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ABSTRACT

Source separation is a common task in signal processing and
is often analogous to factor analysis. In this work we look at a
factor analysis model for source separation of multi-spectral
image data where prior information about the sources and
their dependencies is quantified as a multivariate Gaussian
mixture model with an unknown number of factors. Varia-
tional Bayes techniques for model parameter estimation are
used. The development of this methodology is motivated by
the need to bring an efficient solution to the separation of
components in the microwave radiation maps to be obtained
by the satellite mission Planck which has the objective of un-
covering cosmic microwave background radiation. The pro-
posed algorithm successfully incorporates a rich variety of
prior information available to us in this problem in contrast
to most of the previous work that assumes completely blind
separation of the sources. Results on realistic simulations
of Planck maps and on WMAP 5th year images are shown.
The technique suggested is easily applicable to other source
separation applications by modifying some of the priors.

1. INTRODUCTION

The discovery of the cosmic microwave background (CMB)
is strong evidence for the big bang theory of the formation
and development of the universe. According to the theory,
the early universe was smaller and hotter but cooled as it ex-
panded. Once the temperature cooled to about 3000K, pho-
tons were free to propagate without being scattered off ion-
ized matter; the CMB is an image of this event and is visible
across the entire sky. Three satellites have been launched to
measure the CMB: the cosmic background explorer (COBE),
Wilkinson microwave anisotropy probe (WMAP) and most
recently the Planck surveyor. Planck is the highest resolu-
tion data to date, of the order of 107 pixels across the sky
measured at 9 channels.

Unfortunately, the signals measured by these satellites
as in Fig. 1 contain radiation not only from CMB but also
contributions from a number of other sources, namely fore-
ground radiations and extragalactic sources in addition to
antenna receiver noise. Foreground sources from our galaxy
include synchrotron, dust and free-free emission. Therefore,
the separation of the CMB signal from other sources is an
important stage in the production of CMB maps [1].

To date, there have been several attempts to achieve it
in a Bayesian framework: Gaussian mixture model (GMM)
prior [2], and Markov Random Field (MRF) prior [3, 4]. Full
sky maps at low resolution through MCMC, using masks to
reduce the effect of the signal in the galactic plane, were de-
scribed in [5]. Some of these are fully Bayesian source sepa-
ration methods which are developed to separate the underly-
ing CMB from the mixed observed signals of extraterrestrial
microwaves made at several frequencies.

A common assumption among works in the literature is
the independence of the cosmological sources. Although it
is well known that CMB is independent from the rest of the
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Figure 1: Observed WMAP 7 year data

sources, the galactic sources demonstrate significant statisti-
cal dependence among themselves, as stated in [1]. Recently,
a small number of researchers have started addressing this
problem [6, 7]. Various dependent component analysis ap-
proaches are compared in [8], demonstrating their superior
performance with respect to classical ICA.

In this work we present a dependent components model
for source separation of multi-spectral image data, where
prior information about the sources and between-source de-
pendencies is quantified as a multivariate GMM, using Vari-
ational Bayes techniques for model parameter estimation.
The work in this paper can thus be considered as an exten-
sion of [2], modelling dependencies between sources through
generalizing the prior to multivariate GMM.

The rest of the document is structured as follows. Sec-
tion 2 gives the model for the mixing problem and describes
the hierarchical Bayesian model that we use, including the
prior we assume for the sources. Section 3 describes the
variational Bayes approach we use for the implementation
of the separation. Section 4 provides results on both syn-
thetic Plank and real WMAP images. Finally, we provide a
discussion of the results in Section 5.
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2. MODEL

The model description is defined in terms of the microwave
source separation problem, where there are nf maps of the
sky at frequencies (ν1, . . . , νnf ), each map consisting of J
pixels. The data are denoted dj ∈ R

nf , j = 1, . . . , J . The
source model consists of ns sources and is represented by
the vectors sj ∈ R

ns , with each component representing the
amplitude of a physical source of microwaves. We assume
that the dj can be represented as a linear combination of
the sj :

dj = Asj + ej , (1)

where A is an nf ×ns “mixing” matrix and ej is a vector of
nf independent Gaussian error terms with precisions (inverse
variances) τ = (τ1, . . . , τnf ). For convenience, define

D = {dij |i = 1, . . . , nf , j = 1, . . . , J};

S = {skj |k = 1, . . . , ns, j = 1, . . . , J}

to represent all data and sources.
We assume dependence between the sources, defined by

a prior distribution p(S|ψ) with parameters ψ. The goal is
to estimate the S and the parameters ψ associated with the
model for S, given observation of D. The noise variances
τ and the mixing matrix A are assumed known. GMM are
used to represent the non-Gaussian sources, in which case it
is an example of a model known as a mixture of factor anal-
ysers [9]. Like in [9], we adopt a Bayesian approach to the
data fitting, implemented by a variational Bayes approach.

