0
)
(x)
]
= δHGθ0

({
ĝ
(
θ0
)
(x)− g

(
θ0)}) δ

(7)

⟨g (x) | h (x)⟩θ = Eθ [g (x)h
∗ (x)]

where:
{h (x)} = {h1 (x) , . . . , hQ (x)} (8)

denotes a family of vectors which elements are the vector
components. Hence the interest of finding a matrix Bθ0

independent of ĝ
(
θ0
)
(x) and able to lower bound expression

(7). To avoid the trivial solutionBθ0 = 0, all that is required
is to define a constraint that is not satisfied by the trivial
solution, as local unbiasedness for example:

Eθ0+dθ

[
ĝ
(
θ0
)
(x)
]
= g

(
θ0 + dθ

)
+ o (dθ) (9)

meaning that, up to the first order and in the neighbourhood

of θ0, ĝq
(
θ0
)
(x) remains an unbiased estimator of gq

(
θ0
)
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independently of a - small - variation of θ. Actually (9) can
be rewritten in two different but equivalent forms:

Eθ0+dθ

[
ĝ
(
θ0
)
(x)
]

= o (dθ) + g
(
θ0)+ ∂g

(
θ0
)

∂θT
dθ

Eθ0+dθ

[
ĝ
(
θ0
)
(x)
]

= o (dθ) + Eθ0

[
ĝ
(
θ0
)
(x)
]
+

Eθ0

[
ĝ
(
θ0
)
(x)

∂ ln p
(
x;θ0

)
∂θT

]
dθ

leading to the constraints (uniqueness of Taylor series):
Eθ0

[
ĝ
(
θ0
)
(x)

∂ ln p(x;θ0)
∂θT

]
=

∂g(θ0)
∂θT

Eθ0

[
ĝ
(
θ0
)
(x)
]
= g

(
θ0
)

which can be rewritten as:

Gθ0

(
{u}

[1,Q]
, {c}

[1,P+1]

)
=

[
∂gT (θ0)

∂θ

0T

]
(10)

where {u}
[1,Q]

=
{
ĝ
(
θ0
)
(x)− g

(
θ0
)}

and {c}
[1,P+1]

={
∂ ln p(x;θ)

∂θ

∗
, 1 (x)

}
. As a consequence, the problem of find-

ing a lower bound of Gθ0

(
{u}

[1,Q]

)
in (7) for locally

unbiased estimators (9), amounts to the minimization of

Gθ0

(
{u}

[1,Q]

)
under the set of linear constraints (10), which

solution is a standard algebra result [9]:

min
{
Gθ0 ({u})

}
=

(
∂g
(
θ0
)T

∂θ

)H

F−1
θ0

(
∂g
(
θ0
)T

∂θ

)
(11)

Fθ0 = Gθ0

({
∂ ln p(x;θ)

∂θ

∗})
= Eθ0

[
∂ ln p(x;θ)

∂θ
∂ ln p(x;θ)

∂θ

H
]

(
ĝ
(
θ0
)
(x)− g

(
θ0))T

eff
=

∂ ln p (x;θ)

∂θ

H

F−1
θ0

∂gT
(
θ0
)

∂θ

where F−1
θ0 = CRBθ0 and Fθ0 is the Fisher Information

Matrix (FIM).
For sake of completeness, notice is hereby given that the
derivation outlined in this section (and detailed in [9]), al-
lows a unique simple derivation, whatever the nature (real
or complex) of the unknown parameters that [9]:
• avoids sophisticated matrix manipulations generally used
with complex parameters [5][19],
• corrects previously incomplete derivation,
• allows to condense to a few lines previous works [5][12] on
FIM singularity and constrained CRB,
• allows to clarify standard regularity conditions so far need-
lessly too restrictive: usual regularity condition on the dif-
ferentiability of both p (x;θ) and g (θ) at θ0 can be relaxed
to semi-differentiability (left and right differentiability) only,
under certain conditions.

