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ABSTRACT

We present an effective way to reduce musical noise in bin-
aural speech dereverberation algorithms based on an instan-
taneous weighting of the cepstrum. We propose this instanta-
neous technique, as temporal smoothing techniques result in
a smearing of the signal over time and are thus expected to re-
duce the dereverberation performance. For the instantaneous
weighting function we compute the a posteriori probability
that a cepstral coefficient represents the speech spectral struc-
ture. The proposed algorithm incorporates a priori knowl-
edge about the speech spectral structure by training the pa-
rameters of the respective likelihood function offline using a
speech database. The proposed algorithm employs neither a
voiced/unvoiced detection nor a fundamental period estima-
tor and is shown to outperform an algorithm without cepstral
processing in terms of a higher signal-to-interference ratio, a
lower bark spectral distortion, and a lower log kurtosis ratio,
indicating a reduction of musical noise.

1. INTRODUCTION

The intelligibility of speech signals that are captured by digi-
tal communication devices such as portable phones and hear-
ing aids is often degraded by additive background noise and,
in enclosed spaces, reverberation. The negative effect of re-
verberation increases with an increasing room volume and an
increasing distance between speech source and microphones
[1], [2]. As an example, for portable phones the negative ef-
fect of the reverberation significantly increases when the user
is talking hands-free.

While in the literature many algorithms are proposed to
reduce additive background noise [3], [4], speech derever-
beration received much less attention until recently [2].

If only one microphone signal is present, both additive
noise and reverberation can be reduced by weighting the
short-time discrete Fourier coefficients with a spectral gain
function that may result e.g. from spectral subtraction or the
Wiener filter. For speech dereverberation, spectral weighting
has been applied e.g. in [5], [1], [6].

In case two or more microphones are present, the spectral
gain function can be obtained based on the empirical coher-
ence between microphone pairs [7]. The same real valued
spectral gain function can then be applied to all microphone
signals, such that the inter-microphone level and time dif-
ferences remain unchanged (e.g. [8]). This is desirable for
instance for binaural hearing aids, where the inter-aural level
and time difference are used by the auditory system to local-
ize sources.

The research leading to these results has received funding from the Eu-

ropean Communitys Seventh Framework Programme under Grant Agree-
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Spectral enhancement based on the weighting of short-
time Fourier spectra often leads to undesired artifacts, of-
ten referred to as musical noise. These artifacts occur, if
the spectral gain function is locally underestimated in the
time-frequency domain. Recently it has been shown that
musical noise can be effectively removed by smoothing the
cepstral representation of the gain function [9]. This tech-
nique employs the observation that the spectral structure of
speech is compactly represented by a small set of cepstral
coefficients. Further, this set of speech-related cepstral coef-
ficients is mostly disjoint from the set of cepstral coefficients
that represents non-speech-like spectral artifacts. Thus, the
speech related cepstral coefficients can be preserved while
the remaining coefficients are smoothed. It has been shown
that this technique does not only remove processing artifacts,
but also leads to a better trade-off between speech distortions
and noise reduction as compared to competing algorithms.

However, a temporal smoothing of the gain function
may result in a slight noise shaping at the end of words
which makes the speech sound slightly more reverberant [9].
Clearly, such an additional reverberant effect is not desir-
able for a dereverberation algorithm. Thus, in this work
we propose to use instantaneous cepstral techniques, rather
than temporal smoothing, in order to reduce spectral outliers
without decreasing the dereverberation performance. For
the cepstral weighting function, we employ the a posteriori
probability that a cepstral coefficient represents the speech
spectral structure. We incorporate a priori knowledge about
speech by training parameters of the a posteriori probability
offline using a speech database. Further, as opposed to [9],
the proposed cepstral weighting technique employs neither a
voiced/unvoiced detector, nor a fundamental period estima-
tor.

We apply the proposed cepstral weighting to a coherence
based speech dereverberation algorithm, similar to [7]. We
describe the reference algorithm for coherence based dere-
verberation in Section 2 and propose an algorithm for cep-
stral weighting in Section 3. In Section 4, we show that
the proposed algorithm outperforms the reference algorithm,
while Section 5 concludes this paper.

