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ABSTRACT 

In this paper, we consider partial updating of decision-

feedback equalizers (DFEs). Application of data-dependent 

partial-update techniques to DFE is complicated by the fact 

that the feedback filter regressor has entries with discrete 

amplitudes, making magnitude-based sorting impossible. We 

present a novel selective-partial-update algorithm for DFEs 

that treats feedforward and feedback filters separately and 

utilizes past decision-directed errors for feedback filter coef-

ficient selection. In addition, a new partial-update scheme is 

proposed that switches between selective partial updates 

and periodic partial updates to make effective use of train-

ing periods in telecommunication applications. Simulation 

results are presented to corroborate the effectiveness of the 

new partial-update DFEs in dealing with realistic frequen-

cy-selective and time-varying channels at reduced complexi-

ty. 

1. INTRODUCTION 

Ever-growing transmission rates of communication systems 

have led to an increased interest in decision-feedback equal-

izers (DFEs). The main advantage of DFE over linear equal-

izers is its capability to cancel inter-symbol interference (ISI) 

with reduced noise enhancement, resulting in considerably 

lower symbol error rate (SER) than that of a linear equalizer 

[1]. The underlying principle of DFE is to eliminate future 

ISI contributions of detected symbols [2]. 

In practice, the receiver is not initially aware of the dynamics 

of the channel and the channel can vary in time. A common 

practical way to enable tracking time variations of the chan-

nel by an equalizer is to implement it as an adaptive filter [3]. 

Adaptive DFE is well known for its relatively simple struc-

ture. However, in scenarios where the channel is highly dis-

persive or multiple antennas are utilized, DFE’s complexity 

may become prohibitive. Fractionally-spaced equalization 

can make it even more expensive. Given that the equaliz-

er/detector block is the computationally most demanding part 

of a communication system, it is important to have a reliable 

and low-complexity equalization/detection method with a 

sensible tradeoff between performance and complexity. Par-

tial updating offers an attractive solution here. Although par-

tial-update techniques have proven their capability in several 

linear adaptive filtering applications e.g. audio/network echo 

cancellation, their application to DFE has not yet been ex-

plored. As distinct from linear finite impulse response (FIR) 

adaptive filters, for which the existing partial-update tech-

niques have been originally derived, DFE is a nonlinear 

adaptive filter. DFE comprises two FIR adaptive filters, viz. 

feedforward and feedback filters. These filters have input 

signals with different statistics and covariance matrices, im-

plying that for partial updating, the feedforward and feedback 

filters must be treated separately rather than as one coeffi-

cient vector. Hence, some caveats should be taken into ac-

count when designing a partial-coefficient-update technique 

for DFE, especially for data-dependent partial updating 

which uses input regressor for coefficient selection. 

The paper is organized as follows. In Section 2, we review 

the NLMS algorithm for DFE. In Section 3 we derive a ge-

neric partial-update NLMS-DFE using an instantaneous ap-

proximation of Newton’s method. We develop a new selec-

tive-partial-update NLMS-DFE based on the principle of 

minimum disturbance in Section 4. We introduce a new 

combined selective-periodic partial-update NLMS-DFE in 

Section 5 with the objective of making effective use of lim-

ited training data. Computational complexity of all the algo-

rithms considered is analysed in Section 6. We provide simu-

lation results in Section 7 and draw conclusions in Section 8. 

2. NLMS-DFE 

The coefficients of DFE shown in Fig. 1 can be updated ac-

cording to the NLMS algorithm [3] via 

𝐰(𝑛 + 1) = 𝐰(𝑛) +
𝜇

𝜖 + ‖𝐲(𝑛)‖ 
𝑒 (𝑛)𝐲(𝑛) (1) 

where 

𝐰(𝑛) = [
𝐟(𝑛)

𝐛(𝑛)
], 

𝐲(𝑛) = [
𝐱(𝑛)

𝐝̂(𝑛 − 𝛿 − 1)
], 

Fig. 1, Block diagram of a decision-feedback equalizer. 
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 ̃(𝑛 − 𝛿) = 𝐰 (𝑛)𝐲(𝑛), 
and 

𝑒(𝑛) =  ̂(𝑛 − 𝛿) −  ̃(𝑛 − 𝛿). 

