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ABSTRACT
Interpolation of nonuniformly sampled signals in the pres-
ence of noise is a hard and deeply analyzed problem. On
the one hand, classical approaches like the Wiener filter use
the second order statistics of the signal, and hence its spec-
trum, as a priori knowledge for finding the solution. On the
other hand, Support Vector Machines (SVM) with Gaussian
and sinc Mercer kernels have been previously proposed for
time series interpolation, with good properties in terms of reg-
ularization and sparseness. Hence, in this paper we propose to
use SVM-based algorithms with kernels having their spectra
adapted to the signal spectrum, and to analyze their suitability
for nonuniform interpolation. For this purpose, we investigate
the performance of the SVM with autocorrelation kernels for
one-dimensional time series interpolation. Simulations with
synthetic signals show that SVM-based algorithms with the
proposed kernels provide good performance for signals with
different kinds of spectrum, even in the case of highly nonuni-
form sampling.

1. INTRODUCTION

The interpolation of nonuniformly sampled noisy signals is a
very hard problem. A wide variety of solutions have been pro-
posed by extending the original ideas by Shannon. A seminal
work in this setting was presented by Yen [1], who proposed
to use the sinc kernel and minimize the Mean Squared Error
(MSE) of the reconstructed signal in the available observed
samples. Other interpolation algorithms using the sinc kernel
have been proposed [2], in which the sinc weights are ob-
tained according to the minimization of the maximum error
committed on the observed data set. In [3] the minimization
of the sum of the MSE and a functional that penalizes the
lack of smoothness is formulated for finding the best set of
splines for the reconstruction of the signal. Also, different
methods based on the Lagrange interpolator have been pro-
posed for band-limited signal reconstruction [4, 5]. Recently,
Support Vector Machines (SVM) algorithms for nonuniform
signal interpolation have been proposed [6], using sinc and
Gaussian kernels. In that work it was shown that the SVM
algorithms provided very high performance for non-uniform
signal interpolation. This is due to SVM regularization capa-
bilites, robustness in the presence of different types of noise,
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sparse solutions and simplicity. SVM algorithms are formu-
lated in terms of Mercer kernels, and a well-known theoreti-
cal result is that any autocorrelation function is a valid Mercer
kernel [7]. However, to our best knowledge, no study has ana-
lyzed the suitability of using a Mercer kernel in SVM interpo-
lation algorithms taking into account the spectral adaptation
between the observed signal and the kernel.

In this paper we propose the use of SVM algorithms to
solve the nonuniform sampling interpolation problem by ex-
ploring several Mercer kernels that are spectrally adapted to
the original signal. For this purpose, we first analyze the re-
lationship between the Wiener filter and the SVM for nonuni-
form interpolation going into the spectral interpretation of
both algorithms. Then, according to this analysis, we study
SVM algorithms whose kernels are spectrally adapted to the
target signal, using for this purpose the signal autocorrelation.

2. ALGORITHMS FOR NONUNIFORM
INTERPOLATION

Problem statement. Let x(t) be a continuous time signal,
consisting of a signal z(t) corrupted with noise, where the
noise is modeled as a Wide Sense Stationary (WSS) pro-
cess. This signal has been observed on a set of N un-
evenly spaced time instants, obtaining the observations x =
[x(t1), · · · ,x(tn), · · · ,x(tN)]T . Then, the interpolation problem
consists on finding a continuous-time signal ẑ(t) which ap-
proximates z(t) in another set of K different time instants, i.e.,
z = [z(t ′1), · · · ,z(t ′k), · · · ,z(t ′K)]T , which is the unknown.

Wiener Filter for Interpolation. As described in [8], a
Bayesian approach to solve this problem can be found by
using the Wiener filter [9]. To obtain the Bayesian estima-
tor ẑ(t ′k), we apply the Linear Minimum Mean Square Error
(LMMSE) estimator

ẑ(t ′k) =
N

∑
n=1

ak,nx(tn)+ak,0 (1)

for k = 1, . . . ,K, where coefficients ak,n and ak,0 are chosen to
minimize the mean square error. If x and z have zero mean,
then ak,0 = 0, and the scalar LMMSE estimator is

ẑ(t ′k) = cT
z(t ′k)x

C−1
xx x = aT

k x (2)

for k = 1, . . . ,K, where cz(t ′k)x
represents the cross covariance

column vector between the observed signal and the signal in-
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terpolated at time instant t ′k, and Cxx is the covariance matrix
of the observations. After some manipulations, the coeffi-
cients for the Wiener filter are computed as

ak =
(
Rzz +σ

2
wIN
)−1

r(k)zz (3)

where Rzz is the autocovariance matrix of the signal, σ2
w is the

noise power, IN is the identity matrix, and r(k)zz is the cross
covariance vector between the observed signal and the inter-
polated signal at instant tk. Two main drawbacks arise when
observing Eq. (2). On the one hand, there may exist more un-
knowns than observations, so the problem is ill conditioned;
on the other hand, the autocorrelation of the signal is needed,
so it must be estimated if it is not known.