Bayesian inference will be based on the posterior distri-
bution, which following the above description can be factor-
ized as:

p(S,ψ|A,D, τ ) ∝ p(D|S,A, τ )p(S|ψ)p(ψ). (2)

Each element of this distribution is defined next in turn.

i) Noise structure

Gaussian error, ej , is assumed independent within and be-
tween pixels j and frequency, which gives

p(D|S,A, τ ) =
J
Y

j=1

nf
Y

i=1

r

τi

2π
exp

“

−
τi

2
(dij − Ai·sj)

2
”

(3)

where Ai· is the ith row of A.

ii) Mixing Matrix Structure

In this application, A is parameterized and denoted A(θ).
Each column of A(θ) is the contribution to the observation of
a source at different frequencies, which is written as a func-
tion of the frequencies and θ. These parameterizations are
approximations that come from the current state of knowl-
edge about how the sources are generated. Here, we merely
state the parameterization that we are going to use, and refer
to [10] for a more detailed exposition on the background to
them. Some restrictions are usually placed on A(θ) in order
to force a unique solution; this is achieved here by setting
one row of A(θ) to be ones.

It is assumed that the CMB is the first source and there-
fore, it corresponds to the first column of A(θ). It is modelled
as a black body at a temperature, and its contribution is a
known constant at each frequency. The parametrization of
the mixing matrix is given as

Ai1(θ) =
g(vi)

g(v1)
,

Ai2(θ) =

„

vi

v1

«κs

and

Ai3(θ) =
exp(ηv1/kBT1) − 1
exp(ηvi/kBT1) − 1

„

vi

v1

«1+κd

and

Ai4(θ) =

„

vi

v1

«κf

and

where

g(vi) =

„

ηvi

kBT0

«2 exp(ηvi/kBT0)
(exp(ηvi/kBT0) − 1)2

,

T0 = 2.725 is the average CMB temperature in Kelvin, T1 =
18.1, η is the Plank constant and kB is Boltzmann’s constant.
The ratio g(vi)/g(v1) is designed to ensure that A11(θ) = 1
as we constraint the first row of A(θ) to be ones. There
are three unknown model parameters for A, for synchrotron
κs ∈ {κs : −3.0 ≤ κs ≤ −2.3}, the spectral indices for
dust κd ∈ {κd : 1 ≤ κd ≤ 2} and for free-free emission
κf ∈ {κf : −2.3 ≤ κf ≤ −3.0}.

iii) The sources

The distribution of sj is modeled as a GMM with m factors.
The model proposed allows for between source dependence;
the vector of sources at a pixel is a mixture of multivariate
Gaussians:

p(S|ψ) =
J
Y

j=1

m
X

a=1

wap(sj|µa, Qa) (4)

where

p(sj|µa, Qa) =

s

|Qa|
(2π)ns

exp

„

−
1
2
(sj − µa)T Qa(sj − µa)

«

,

for mixture component weights wa, mean vectors µa and
precision matrices Qa, so that ψ is all the wa, µa and Qa,
with a = 1, . . . , m.

iv) Priors

The remaining term in equation (2) is p(ψ). We use the
conjugate prior distributions [11] that facilitate the compu-
tation of the posterior and yet flexible enough to incorporate
good prior information: Gaussians for the component means,
Dirichlet for the component weights and Wishart for preci-
sion matrices. In the microwave source application, back-
ground knowledge about the magnitude of the sources can
be incorporated through specifying values of the parameters
of these prior distributions. This prior specification follows
[12], who discuss how to specify these values in more detail.

3. IMPLEMENTING THE SOURCE
SEPARATION

The posterior developed in the previous section does not lend
itself to an analytical solution. The MCMC techniques let
us evaluate complicated integrals by sampling rather than
by analytical or numerical methods. The main criticism to
Bayesian source separation with sampling methods, MCMC
in particular, is their computational load and slow conver-
gence. Regarding the speed, they cannot compete with
methods such as FastICA.

There are several approaches to speed up the algorithm,
such as the strategies suggested in [13]. In the image
source separation problem framework, the Langevin sam-
pling scheme has been implemented [3], as a way to obtain
a faster MC algorithm.