Here, 𝐟(𝑛) and 𝐱(𝑛) = [ (𝑛),  (𝑛 − 1), ⋯ ,  (𝑛 − 𝐿 + 1)]
 
 

are 𝐿 × 1 vectors denoting feedforward filter (FFF) coeffi-

cients and received signal regressor vector (FFF input) while 

𝐛(𝑛) and 𝐝̂(𝑛 − 𝛿 − 1) = [ ̂(𝑛 − 𝛿 − 1),  ̂(𝑛 − 𝛿 −

2),⋯ ,  ̂(𝑛 − 𝛿 − 𝐿 )]
 
 are 𝐿 × 1 vectors representing 

feedback filter (FBF) coefficients and equalizer output re-

gressor vector (FBF input), respectively. Moreover,  ̃(𝑛 −

𝛿) and  ̂(𝑛 − 𝛿) are hard decision device input and output at 

time index 𝑛, whereas 𝐿 , 𝐿 , 𝜇, 𝜖, 𝛿, ‖∙‖ , (∙) , and (∙)  

stand for FFF and FBF temporal spans, adaptation step size, 

regularization parameter, decision delay, Euclidean norm, 

transposition, and complex-conjugate transposition, respec-

tively. It should be noted that in the training mode,  ̂(𝑛 − 𝛿) 
is replaced by the known-for-the-receiver transmitted sym-

bol,  (𝑛 − 𝛿). 

3. PARTIAL-UPDATE NLMS-DFE 

To derive a generic partial-update NLMS algorithm for DFE, 

we apply an instantaneous approximation to Newton’s meth-

od [3]. Newton’s method is a fast-converging iterative esti-

mation method and its regularized version is given by 

𝐰(𝑛 + 1) = 𝐰(𝑛) + 𝜇(𝜖𝐈 + 𝐑)  (𝐩 − 𝐑𝐰(𝑛)) (2) 

where 𝐑 = 𝐸[𝐲(𝑛)𝐲 (𝑛)] is the input autocorrelation matrix, 

𝐩 = 𝐸[𝐲(𝑛) ̂ (𝑛 − 𝛿)] is the cross-correlation vector be-

tween the input of the equalizer filters and the desired equal-

izer output and 𝐈 is an (𝐿 + 𝐿 ) × (𝐿 + 𝐿 ) identity ma-

trix. Partial updating of the adaptive filter coefficients replac-

es 𝐑 with 𝐑 = 𝐸[𝐈 (𝑛)𝐲(𝑛)𝐲
 (𝑛)] and 𝐩 with 𝐩 =

𝐸[𝐈 (𝑛)𝐲(𝑛) ̂
 (𝑛 − 𝛿)] where 𝐈 (𝑛) is an (𝐿 + 𝐿 ) ×

(𝐿 + 𝐿 ) diagonal matrix with zeros and/or ones as diago-

nal entries selecting 𝑀 coefficients out of 𝐿 + 𝐿  for update 

at each iteration and 𝐸[∙] is the expectation operator. Conse-

quently, partial-update version of (2) becomes 

𝐰(𝑛 + 1) = 𝐰(𝑛) + 𝜇(𝜖𝐈 + 𝐑 )
  (𝐩 − 𝐑 𝐰(𝑛)). (3) 

The instantaneous approximation of (3) is obtained by simply 

stripping the expectation operator off the correlation matrix 

and cross-correlation vector: 

𝐰(𝑛 + 1) =

𝐰(𝑛) + 𝜇(𝜖𝐈 + 𝐈 (𝑛)𝐲(𝑛)𝐲
 (𝑛))

  
𝑒 (𝑛)𝐈 (𝑛)𝐲(𝑛). 

(4) 

Applying the matrix inversion lemma [4], we get 

            (𝜖𝐈 + 𝐈 (𝑛)𝐲(𝑛)𝐲
 (𝑛))

  
𝐈 (𝑛)𝐲(𝑛) 

                 =
1

𝜖
𝐈 (𝑛)𝐲(𝑛) (1 −

𝐲 (𝑛)𝐈 (𝑛)𝐲(𝑛)

𝜖 + 𝐲 (𝑛)𝐈 (𝑛)𝐲(𝑛)
) 

                 =
𝐈 (𝑛)𝐲(𝑛)

𝜖 + 𝐲 (𝑛)𝐈 (𝑛)𝐲(𝑛)
 . (5) 

Substituting (5) into (4) yields the coefficient update equation 

for a partial-update NLMS-DFE: 

   𝐰(𝑛 + 1) 

            = 𝐰(𝑛) +
𝜇

𝜖 + ‖𝐈 (𝑛)𝐲(𝑛)‖
 
𝑒 (𝑛)𝐈 (𝑛)𝐲(𝑛) 

 

. 
(6) 

Several schemes have been introduced to control the compu-

tational complexity of adaptive filters by way of partial coef-

ficient updates. Data-independent approaches are based on 

the primary idea of selecting coefficient subsets for update in 

a round-robin fashion (sequential partial updates [5]) or up-

dating all the coefficients in a period greater than basic time 

index (periodic partial updates [6]). These partial-update 

adaptive filters may become unstable when the input signal is 

cyclostationary or periodic [7]. The stochastic partial updates 

method [8] offers a solution to such stability problems, where 

subsets of coefficients are randomly selected for update at 

each iteration. 