Yen Regularized Interpolator. As an alternative to the
Wiener filter for interpolation, a priori information can be
used for band-limited signals, which is inspired in Shannon’s
Theorem for interpolation of noise-free signals. The signal
model is stated as follows,

x(t ′k) = z(t ′k)+w(t ′k) =
N

∑
n=1

ansinc(σ0(t ′k− tn))+w(t ′k) (4)

where sinc(t) = sin(t)
t , parameter σ0 =

π

T0
is the sinc function

bandwidth, and w(t ′k) is the noise. Yen [1] proposed to use a
Least Squares strategy to estimate coefficients an. Formally,
when introducing a regularization term to prevent ill-posed
problem, the vector a = [a1, · · · ,aN ]

T is given by

a =
(
S2 +δ IN

)−1
Sx (5)

where the elements in S are computed as S(k,n) =
sinc(σ0(tk−tn)). Here, δ is a scalar parameter which controls
the stability and smoothness of the solution, and which must
be previously adjusted to completely define the algorithm.

SVM Interpolation. Another alternative is the SVM ap-
proach [6, 10]. Let us assume an interpolation model of the
form

x(t) = vT
ϕ(t) (6)

where v is a weight vector which defines the solution and ϕ(t)
is a nonlinear function in a Hilbert Space H provided with a
dot product

ϕ(t1)T
ϕ(t2) = K(t1, t2) (7)

where K(·, ·) is the kernel function, that must satisfy the Mer-
cer’s Theorem. The SVM criterion is intended to optimize the
functional

Lp =
1
2
‖v‖2 +

1
2γ

∑
n∈I1

(ξ 2
i +ξ

∗2
i )+C ∑

n∈I2

(ξi +ξ
∗
i ) (8)

subject to the constraints

xi− vT
ϕ(ti)≤ ε−ξi

−xi + vT
ϕ(ti)≤ ε−ξ

∗
i

(9)

where {ξi} and {ξ ∗i } are the positive and negative slack vari-
ables and I1 and I2 are respectively the quadratic and linear

sections of the cost function

L ε(en) =


0, |en|< ε
1
2γ
(|en|− ε)2, ε ≤ |en|< eC

C(|en|− ε)− 1
2 γC2, |en| ≥ eC

(10)

where ε , γ and C are free parameters of the SVM algorithm
and eC = ε + γC. A Lagrange optimization of functional (8)
with constraints (9) and cost function (10) leads to the solu-
tion

v =
N

∑
n=1

(αn−α
∗
n )ϕ(tn) (11)

where α , α∗ are the Lagrange multipliers of Wolfe’s dual [10]

Ld =−1
2
(α−α

∗)T (R+ γI)(α−α
∗)

+(α−α
∗)T x− (α +α

∗)T 1ε

(12)

These multipliers must satisfy the constraints 0≤αi,α
∗
i ≤

C. Once these coefficients are found with a quadratic pro-
gramming algorithm, by combining (6), (7) and (11), the dual
formulation of the estimator is

x(t ′k) =
N

∑
n=1

(αn−α
∗
n )K(tn− t ′k) (13)

The kernel can be seen as a time invariant system which pro-
vides a convolutional model for the solution [11].

3. SPECTRALLY ADAPTED MERCER KERNELS

In this section, a frequency domain interpretation of the
Wiener and SVM interpolators is provided, and several Mer-
cer kernels with different degrees of spectral adaptation are
proposed for nonuniform sampling interpolation using SVM
principles.

3.1. Spectral analysis for the algorithms
Wiener filter. The solution of the LMMSE estimator given by
(2) can be seen as the convolution of the observations with a
filter with impulse response h(k)W [n] = a[k−n], which, in turn,
can be used to provide a spectral interpretation of the esti-
mator. Assuming that N → ∞, it can be shown [8] that the
transfer function of the filter is

HW ( f ) =
Pzz( f )

Pzz( f )+Pww( f )
=

η( f )
η( f )+1

(14)

where Pzz( f ) and Pww( f ) are the power spectral density of the
original signal and the noise respectively, and η = Pzz( f )

Pww( f ) rep-
resents the local Signal to Noise Ratio (SNR) in a frequency
f . Obviously, 0 ≤ HW ( f ) ≤ 1, tending to 1 in spectral bands
with high SNR. The autocorrelation of the process to be inter-
polated is an indicator of the relevance of each spectral band
in terms of SNR.

