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ABSTRACT 

This work presents a new low-cost technique to reduce un-

correlated acoustical noise in digital hearing aids. The 

clean speech is estimated by a convex combination of the 

conventional adaptive linear predictor output and the con-

taminated input signal. The convex combination coefficient 

is adjusted to control the attenuation of the uncorrelated 

noise while avoiding significant unvoiced utterance distor-

tion. The proposed adaptive architecture is presented and 

designed to minimize the mean square prediction error. 

Comparisons with the conventional adaptive predictor indi-

cate a superior performance of the new solution. The pro-

posed technique can be easily implemented in existing hear-

ing aids systems that incorporate the adaptive predictor, 

with a minimum amount of extra computational resources. 

 

1. INTRODUCTION 

Hearing aids are essential devices for social integration of 

people that suffer from hearing limitations or neurosens-

sorial losses. One of the most important complaints of hear-

ing aids users is poor speech intelligibility due to back-

ground noise. Although there have been many advantages in 

multi-microphone techniques, most commercial equipments 

are still equipped with only one microphone, which limits 

the applicable strategies [1]. The most common noise reduc-

tion techniques are: subspace decomposition methods, statis-

tic or parametric modelling techniques, Wiener filtering, and 

spectral subtraction techniques [2]. Without exception, all 

techniques present a trade-off between noise reduction and 

speech distortion [2]-[4]. 

Digital hearing aids are very complex systems compounded 

of a set of subsystems performing tasks such as noise reduc-

tion, dynamic compression, feedback cancelling, and sound 

classification [5]. These elements interact with each other to 

improve intelligibility and propitiate better acoustical com-

fort to the user.  

The limited computational resources of the available com-

mercial devices strongly limit the development of new tech-

niques for hearing aids improvement. Lately, manufacturers 

have provided dedicated hardware to overcome this problem. 

One example of a very successful commercial architecture 

for implementation of a noise reduction system can be found 

in [6]-[7]. In this architecture, the digitized acoustical signal 

is split in different frequency channels. Then, each channel is 

subjected to independent attenuation factors before signal 

reconstruction. Signal components pertaining to channels 

with higher signal to noise ratio (SNR) are enhanced, while 

those belonging to low SNR channels are attenuated, result-

ing in a better global SNR. However, this approach presents a 

good performance only for narrowband noise. In the case of 

broadband noise, all channels tend to suffer approximately 

the same attenuation, maintaining the same global SNR. As a 

result, complementary broadband noise reduction techniques 

are necessary in order to effectively obtain a high quality 

speech signal. The most important type of broadband noise in 

hearing aids is the uncorrelated noise, and many attempts to 

overcome this problem can be found in the main scientific 

databases. An interesting low computational cost alternative 

for uncorrelated noise reduction is the linear adaptive predic-

tor [8]-[9]. Despite the advantages of the adaptive predictor 

as an uncorrelated noise reduction technique, it presents the 

significant disadvantage of cancelling the speech uncorre-

lated components, which constitute about 20 to 25% of the 

natural speech in the English language [10]. Some works 

have recently addressed this problem, attempting to obtain 

practical and low distortion noise cancellers. In [11], a tech-

nique that weights the sum of the contaminated signal with 

the adaptive predictor output was proposed. This approach 

aims at enhancing the quasi-stationary components of the 

speech (voiced sounds), improving intelligibility and, secon-

darily, the SNR. However, many intelligibility problems can 

be referred to losses of comprehension of unvoiced sounds. 

As a result, this strategy has severe limitations for noise re-

duction applications. 

In [12], the output and error signals of the adaptive predictor 

are linearly combined using attenuation factors directly re-

lated to the instantaneous SNR. This approach does not pro-

vide good results when unvoiced speech and uncorrelated 

noise occur simultaneously. Nowadays, low cost uncorrelated 

noise reduction techniques are of great commercial interest, 

and constitute an open scientific and technical subject. 

This work presents a new uncorrelated noise reduction tech-

nique that estimates the clean speech by using a convex 

combination of the contaminated original signal and the out-

put of the conventional linear adaptive predictor. The convex 

combination weight factor establishes a trade-off between 

uncorrelated noise reduction and unvoiced speech distortion. 

The proposed algorithm outperforms the conventional adap-

tive predictor performance, increasing the speech quality. 
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Figure 1 – Proposed architecture. 

2. NOMENCLATURE AND NOISE 

CONTAMINATION MODEL 

Along this text, bold uppercase and lowercase letters repre-

sent matrices and vectors, respectively, while italic letters 

represent scalars. 