In this work, the source separation model presented in
Section 2 is implemented by a variational Bayesian approach
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[9, 14, 15], that allows for more efficient inference when deal-
ing with large data when compared with MCMC techniques.
In essence, given the data D and a model with parameters
θ and latent variables Z, the variational Bayes method is
based on approximating the posterior distribution p(Z, θ|D)
with a factorial approximation q(Z, θ|φ) = q(Z|φZ)q(θ|φθ),
where φ are the variational parameters. The approximation
is fitted by minimising the Kullback-Leibler divergence be-
tween q and p, or equivalently maximising a lower bound on
marginal log-likelihood of the data.

Attias has recently developed a fully Bayesian approach
to GMM [16] which variational approximation to the pos-
terior, when choosing conjugate priors, leads to the follow-
ing components: Wishart densities for the precisions, Qa;
Normal densities for the means, µa; and a Dirichlet for the
mixing coefficients, p; and a discrete distribution for the in-
dicator posteriors, zj , which indicates the component that
explains information in pixel j. We further derived the vari-
ational approximation to the marginal posterior of sources,
sj , turning out to be a multivariate Gaussian distribution.
In brief:

q(sj) ∼ MV N(A#
j , B#

j )

q(p) ∼ D(λ)

q(µa|Qa) ∼ N(ξa,βaQa)

q(Qa) ∼ W (ηa, Va)

and

q(zj = a) ∝ exp

 

Ψ(λa) − Ψ

 

X

a′

λa′

!!

|Va|
1

2 2
ns
2

exp

 

1
2

ns
X

i=1

Ψ

„

ηa + 1 − i
2

«

!

exp

„

−
ns

2βa

«

exp
“

−
ηa

2

“

(A#
j − ξa)T Va(A#

j − ξa) + tr(Va(B#
j )−1)

””

where Ψ denotes the digamma function. Note that q(zj = a)
is the probability that component a is responsible for infor-
mation in pixel j in sources, sj .

The quantities of interest, i.e. the hyper-parameters to
be computed, A#

j , B#
j , λ, ξa, βa, ηa and Va for j = 1, . . . , J

and a = 1, . . . , m, have the following values:

(B#
j )kl =

nf
X

i=1

τiAikAil +
m
X

a=1

q(zj = a)ηa(Va)kl

(A#
j )k = (B#

j )−1v(k), with

v(k) =

nf
X

i=1

τidijAik +
m
X

a=1

q(zj = a)ηa

ns
X

l=1

(Va)kl(ξa)l

λa =
X

j

q(zj = a) + λprior
a

ξa =

P

j [q(zj = a)A#
j ] + βprior

a ξprior
a

P

j q(zj = a) + βprior
a

βa =
X

j

q(zj = a) + βprior
a

ηa =
X

j

q(zj = a) + ηprior
a

Figure 2: Observations on the 3 of the 9 channels (lowest,
middle and highest frequencies are shown) of the data gen-
erated from the source separation model with realistic sim-
ulations of CMB, synchrotron and galactic dust.

Va =
X

j

{q(zj = a)[(1 −
2q(zj = a)
P

j q(zj = a)
)(B#

j )−1 + Φ +

+ (A#
j − µ̄a)(A#

j − µ̄a)T ]} + V prior
a +

+
βprior

a [
P

j q(zj = a)][Φ + (µ̄a − ξprior
a )(µ̄a − ξprior

a )T

βa

with

µ̄a =

P

j [q(zj = a)A#
j ]

P

j q(zj = a)

(Φ)kl =

P

j{[q(zj = a)]2(B#
j )−1

kl }

[
P

j q(zj = a)]2
.

Computations were carried out using Matlab.

4. EXAMPLES

4.1 Analysis of simulated data

Figure 2 shows data obtained from realistic simulations of
CMB, synchrotron and galactic dust on a 512 × 512 patch.
The original sources are shown in Figure 3. The data were
generated at the 9 frequencies that are observed by Planck
from 30 to 857 GHz. The mixing matrix used was as defined
in Section 2 with κs = −2.9 and κd = 2.0. Noise precisions
were those published by the Planck research team. After
exploring several values for m, the number of components in
the GMM source model was fixed to be m = 1, as it provided
the best fit, taking into account the compromise between fit
and number of parameters in the model.