SVM algorithm. From the Karush-Kuhn-Tucker (KKT)
conditions of the SVM interpolation algorithm [6], we can
express the solution of the SVM interpolator in (13) as

ẑ(t) = β (t)∗K(t) (15)
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Fig. 1. Mercer kernels in the frequency domain (|K( f )|) and
spectral adaptation to the band-pass signal (|X( f )|) in the
presence of noise: non adapted low-pass RBF and Sinc ker-
nels (a),(b), and adapted with modulated sinc and autocorre-
lation kernels (c),(d).

for a continuous time equivalent model of the equations and
taking into account that we can express β (t) as

β (t) =
K

∑
k=1

(αk−α
∗
k )δ (t− tk) (16)

with δ (t) the Dirac delta function.
The sinc or the Gaussian kernels represent low-pass trans-

fer functions, and hence, their spectral adaptation to the ob-
servations can be poor when used for interpolation of a band-
pass signal whose spectrum is not included into the kernel
passband. However, in Eq. (14) we can see that the auto-
correlation can be seen as a more accurate template in the
frequency domain.

Nevertheless, despite these are well known properties in
the signal processing literature, little attention has been paid
to the use of spectrally adapted Mercer kernels for solving
nonuniform interpolation problems. These are described next.

3.2. Mercer Kernels for SVM Interpolation
When examining the SVM signal model in (15), the role of
the Mercer kernel is similar to a transfer function which re-
covers the interpolated signal from the linear system defined
by the time series of the Lagrange multipliers. This suggests
that Mercer kernels represent the transfer functions that em-
phasize the recovered signal in those bands with higher SNR.
Hence we propose to use several Mercer kernels for signal in-
terpolation with different degrees of adaptation to the spectral
profile of the observations.

Inspired in the Wiener filter approach, we use the autocor-
relation of the signal to be interpolated. Then, the following
autocorrelation kernel can be defined

K(tn, t ′k) = R(tn− t ′k) (17)

where R is the autocorrelation function of the process. Sim-
ilarly to the Wiener filter case, since this autocorrelation will
not always be available, an estimation procedure must be
used. However, due to the robustness of the SVM algorithm,

simple procedures for estimating the autocorrelation func-
tions can be used. In this paper, a simple Lomb periodogram
is used.

Figure 1 qualitatively shows the effect of using different
kernels when interpolating a band-pass signal. In (a) and (b),
the RBF and sinc kernels are used. Noise at low frequen-
cies is undesirably amplified by the kernel. In (c) and (d)
two band-pass adapted kernels (a modulated sinc and the au-
tocorrelation of the signal) are used. In these cases the noise
is properly filtered, which in turn enhances the result of the
interpolation process.

4. EXPERIMENTS

For benchmarking the SVM with spectrally adapted kernels,
we considered the following algorithms: the Yen algorithm
with regularization (Yen); two versions of the Wiener filter,
one with the autocorrelation estimated from the observations
using a Lomb periodogram(Wien) and the other with the ac-
tual autocorrelation (Wien-Id); two SVMs with low-pass ker-
nels (SVM-RBF, with Gaussian kernel, and SVM-Sinc), a
SVM with a band-pass kernel constructed with a modulated
sinc (SVM-ModSinc), and two SVMs, one with actual auto-
correlation kernel (SVM-CorrId) and the other the kernel es-
timated with a Lomb periodogram (SVM-Corr). The central
frequency and the bandwidth of the SVM-ModSinc algorithm
are free parameters that should be chosen a priori.

A one-dimensional synthetic signal was interpolated by
starting from a set of L = 32 unevenly spaced samples, with
an average sampling interval T = 0.5s, and it was recon-
structed by using a uniform grid with step Tint = T/16. The
nonuniform sampling instants were simulated by adding a
random quantity taken from a uniform distribution in the
range [−T/10,T/10] to the equally spaced time instants. The
performance of each algorithm was measured with the S/E
indicator, which is the ratio between the power of the signal
and the power of the error in dB. Each experiment was re-
peated 50 times.