The sampled acoustic signal at time instant n is defined as 

the sum of the speech signal x(n) and the noise η(n), result-

ing in y(n) = x(n)+η(n). The noise η(n) is assumed station-

ary, independent of x(n), zero-mean, with power ση
2
, and 

uncorrelated (E{η(n)η(n-k)} = 0 for k ≥ 1). The speech sig-

nal x(n) has zero mean with power σx
2
 and is modelled by an 

autoregressive process with small correlation length for un-

voiced utterances or large correlation length for voiced ut-

terances. The model coefficients are constant in a given time 

window. 

3. LINEAR ADAPTIVE PREDICTOR 

The conventional linear adaptive predictor is shown in Fig. 1, 

internally to the dashed square denoted by letter A. The N-

coefficient least mean square (LMS) vector update equation 

is given by 

 ( ) ( ) ( ) ( )1n n e n nµ+ = + − ∆c c y , (1) 

where y(n) is the input signal, ∆ is a delay of sample units, 

y(n-∆) = [ y(n-∆) y(n-∆-1) … y(n-∆-N+1) ]
T
, c(n) = [ c0(n) 

c1(n) … cN-1(n) ]
T
, ˆ ( )Lx n  is the predictor’s output, e(n) = y(n)-

ˆ ( )Lx n  = y(n) - c
T
(n)y(n-∆) is the prediction error and µ is the 

convergence step. It is well known that, assuming conver-

gence of the coefficients, the LMS leads to an unbiased 

steady-state solution given by 

 ( ){ } 1lim
x

n
E n

∆

−

→∞
= =

yy x o
c R r c , (2) 

where, Ryy = E{y(n)y
T
(n)} is the (N×N) input signal correla-

tion matrix and x ∆xr = E{x(n)x(n-∆)}. Using (2) and 

Rηηηηηηηη = ση
2
I, after some mathematical manipulation, it is pos-

sible to come to [2] 
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SNR = σx
2
/ση

2
 is the signal to noise ratio, and Rxx is the 

(N×N) clean speech correlation matrix. For extreme values of 

SNR we obtain: 
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Equation (5) permits to verify the SNR effect over the con-

ventional predictor performance when it is used as an uncor-

related noise reduction technique. Two interesting character-

istics can be directly observed: (a) in the absence of speech, 

the predictor output tends to zero, increasing the acoustical 

comfort of the hearing aids user, and (b) in case of a large 

SNR there is signal distortion (because of the delay ∆), since 

in this case co → [ 1 0 … 0 ]
T
 would be the desired solution. 

As a result, the conventional adaptive predictor is expected to 

degrade the quality of speech signals in high SNR conditions. 

A similar problem, but with big consequences, occurs for 

intermediate SNR conditions and unvoiced speech (situation 

characteristic of usual conversation). In such a situation 

x ∆
≅xr 0  and thus co → 0 = [ 0 0 … 0 ]

T
. As a result, the adap-

tive predictor significantly attenuates unvoiced utterances, 

decreasing speech intelligibility and naturalness. 

3.1 Minimum Mean Square Prediction Error 

The mean square prediction error (MSPE) of the conven-

tional adaptive predictor is given by 

 ( ) ( ) ( ){ }2
ˆ

L L
J E x n x n= −  c . (6) 

and the minimum MSPE is given by 

 ( ) 2 T

L x
J σ= −

o o yy o
c c R c . (7) 

Equation (7) quantifies the performance of the adaptive pre-

dictor in estimating the clean speech. Later it will be com-

pared with the steady-state MSPE of the proposed algorithm. 

4. PROPOSED SYSTEM 

The proposed system seeks to minimize the uncorrelated 

noise while avoiding significant attenuation of unvoiced 

utterances. Its architecture is shown in Fig 1 internally to the 

dashed block labelled B. Note that the conventional predic-
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tor is part of the whole structure. The output of the proposed 

system is given by 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ1
L

x n y n e n y n x nα α α= − = − + . (8) 

The convex combination parameter α permits to balance the 

contributions of the contaminated input signal and the output 

of the conventional adaptive predictor. It ranges from 0 to 1 

and should be dynamically designed to minimize distortions 

of the output signal in case of occurrence of unvoiced utter-

ances or large SNR. 