For sequential or stochastic partial updates, 𝑀 diagonal ele-

ments of 𝐈 (𝑛) are set to 1 and the rest are set to 0 at each 

iteration in a sequential or stochastic fashion. For periodic 

partial updates, 𝐈 (𝑛) is set to identity matrix once at each 

update period and is set to a zero matrix at other time in-

stances. 

Data-dependent partial-update methods use the regressor 

vector entries to select equalizer coefficients to be updated. 

Since the regressor vectors 𝐱(𝑛) and 𝐝̂(𝑛 − 𝛿 − 1) do not 

have the same statistics, this may result in 𝐈 (𝑛) favouring 

the FFF or FBF with larger input signal variance, leading to 

undesirable performance degradation as a result of both fil-

ters not having equal probability of receiving updates. In 

order to give a fair chance to all the coefficients (in FFF and 

FBF) for being updated, we define 𝑀 = 𝑀 +𝑀  where 𝑀  

and 𝑀  are the number of coefficients to be updated at each 

time instant from FFF and FBF, respectively. Accordingly, 

the matrix 𝐈 (𝑛) is redefined as 

𝐈 (𝑛) = *
𝐈  

(𝑛) 𝟎

𝟎 𝐈  
(𝑛)

+ (7) 

where 𝐈  
(𝑛) and 𝐈  

(𝑛) are 𝐿 × 𝐿  and 𝐿 × 𝐿  diagonal 

coefficient selection matrices to select 𝑀  out of 𝐿  and 𝑀  

out of 𝐿  coefficients from FFF and FBF, respectively. 

4. SELECTIVE-PARTIAL-UPDATE NLMS-DFE 

Data-independent approaches reduce the convergence rate, 

often proportional to the size of coefficient subsets in sequen-

tial or stochastic partial updates and the update frequency in 

periodic partial updates. On the other hand, data-dependent 

partial-update techniques offer better convergence perfor-

mance, where M-max updates [9] and selective partial up-

dates [10] are the most prominent ones. 

In selective-partial-update NLMS algorithm [10], the coeffi-

cients to be updated at each time instant are determined ac-

cording to the principle of minimum disturbance [3] by solv-

ing 
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min
𝐈 ( )

‖𝐰(𝑛 + 1) − 𝐰(𝑛)‖  
(8) 

which, using (6), can be rewritten as 

min
𝐈 ( )

‖
𝜇

𝜖 + ‖𝐈 (𝑛)𝐲(𝑛)‖
 
𝑒 (𝑛)𝐈 (𝑛)𝐲(𝑛)‖

 

 . (9) 

Excluding the trivial solution of zero inputs, (9) is simplified 

to 

max
𝐈 ( )

‖𝐈 (𝑛)𝐲(𝑛)‖
  (10) 

which means coefficients corresponding to the elements of 

the input regressor vector with the largest magnitudes should 

be selected for update at each time index [7], [10]. Using this 

criterion, the coefficient selection matrices become 

𝐈  
(𝑛) = [

𝑖 (𝑛) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑖  (𝑛)

] 
(11) 

𝑖 (𝑛)

= ,
1 i  | (𝑛 − 𝑘 + 1)|  {𝑀  maxima o  | (𝑛 − 𝑙 + 1)|      }

0 o     i  
 

and 

𝐈  
(𝑛) = [

𝑗 (𝑛) ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑗  (𝑛)

] 

(12) 
𝑗 (𝑛) 

= ,
1 i  | ̂(𝑛 − 𝛿 − 𝑘)|  {𝑀  maxima o  | ̂(𝑛 − 𝛿 − 𝑙)|

      
}

0 o     i  
. 

However, the selection criterion of (12) suggests ranking the 

elements of 𝐝̂(𝑛 − 𝛿 − 1) according to their magnitudes. 