3. CRB FOR A SINGLE DETERMINISTIC
BAND LIMITED OBSERVATION

In radar, and many other practical problems of interest
(sonar, communication, ...), the complex observation vec-
tor x consists of a bandpass signal with bandwidth B(
f ∈

[
−B

2
, B

2

])
, which is the output of an Hilbert filtering

leading to an ”in-phase” real part associated to a ”quadra-
ture” imaginary part [15] i.e. a complex circular vector of

the form:

x (t;θ) = s (t;θs) + n (t;θn) , θT =
(
θT
s ,θ

T
n

)
(12)

s (t;θs) =

M∑
m=1

b (t; εm)σm = B (t;Ξ)σ

θT
s =

(
σT ,σH ,ΞT

)
,ΞT =

(
εT1 , . . . , ε

T
M

)
,σ = (σ1, . . . , σM )T

where:
• s (t;θs) is the radar signal of interest consisting of M
backscattered signals function of a parametric propagation
model b (t; εm) of finite duration T depending on K real pa-
rameters εT

m = (ε1,m, . . . , εK,m), and of a complex backscat-
tered amplitude σm constant during duration T ,
• n (t;θn) is the nuisance signal consisting of noise plus in-
terference contribution depending on the parameters θn.
Under the assumption of Gaussian centred nuisance and un-
known a priori p.d.f. p (σ), (12) belongs to the set of deter-
ministic observation models [15] which p.d.f. at t is:

p (x;t,θ) =
e−(x(t;θ)−s(t;θs))

H
C−1

n (t,θn)(x(t;θ)−s(t;θs))

πN |Cn (t,θn)|

Additionally, if n (t;θn) is a wide sense stationary (WSS)
band limited process with spectral density matrix Γ (f,θn)
and autocovariance matrix R (τ ,θn), then:

Γ (f,θn) =
+∞∫
−∞

R (τ ,θn) e
−j2πfτdτ =

+∞∑
−∞

R
( n

B
,θn

) e−j2π f
B

n

B
,

and using previously released results such as:
• the FIM for temporally white nuisance [2][15],
• the property of the FIM to be invariant to reversible oper-
ations on the received signals [21],
• a theorem due to Whittle [3][17, th. 9],
it can be shown [10] that the FIM associated to (12) observed
during the finite duration T of b (t; εm) is given by:

F (θ) =

[
Fs (θ) 0

0 Fn (θ) = TA (θ)

]
Fs (θ)l,k = 2Re

{⟨
∂s(f ;θs)
∂(θs)k

| ∂s(f ;θs)
∂(θs)l

⟩
θn

}

A (θ)l,k =

B
2∫

−B
2

tr

(
Γ (f,θn)

−1 ∂Γ(f,θn)
∂(θn)k

Γ (f,θn)
−1 ∂Γ(f,θn)

∂(θn)l

)
df

(13)

⟨x (f) | y (f)⟩θn
=

B
2∫

−B
2

y (f)H Γ (f,θn)
−1 x (f) df (14)

As we are mainly interested in the estimation of the param-
eters of the M signals backscattered by the M targets, we
will only focus in the following on CRBθs|θ (θ) = F−1

s (θ)
where:

Fs (θ)l,k = 2Re

{⟨
∂s (f ;θs)

∂ (θs)k
| ∂s (f ;θs)

∂ (θs)l

⟩
θn

}

For sake of legibility in the following, the dependency of vec-
tors and matrices of L2 (Ω), e.g. s (f ;θs), b (f ; εm), B (f ;Ξ)
..., on frequency f will be omitted wherever this omission
is unambiguous. Additionally, let notation {A (f)} be the
generalization of (8) denoting the family of column vectors
of matrix A (f):

{A (f)} = {[a1 (f) . . .aQ (f)]} = {a1 (f) , . . . ,aQ (f)} (15)
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Then, if A (f) = [a1 (f) . . .aQ (f)] and C (f) =
[c1 (f) . . . cP (f)], Gθn ({A} , {C}) is the P×Q complex ma-
trix defined by:

Gθn ({A} , {C})p,q = ⟨aq | cp⟩θn
= ⟨aq (f) | cp (f)⟩θn

(16)

Let Π{B(Ξ)} denote the orthonormal projector on
span {B (f ;Ξ)}, i.e. the span of the vector columns
of matrix B (f ;Ξ):

Π{B(Ξ)} (a) = Π{B(f ;Ξ)} (a (f)) (17)

= B (f ;Ξ)G−1
θn

({B (Ξ)})Gθn (a, {B (Ξ)})

and let Π⊥
{B(Ξ)} denote the orthonorrmal projector on the

orthogonal complement of span {B (f ;Ξ)}:

Π{B(Ξ)} (a) + Π⊥
{B(Ξ)} (a) = a (18)

Let us define:

Π{B(Ξ)} ({A}) =
{
Π{B(Ξ)} (a1) , . . . ,Π{B(Ξ)} (aQ)

}
(19)

then:

Gθn

(
Π⊥

{B(Ξ)} ({A}) ,Π⊥
{B(Ξ)} ({C})

)
p,q

=

Gθn

(
Π⊥

{B(Ξ)} (aq) ,Π
⊥
{B(Ξ)} (cp)

)
Gθn

(
Π⊥

{B(Ξ)} (aq) ,Π
⊥
{B(Ξ)} (cp)

)
= Gθn (aq, cp)

−GH
θn

(cp, {B (Ξ)})G−1
θn

({B (Ξ)})Gθn (aq, {B (Ξ)})

Finally, using notation (15-19), some simple derivative com-
putations lead to:

Fs (θ) =

[
Fσ,σ∗ 0 Fσ,Ξ

0 Fσ∗,σ Fσ∗,Ξ

FΞ,σ∗ FΞ,σ FΞ,Ξ

]
Fσ,σ∗ = F∗

σ∗,σ = Gθn ({B (Ξ)} , {B (Ξ)})

FΞ,σ∗ = FH
σ,Ξ = Gθn

(
{B (Ξ)} ,

{
∂s (θs)

∂ΞT

})
FΞ,σ = FH

σ∗,Ξ = F∗
Ξ,σ∗

Then, by resorting to the inverse of a partitioned matrix, one
obtains that [10]:

BCR−1
Ξ (θ) = 2Re

{
Gθn

(
Π⊥

{B(Ξ)}

({
∂s

∂ΞT

}))}
(20)

Additionally, after tedious, though straightforward compu-
tation detailed in [10], (20) can be rewritten as:

BCR−1
Ξ (θ) = 2Re {HΞ (θ)⊙ (Σs ⊗ 1K×K)} (21)

HΞ (θ) =

 H (θ)1,1 . . . H (θ)1,M
...

. . .
...

H (θ)M,1 . . . H (θ)M,M

 , Σs =
(
σσH

)T

H (θ)m1,m2
=

Gθn

(
Π⊥

{B(Ξ)}

({
∂b(εm2)

∂εT

})
,

Π⊥
{B(Ξ)}

({
∂b(εm1)

∂εT

}))
where 1P×P is a P × P matrix of ones.

4. CRB FOR L DETERMINISTIC BAND
LIMITED OBSERVATIONS

Results released in the previous section can be extended to
the observation of M targets during L independent band
limited observations with band Bl:

xl
(
t;θl

)
= s

(
t;θl

s

)
+nl

(
t;θl

n

)
, s

(
t;θl

s

)
= Bl

(
t;Ξl

)
σl

(22)
where:

•
(
Ξl
)T

=
((

εl
1

)T
, . . . ,

(
εl
M

)T)
and εl

m is the vector of pa-

rameters of dimension P l for the lth observation model and
the mth target,

• σl =
(
σl
1, . . . , σ

l
M

)T
is the vector of complex amplitudes

of the M targets for the lth observation model,
• Bl

(
t;Ξl

)
=
[
bl
(
t; εl

1

)
. . .bl

(
t; εl

M

)]
and bl

(
t; εl

m

)
is a

vector of N parametric propagation model of finite duration
T l, depending on a vector of P l real parameters εl

m,
• nl

(
t;θl

n

)
are Gaussian complex circular independent noises

with spectral density matrix Γl
(
f ;θl

n

)
, f ∈

[
−Bl

2
, Bl

2

]
.

Let OT =
(
OT

s ,O
T
n

)
, OT

s =
((

θ1
s

)T
, . . . ,

(
θL
s

)T)
and OT

n =((
θ1
n

)T
, . . . ,

(
θL
n

)T)
. Then:

F (O) =

[
Fs (O) 0

0 Fn (O)

]
,Fs (O) =

 Fs

(
θ1
)

0 0

0
. . . 0

0 0 Fs

(
θL
)


(23)
where Fs

(
θl
)
is given by (13) with:

⟨x (f) | y (f)⟩θl
n
=

Bl

2∫
−Bl

2

y (f)H Γl
(
f,θl

n

)−1

x (f) df.