4.1 Performance Surface 

The mean square error between the clean speech and the out-

put signal of the proposed system is a function of the predic-

tor’s coefficients and of the parameter α. It is given by 

 ( ) ( ) ( ){ }2
ˆ,J E x n x nα = −  c . (9) 

Using (8) in (9) we obtain 
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Knowing that E{y(n-∆)y
T
(n-∆)} = Ryy, E{y

2
(n))} = σy

2
, 

E{η(n)y(n-∆)} = E{η(n)ηηηη(n-∆)} = η ∆
r ηηηη , E{y(n)η(n)} = ση

2
, 

and E{y(n)y(n-∆)} = x ∆xr + η ∆
r ηηηη  then (10) turns to 
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Assuming that ∆ > 0, the minimum of the performance sur-

face (11) (c = co and x ∆xr = Ryyco) is given by 

 ( ) ( )2 2 2 2
, 2

T

yJ η ηα σ α σ α σ= − − +o o yy oc c R c . (12) 

4.2 Optimal Setting 

Equation (12) is a quadratic function, whose point of mini-

mum can be obtained differentiating it with respect to α and 

equating to zero, in a way that 

 ( ) ( )2 2, 2 2 0T

y
J ηα σ α σ

α

∂
= − − =

∂
o o yy o

c c R c . (13) 

From (13) the optimum solution is 
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where ση
2
 is the noise power, σy

2
 is the input signal power, 

and co
T
Ryyco is the optimal predictor output power. 

4.3 Minimum Mean Square Prediction Error 

Using (14) in (12) we obtain the minimum MSPE of the pro-

posed technique, given by 
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A ratio between both MSPEs, predictor and proposed system, 

can be obtained dividing (7) by (15) 
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Since all terms in equation (16) are positive, then GJ≥1 and, 

therefore, it is possible to conclude that the proposed solution 

leads to an output signal that better represents the speech 

signal, in the mean square sense. This occurs due to a better 

trade-off between noise reduction and distortion of the uncor-

related part of the speech. The minimum JL(co) encompasses 

both speech distortion and residual noise. 

5. PRACTICAL IMPLEMENTATION ISSUES 

In order to obtain a real-time dynamic approximation to the 

optimum parameter αo, in real nonstationary conditions, the 

following estimator of (14) can be used 

 ( )
( )

( ) ( )

2

2 2

ˆ

ˆ

L

o

y x

n
n

n n

ησ
α

σ σ
=

−
, (17) 

where ση
2
(n) is an estimate of the instantaneous additive 

noise power, which can be obtained when a voice activity 

detector (VAD) indicates absence of speech, σy
2
(n) is an 

estimate of the input signal power, and 2

ˆ ( )
Lx nσ  is an estimate 

of the predictor output power. These estimates can be ob-

tained using three recursive first order low-pass filters, given 

by 

 ( ) ( ) ( ) ( )2 2 2
1 1

w w w w
n n w nσ τ σ τ= − + −  (18) 

where w(n) and σz
2
(n) represent variables η(n), y(n), ˆ ( )Lx n  

and their respective powers for each filter. 

6. SIMULATION RESULTS 

This section presents simulation results to illustrate the per-

formance of the proposed algorithm. Due to space limita-

tions, only two examples are presented. The first compares 

the minimum MSPE of the conventional adaptive linear 

predictor with that of the proposed algorithm under com-

pletely known conditions. This is done to show the effects of 

both the SNR and the value of parameter α in their perform-

ance. The input signal was a simulated unvoiced utterance 

modelled by a 22 order autoregressive model [13], obtained 

from a 20 milliseconds male speaker epoch of the /s/ pho-

neme. The sampling frequency was 15.625 kHz, N = 10, 

µ = 10
-6

, ∆ = 1, additive Gaussian white noise, σx
2
 = 6, and 

SNR = 0.4, 3, 10.4, and 20 dB. Fig. 2 shows the results ob-

tained for: E{[x(n)-y(n)]
2
} = ση

2
 (dotted), E{[x(n)- ˆ ( )Lx n ]

2
} 

(dashed), and E{[x(n)- ˆ( )x n )]
2
} (continuous line). It can be 

verified that for high SNRs the conventional adaptive pre-

dictor provides a higher MSPE when compared to the origi-

nal contaminated signal, this condition is reversed for low 

SNRs. This occurs because the conventional predictor at-

tenuates not only the uncorrelated contamination noise but 

the unvoiced components of the speech as well. The opti-

mum parameter αo, evaluated by equation (14), is shown in 

Fig. 2 as an asterisk and clearly coincides with the minimum 
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MSPE obtainable with the proposed algorithm in all SNR 

conditions. The parameter αo is seen to lead always to the 

minimum MSPE. Additionally, the value of αo increases as 

the SNR decreases, e.g., for SNR > 20dB we obtain αo ≅ 0, 

suggesting the best possible speech estimate is basically the 

unprocessed (contaminated) speech. For SNR < 0 dB we 

have αo ≅ 1, indicating that the best achievable estimate is 

the conventional adaptive predictor output. For the 

3 dB < SNR < 10 dB range, there exists a wide range of α 

values around αo that results in smaller MSPEs than the 

conventional predictor and the (original) contaminated input 

signal. This result demonstrates the robustness of the pro-

posed algorithm to αo estimation errors. 