In order to show the importance of the spectral adaptation
of the kernel, we apply all the algorithms described above but
the SVM-ModSinc, when the original signal was a modulated
squared sinc function, defined by

f (t) = sinc2
(

π

T0
t
)

cos
(

3π

2
t
)

(18)

Figure 2 shows an example of the spectra of the origi-
nal and reconstructed signals and the error of reconstruction
of each algorithm. When using the SVM algorithms with
low-pass kernels, it can be observed that at low frequencies,
where there is no significant signal power, the noise is en-
hanced, which produces a high error. Nevertheless, by ob-
serving the autocorrelation kernel spectrum, it can be seen
that it is adapted to the signal spectrum and improves the fil-
tering process, reducing the error at low frequencies. Figure
3 represents the performance of the algorithms for different
SNR’s. It can be observed that the two SVM interpolators
with ideal and estimated autocorrelation kernels clearly out-
perform the rest of the algorithms (4-5 dBs and 2-3 dBs, re-
spectively).
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Fig. 2. Example of the spectra of the original and reconstructed signals (left) and the error of the reconstructions (right).
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Fig. 3. S/E ratio against SNR for different algorithms for a
band-pass interpolated signal.

In order to emphasize the importance of the spectral
matching of the kernel, we analyzed the performance of two
SVM-based interpolators on two different test signals. The
first signal is the modulated squared sinc function (MSSF)
described in (18). The second signal consists of two Gaus-
sian functions modulated at different frequencies and added
together (called DMGF, see Figure 4). We interpolated
these two functions by using the SVM-CorrId and the SVM-
ModSinc. Typical Radial Basis Function (RBF) such as Gas-
suian kernel, and also sinc kernels can be adapted to band-
pass signal interpolation by just being modulated by a sinu-
soidal function. The following is the modulated band-pass
version (centered at ω0) of the sinc kernel

K(tn, t ′k) = sinc(σ0(tn− t ′k))sin
(
ω0(tn− t ′k)

)
(19)

The transfer function of this kernel is easily adapted to the
spectral profile of the observed band-pass signal.

Figure 5 shows the S/E performance for both algorithms
for the two functions. Since the autocorrelation kernel is
able to adapt its spectrum, it performs well with both signals.
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Fig. 4. Spectrum for the MSSF, DMGF and Modulated Sinc
Kernel.

However, the SVM-ModSinc performs well when applied to
the MSSF, since the spectrum is similar (as can be observed
in Figure 4) but the performance degrades when applied to
the DMGF. This experiment highlights the relevance of the
spectral adaptation of the kernel in SVM based interpolation
problems.

Now, we examine the effect of nonuniform sampling over
the algorithms performance. The sampling random quantity
added to the uniform grid is now uniformly distributed in the
range [−u,u]. Figure 6 shows the performance of six dif-
ferent interpolation algorithms for a set of values of u, from
u = 10−3 to u = T/2 = 0.25. With u very small the sam-
pling is almost uniform, and with u = T/2 the samples can
be placed at any time instant.The ideal autocorrelation ker-
nel is more robust against the effect of the non-uniform sam-
pling. When u takes its maximum value, the difference be-
tween SVM-CorrId and the rest of the algorithms rises up to
5.5 dB. Interestingly, the ideal Wiener filter behaves similar
to the ideal autocorrelation kernel SVM for low values of u
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which was the expected behavior, since both of them use the
prior knowledge about the second order statistics of the sig-
nal. However, when u exceeds 0.1 the performance of the
Wiener filter degrades fast, while the regularization properties
of the SVM-based algorithms provides a higher robustness.

5. CONCLUSIONS

This paper presents two SVM algorithm which use spectrally
adapted kernels for nonuniform interpolation. Although for
this problem the SVM methodology provides a robust esti-
mation of the signal, the spectral properties of the kernels
and their impact in the performance of the interpolation al-
gorithms had not yet been analyzed. For this purpose, we first
examined the relationship between the Wiener filter and the
SVM interpolation in the frequency domain. This allows us
to motivate the search of a spectrally adapted kernel for the
SVM algorithm. Then, we proposed to use the autocorrela-
tion of the signal as the kernel for SVM interpolation, both the
estimated autocorrelation and the ideal autocorrelation. The
experiments show the capability of the autocorrelation ker-
nels to adapt their spectra to the signal spectrum, and provide
high performance even with highly nonuniform sampling. In

the case when the autocorrelation of the signal is not known,
a first estimation of the signal autocorrelation must be made.
Note that for this purpose a simple interpolation algorithm
(linear interpolation in our examples) can be used. Hence, a
two-step process is needed for real signal: first a coarse esti-
mation of the autocorrelation is made, and then the robustness
of the SVM framework is used for an accurate estimation of
the interpolated signal. We can conclude that both kernels can
be useful kernels to be used for interpolation within the SVM
signal processing framework.
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