Clearly, the magnitudes of these elements, which are hard-

decided symbols drawn from a finite-size constellation set, 

do not carry any information about the significance of updat-

ing their corresponding taps in the FBF. Specifically, if the 

employed modulation is M-ary PSK (e.g., BPSK or QPSK), 

all decided symbols are of the same magnitude. If one has to 

make a choice as to which 𝑀  out of 𝐿  coefficients to be 

updated in the FBF, the significance of the individual coeffi-

cients needs to be made explicit. The hard decisions 

 ̂(𝑛 − 𝛿 − 𝑖)   , ,   do not have this information. However, 

for each  ̂(𝑛 − 𝛿 − 𝑖)       the equalizer output error 

𝑒(𝑛 − 𝑖)       is readily available. The selective-partial-

update method requires selection of coefficients with the 

largest contribution to error reduction, which is also shared 

by the M-max technique for LMS and NLMS [9]. This 

amounts to identifying coefficients with the largest regressor 

entries. Therefore for the FBF, the identification of coeffi-

cients must be based on the equalization errors that the FBF 

tap inputs have produced. In other words, past decisions with 

higher detection errors have larger share of the residual ISI of 

the FFF output. Therefore, the FBF taps corresponding to 

these symbols are more in need of correction and updating 

them provides faster convergence for partial updating. This 

approach leads to the following coefficient selection criterion 

for the FBF, which guarantees that the best 𝑀  coefficients 

are updated in the selective-partial-update sense: 

max
𝐈  

( )
‖𝐈  

(𝑛)𝐞(𝑛 − 1)‖
 
 (13) 

where 𝐞(𝑛 − 1) = [𝑒(𝑛 − 1), 𝑒(𝑛 − 2),⋯ , 𝑒(𝑛 − 𝐿 )]
 . 

Hence, the selective-partial-update technique is customized 

for decision-feedback equalization by replacing the selection 

criterion of (12) with 

𝑗 (𝑛)   

= {
1 i  |𝑒(𝑛 − 𝑘)|  {𝑀  maxima o  |𝑒(𝑛 − 𝑙)|      }

0 o     i  
 . (14) 

5. COMBINED SELECTIVE-PERIODIC PARTIAL-

UPDATE NLMS-DFE 

Periodic partial updating [7] is basically a downsampled 

version of the full-update filter exhibiting the same conver-

gence as full-update, only slowed down by the update peri-

od. Thus, it should achieve the same steady-state mean-

square error (MSE) as the full-update filter if the same step-

size is used in both. In addition, it is the cheapest partial-

update technique since, unlike the other techniques, it does 

not require calculation of the adaptation error and normali-

zation of the step size at each iteration and performs these 

operations only once in each update period. On the other 

hand, the method of selective partial updates is the fastest 

converging partial-update technique. In order to exploit ad-

vantages of both these techniques, we propose a new com-

bined partial-update NLMS-DFE, which employs selective 

partial updates of Section 4 during the training mode to en-

sure fast convergence to the steady-state MSE and switches 

to periodic partial updating at the end of training using the 

decision-directed mode. We call this new scheme selective-

periodic partial updates (SPPU). It imposes less computa-

tional complexity in average compared to SPU and makes 

best use of available training data in partial-update context. 

Table 1, Required number of arithmetic operations and comparisons at each iteration by different equalizers. 

 Multiplications Additions Divisions Comparisons 

Full-update NLMS-DFE 2𝐿 + 5 2𝐿 + 4 1 - 

SeqPU or StoPU NLMS-DFE 𝐿 +𝑀 + 5 𝐿 +𝑀 + 4 1 - 

PerPU NLMS-DFE (1 + 1  ⁄ )𝐿 + 4 + 1  ⁄  (1 + 1  ⁄ )𝐿 + 3 + 1  ⁄  1  ⁄  - 

SPU-NLMS-DFE 𝐿 +𝑀 + 5 𝐿 +𝑀 + 4 1 2( o  𝐿 +  o  𝐿 ) + 4  

SPPU-NLMS-DFE (1 +
 

  
) 𝐿 +

 

 
+

  

 
+

 

  
  (1 +

 

  
) 𝐿 +

 

 
+

  

 
+

 

  
  

 

 
+

 

  
  

 

 
( o  𝐿 +  o  𝐿 ) +
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6. COMPLEXITY COMPARISON 

The number of required arithmetic operations and compari-

sons at each iteration for equalizers employing full-update 

and different partial-update NLMS algorithms is presented in 

Table 1 where 𝐿 = 𝐿 + 𝐿  and   stands for update period in 

periodic partial-update and SSPU algorithms. Assuming six 

floating-point operations (FLOPs) for each multiplication or 

division and two floating-point operations for each addition, 

subtraction or comparison [11], the total number of required 

FLOPs at each iteration by different algorithms and percent-

age of their saved FLOPs compared to the full-update algo-

rithm are also provided in Table 2 when 𝐿 = 𝐿 , 𝐿 = 30, 

  = 2, 4 and 𝑀 = 𝐿/ . In both tables for SPPU-NLMS-

DFE, training takes up one-fifth of the transmission rate. 