Expression (23) provides all the terms requested to compute
any particular CRB associated to L observations.
As an example, in most applications and reference papers
[19] or textbooks [6][11][15], a more restrictive model is gen-
erally considered where the vector of N parametric functions
bl
(
t; εl

m

)
and the noise spectral density matrix Γl

(
f ;θl

n

)
are invariant during the L observations:

bl
(
t; εl

m

)
= b (t; εm) , Γl

(
f ;θl

n

)
= Γ (f ;θn) . (24)

Then, there are two ways of computing the resulting
BCR−1

Ξ (θ). The first one (standard) consists in considering

that the L observations are quasi i.i.d. (σl excepted). As
a consequence, since the FIM are covariance matrices (11)
associated to each observation (13), they can be added and:

BCR−1
Ξ (θ) = 2LRe {HΞ (θ)⊙ (Σs ⊗ 1K×K)} (25)

Σs =
1

L

L∑
l=1

σl
(
σl
)H

The second one, more general, consists in exploiting relation-
ship between parameters during the L observations. Indeed,
the usual invariance hypotheses (24) are a set of parameter
equality constraints:

Ξl −Ξ1 = 0, θl
n − θ1

n = 0, l ∈ [1, L] ⇔ f (O) = 0

Therefore the FIM (25) associated to the set of L observa-
tions is also a constrained FIM [5][13][9] leading to a con-
strained CRB given by:

BCRΞ (θ) = U∗
O

(
UT

OFs (O)U∗
O

)−1

UT
O
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where UΘ is a basis of ker
{

∂f(O)

∂ΘT

}
. This second approach

highlights the capability of computing, at least numerically,
from Fs (O) (23) any specific CRB associated to particular
hypotheses linking the parameters of the L observations.

5. MISCELLANEOUS COMMENTS

First of all, to the best of our knowledge, (21) and (25) have
never been released neither in papers [2][19] nor text books
[7][15][18]. They encompasses all previously released results
on this topic, including:
• the standard narrow band case at a single frequency f0,
where (22) becomes [15][19]:

xl
(
θl
)
= B (f0;Ξ)σl + nl (θn) , Γl (f,θn) = R (θn) δ (f − f0)

⟨x | y⟩θn
= y (f0)

H R (θn)
−1 x (f0)

and (21) leads to [15][19]:

H (θ)m1,m2
=

∂b(f0;εm1)
∂εT

H

Π⊥
{B(Ξ)}

∂b(f0;εm2)
∂εT

Π⊥
{B(Ξ)} = I−B (f0;Ξ)

(
B (f0;Ξ)H B (f0;Ξ)

)−1

B (f0;Ξ)H

• the temporally white nuisance case [2][18] for narrow band
arrays, where:

⟨x (f) | y (f)⟩θn
= B

T
2∫

−T
2

y (t)H R (θn)
−1 x (t) dt

=

BT
2∑

i=−BT
2

y
(

i
B

)H
R (θn)

−1 x
(

i
B

)
Moreover, it is also possible to consider that b (t; εm) re-
sults from a combination of a set of P elementary signals
ep (t; εm):

b (t; εm) =

P∑
p=1

ep (t; εm)

Then, according to the definition of each ep (t; εm) and its lo-
calization in time, (21) and (25) implicitly take into account
the multiple impulsions case necessary to properly take into
account both Doppler effect and waveform diversity, includ-
ing modulated pulse and OFDM[18].
Last let us recall that, for each source [20]:
• the highest (worst) CRB is obtained when the sources am-
plitudes are fully correlated (rank (Σs) = 1),
• the lowest (best) CRB is obtained when the sources am-
plitudes are uncorrelated (Σs is diagonal).

6. CONCLUSION

We have provided in this paper a general CRB expression
(21)(23)(25) for band-limited radar signals. This expression
allows to take into account all the possible diversities (tem-
poral, spatial, code) in a single formalism independent of
the underlying radar scene modelling (narrow or wide band
arrays, narrow or wide band transmitted signals, noise plus
interference features, ....). It is key feature when one wants
to assess the benefits of new trends in waveform design (like
use of OFDM signals [18]) on high resolution capabilities
of active radar in comparison with transmission of standard
linear FM modulated pulse [10].
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