Figure 4 shows an estimate of CMB, along with a scat-
ter plot of this estimate against the true value, as shown
in Figure 3. Such a estimate is the average of the samples
obtained for the first column of A#, which corresponds to
CMB. We see from the scatter plot and from comparison
with Figure 3 that the reconstruction of CMB is very accu-
rate here. The same is true for the other two sources, as
shown in Figure 5. Regarding the between-sources depen-
dence structure, posterior estimates of V −1

1k , k = 2, 3 are ap-
proximately 0, suggesting independence between CMB and
the other sources, as expected. On the other hand, poste-
rior estimate of V −1

23 '= 0, indicating dependence between
synchrotron and galactic dust.
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(a) CMB

(b) Synchrotron (c) Dust

Figure 3: The simulated sources used to generate the simu-
lated data in Figure 2

 

 

Figure 4: The posterior mean of the reconstruction of the
CMB with a scatter plot of true versus posterior mean.

 

 

Figure 5: The posterior mean of the reconstruction of syn-
chrotron and galactic dust.
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Figure 6: Temperatures (in mKs) at 20o square patch of the
sky from WMAP at 5 microwave frequencies.

 

 

Figure 7: Estimated CMB.

4.2 Analysis of a WMAP Year 5 Patch

The WMAP was launched in 2001 and at the time of writing
is still operational. It observes 5 frequencies from 22 to 90
GHz. Figure 6 shows a patch of 5-year WMAP data.

The algorithm of Section 3 was implemented with 4
sources (CMB, synchrotron, dust and free-free emission).
The noise precisions were assumed to be the published values
for WMAP detectors. The spectral density for free-free emis-
sion was fixed at -2.14 (following [10]) and the synchrotron
and dust spectral indices were as in the first example. The
number of components in the GMM source model were fixed
to be m = 2, following the same reasoning as in the simu-
lation study. Informative priors were placed on the GMM
parameters, based on discussions on the expected marginal
properties of the sources. Figure 7 shows the estimated
CMB. The result obtained is in agreement with previous
work [2]. In order to show the fit of the data to the model,
Figure 8 is a scatter plot of the posterior expected value of
the djk with the standardised residuals, with one figure for
each frequency k = 1, . . . , 5.

5. DISCUSSION

A fully Bayesian factor analysis algorithm has been presented
and applied to a multi-channel image source separation prob-
lem, where dependencies between sources are modelled as
a multivariate GMM. The algorithm performs very well on
simulated Planck data and has been applied to data from
WMAP.

Previous results [2] showed that source dependencies
clearly exist in the posterior distribution, due to the stochas-
tic linear constraint that sj ≈ Adj , thus prior modelling of
them help to produce a more realistic separation. In this
work, we extend that approach by allowing the source priors
to be a mixture of multivariate Gaussian distributions for
each pixel.

The development of this methodology is motivated by the
need to bring an efficient solution to the separation of com-
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Figure 8: Assessment of model fit. Scatter plot of the poste-
rior predicted values of dj against the standardised residual
over all pixels.

ponents in the microwave radiation maps to be obtained by
the satellite mission Planck which has the objective of uncov-
ering CMB radiation. The proposed algorithm successfully
incorporates a rich variety of prior information available to us
in this problem in contrast to most of the previous work that
assumes completely blind separation of the sources. Further,
the variational approach presented here overcomes the con-
vergence problems of the MCMC stated in [17], when deal-
ing with large data sets such as that will be provided by the
satellite mission Plank.

In the analysis of simulated data, the number of compo-
nents in the GMM source model turned out to be m = 1.
This means that sources are multivariate Gaussian a priori.
On the other hand, for real data, the number of components
is m = 2. In blind source separation problem, identifiabil-
ity rely on the independence of the sources. In this work,
in spite of modelling the sources as Guassians when m = 1,
identifiability is obtained because of the prior information
which is incorporated to the model, given structure to the
mixing matrix.

Another type of dependence is that a source is spatially
correlated. Spatial dependence is most conveniently mod-
elled by a Gaussian MRF and some preliminary work on
this idea can be found in [4]. Combining with cross source
correlations, one might ultimately consider a mixture of mul-
tivariate Gaussian MRF as a prior for the sources. Imple-
menting the analysis with such a prior would be a significant
challenge computationally; we hypothesize that it will be
difficult to derive a well-behaved MCMC approach. Other
functional approximations, such as that of [18], offer feasible
alternative to computing the posterior distribution in this
case.

Finally, although the technique was developed for the
astrophysical source separation problem in mind, it is general
and it is applicable to other source separation problems as
well.
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