7. SIMULATIONS 

In order to compare performance of the proposed equalizers 

with the full-update and data-independent partial-update 

NLMS-DFEs, simulation results are provided in this section. 

Two different channels were utilized for this purpose, a stat-

ic channel with a fractionally-spaced impulse response and a 

time-varying channel with a baud-spaced impulse response. 

In all the simulations, 5000 QPSK symbols were transmit-

ted in each run while the first 1000 symbols were used for 

training. Results were obtained by averaging over 1000 

independent Monte Carlo runs. The adaptation step sizes 

were adjusted such that all the algorithms attained the same 

steady-state MSE. 

7.1 Static channel 

First part of the simulations was carried out using a terrestri-

al microwave channel impulse response (SPIB channel no. 3 

from [12]), which is fractionally spaced (𝑇/2) and compris-

es 300 taps. The corresponding equalizers have 𝐿 = 300  

(fractionally-space) and 𝐿 = 60 coefficients and a decision 

delay of 𝛿 = 25. Except in Fig. 4, partial-update equalizers 

update half of the coefficients at each time instant (𝑀 =

150 and 𝑀 = 30). For periodic partial updates, it means 

half in average ( = 2). 

Fig. 2 shows MSE curves of the full-update and different 

partial-update NLMS-DFEs at channel output signal to noise 

ratio (SNR) of 12 dB. It is clear that SPU and SPPU algo-

rithms yield faster initial convergence than the other partial-

update techniques. Fig. 3 depicts SER of different algorithms 

Fig. 3, SER-SNR curves of full-update and different partial-

update NLMS-DFEs for a static channel. 
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Table 2, Number of required FLOPs at each iteration and pro-

vided savings by different equalizers when 𝐿 = 𝐿 , 𝐿 = 30, 

  = 2, 4 and 𝑀 = 𝐿/ . 

 FLOPs Saving (%) 

  = 2  = 4  = 2  = 4 

Full-update NLMS-DFE 524 524 − − 

SeqPU or StoPU NLMS-DFE 404 344 22 9 34 4 

PerPU NLMS-DFE 397 333 24 2 36 4 

SPU-NLMS-DFE 443 383 15 4 26 9 

SPPU-NLMS-DFE 406 343 22 5 34 5 

 

Fig. 2, MSE curves of full-update and different partial-update 

NLMS-DFEs for a static channel. 
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for different SNRs. It is observed that SPU and SPPU algo-

rithms result in SER performances very close to the one of 

the full-update algorithm while they only update half of the 

filter coefficients at each iteration. SER-SNR curves of the 

proposed partial-update equalizers and the full-update 

NLMS-DFE are compared in Fig. 4 when different fractions 

of the coefficients are updated at each iteration. It clearly 

shows that how performance can be traded for complexity by 

using the new partial-update equalizers. 

7.2 Time-varying channel 

In this part, the 3GPP typical urban channel model [13] was 

considered. This channel comprises 20 taps and varies in 

time according to Jakes model [14] with a normalized Dop-

pler frequency of 12 5 × 10  . The equalizers have 𝐿 = 40 

and 𝐿 = 20 coefficients and a decision delay of 𝛿 = 40. 

For partial updating, half of the coefficients are updated at 

each iteration (𝑀 = 20, 𝑀 = 10, and  = 2). 

Fig. 5 compares MSE curves of the full-update and different 

partial-update equalizers at SNR of 15 dB. SER performance 

of the equalizers for different SNRs is compared in Fig. 6. It 

is seen in Figs. 5 and 6 that the proposed equalizers achieve 

superior performance over other partial-update equalizers. 

8. CONCLUSION 

Employing partial coefficient updates in DFE was examined 

and a new selective-partial-update algorithm for NLMS-DFE 

was developed. The developed algorithm treats the feedfor-

ward and feedback adaptive filters separately and resolves 

the sorting ambiguity for the feedback filter by taking into 

account the errors associated with the past decisions. A new 

combined partial-update algorithm for NLMS-DFE was also 

proposed to take advantage of both selective-partial-update 

and periodic-partial-update techniques. Computer simula-

tions demonstrate the capability of the proposed equalizers to 

achieve a good tradeoff between performance and complexi-

ty by means of partial updating. It is shown that in practical 

equalization scenarios assuming both static and dynamic  

 

channels, the proposed partial-update techniques offer appre-

ciable complexity savings at the expense of slight perfor-

mance degradation. 
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Fig. 6, SER-SNR curves of full-update and different partial-

update NLMS-DFEs for a time-varying channel. 
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Fig. 5, MSE curves of full-update and different partial-update 

NLMS-DFEs for a time-varying channel. 
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