 

Figure 2 – Simulated unvoiced speech MSPEs obtained from: the 

contaminated signal (dotted), the conventional predictor (dashed), 

and the proposed algorithm (continuous line). The asterisk repre-

sents the MSPE of the proposed algorithm obtained with αo. 

The second example makes use of a real speech input signal 

from a male speaker. The artificial noise is white Gaussian 

with different SNRs (-3, 0, 3, 8, 10, 12, 15, and 20 dB). The 

parameters used were ∆ = 1, µ = 0.01, N = 10. Figs. 3 to 6 

show the results obtained for the MSPE and three objective 

speech quality measures: weighted-spectral slope metric 

(WSS), Itakura-Saito measure (ISS), and perceptual evalua-

tion of speech quality (PESQ) [4].  

The MSPE presented in Fig. 3 indicates the proposed algo-

rithm always results in better mean square estimates when 

compared to the conventional adaptive predictor. For SNR < 

-10 dB then α → 1 and both algorithms present approxi-

mately the same behaviour. For SNR > 20dB there are basi-

cally no differences between the MSPE of the contaminated 

input signal and the output signal of the proposed algorithm, 

suggesting no speech distortions. In Fig. 4, the WSS criterion 

suggests the performance of the new algorithm results in 

estimates with approximately the same quality of the con-

taminated signal and both are better than the conventional 

predictor output. The WSS criterion penalizes large distances 

at the locations of the spectral peaks, minimizing tilt and 

overall level differences. As a result, this criterion is not able 

to demonstrate quality gains for the proposed algorithm since 

additive noise does not change spectral peaks locations. 

However, WSS indicates that the new strategy reduces the 

effects of coefficient fluctuations that occur due to a small 

but nonzero convergence step, resulting in lower WSS in-

dexes for all tested SNRs. 

 

Figure 3 – MSPE for real speech and white noise. 

 

Figure 4 – WSS for real speech and white noise. 

Fig. 5 shows that the IS results resemble the MSPE ones in 

Fig. 3. The IS indexes suggest the new algorithm, again, re-

sults in better estimates of the clean speech. The IS penalizes 

differences at the spectral global levels between the desired 

and target signals, indicating significant speech distortion 

associated with the conventional predictor’s output. 

In Fig. 6, PESQ results can be visualized. This criterion 

measures distortions commonly found in telecommunication 

systems and presents a high correlation with the Mean Opin-

ion Score test. The obtained results indicate that the conven-

tional predictor does not result in significant subjective qual-

ity improvement when compared to the contaminated speech, 

and signal degradation occurs for SNR > 3 dB. The proposed 

algorithm presents a significant quality improvement in the   

-10dB < SNR < 10 dB range. A preliminary analysis indi-

cates that variations of the conventional adaptive linear pre-
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dictor such as [8]-[9], [11], [12] could benefit from using the 

proposed strategy. Assuming the availability of a VAD, the 

proposed algorithm requires only 5 extra sums, 10 multipli-

cations and 1 division (corresponding to 16 multiplications 

[14]) compared to the conventional predictor. 
 

 

Figure 5 – IS for real speech and white noise. 

 

 

Figure 6 – PESQ for real speech and white noise. 

 

7. CONCLUSIONS 

This work presented the derivation of a new low-cost solu-

tion for uncorrelated noise reduction in hearing aids. The 

optimum setting for maximum performance was theoreti-

cally obtained, resulting in a smaller mean square prediction 

error as compared with the conventional adaptive linear pre-

dictor. Simulations using artificial and real speech signals 

corroborate the theoretical results. Three different objective 

quality measures indicate speech quality improvement when 

compared with the conventional adaptive predictor. Uncor-

related noise reduction systems based on the conventional 

adaptive linear predictor and its variations can be easily 

modified to incorporate the new proposal with a minimum 

amount of extra computational resources. 
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