2. COHERENCE BASED DEREVERBERATION

In coherence based speech dereverberation [7], the magni-
tude squared coherence between two microphone signals is
measured. For this, the time-domain microphone signals are
segmented, windowed and transformed into the frequency
domain to obtain the short-time discrete Fourier coefficients
Yk,m(l). Here k is the frequency index, m is the microphone
index, and l is the segment index. We choose the segments
to be of length 32ms, a normalized Hann spectral analy-
sis window, a sampling frequency of 16kHz and a discrete
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Fourier transform (DFT) length of 32ms ·16kHz= 512. For
the dual-channel case, the spectral gain function is given by

Gk(l) =
|Φk,12(l)|

2

Φk,11(l)Φk,22(l)
, (1)

where Φk,nm(l) is the cross-power spectral density between
microphone signals n and m for n 6= m, and Φk,mm(l) is the
auto-power spectral density of microphone signal m. Often,
the gain function Gk(l) is bound to be larger than a lower
limit Gmin, where typically −25dB < 20log10 (Gmin) <
−5dB. Gmin reduces the amount of speech distortions and
processing artifacts, but also the amount of noise and rever-
beration reduction. The same real-valued gain function is
then applied to disturbed speech of both channels to obtain

the enhanced speech Ŝk,m(l) (e.g. [8]):

Ŝk,m(l) = Gk(l)Yk,m(l). (2)

The power spectral densities are estimated using tempo-
ral recursive averaging, as

Φk,nm(l) = α Φk,nm(l− 1)+ (1−α)Yk,n(l)Yk,m(l)
∗. (3)

where we set the smoothing constant to α = 0.6 and n,m ∈
{1,2}. The low value of α = 0.6 results in only little smear-
ing of the speech signal, however also in quite some spec-
tral outliers in the estimate Φk,nm(l). Thus, when employing
Φk,nm(l) in speech enhancement via (1) and (2), the enhanced

speech Ŝk,m(l) contains spectral outliers which may be per-
ceived as annoying musical noise.

3. CEPSTRAL WEIGHTING

In this section we propose to reduce outliers in Φk,nm by an
instantaneous cepstral weighting.

3.1 Definition of the Cepstrum

The cepstral transform is defined as the inverse Fourier trans-
form of the logarithm of squared spectral quantities like Φk

and denoted by CEPSq{·}, while its inverse is denoted as
ICEPSk{·}. We thus have

φq = CEPSq{Φk}= IDFTq{ log(Φk)} , (4)

Φk = ICEPSk
{

φq
}
= exp

(
DFTk

{
φq
})

, (5)

where q is the cepstral index, DFTk{·} and IDFTq{·} denote
the discrete Fourier transform and its inverse, while the nat-
ural logarithm log(·) denotes the inverse of exp(·).

We compute the cepstrum of Φk,11(l), as

φq(l) =
1

N

N−1

∑
k=0

log
(
Φk,11(l)

)
ej

2πkq
N = CEPSq

{
Φk,11(l)

}
, (6)

where and N = 32ms · 16kHz is the length of the inverse
discrete Fourier transform (IDFT). In (6), we limit Φk,11(l)

to be larger than 10−4 to avoid numerical difficulties when
computing the natural logarithm log(·).

3.2 A posteriori probability weights

While a selective temporal smoothing of the cepstrum has
proven to be very effective to reduce processing artifacts in

noise reduction algorithms, for speech dereverberation we
propose to apply an instantaneous weighting function in the
cepstral domain. As the operation is done in each segment l
independently, in the sequel we omit the segment index l for
brevity.

We assume that the cepstral representation φq consists of
coefficients that represent the speech spectral structure, de-
noted by the hypothesis H1, and coefficients that are not
speech related, denoted by the hypothesis H0. In particu-
lar, non-speech related coefficients include those cepstral co-
efficients that represent artifacts, such as undesired spectral

outliers. The speech related cepstral coefficients φq are ob-

tained using the a posteriori probabilities that a cepstral co-
efficient is speech related, given by P(H1|φq), or not, given
by P(H0|φq), as

φq = P(H1|φq)φq+P(H0|φq) ·0

= P(H1|φq)φq. (7)

Thus, the speech related cepstral coefficients are maintained,
while the non-speech related coefficients are attenuated.

With Bayes’ theorem, the a posteriori probability that a
given cepstral coefficient is speech related is given by

P(H1|φq) =
P(H1)p(φq|H1)

P(H1)p(φq|H1)+P(H0)p(φq|H0)
. (8)

While the a priori probabilities allow to bias the posterior
distribution in favor of one of the hypotheses, we set them
equal P(H1) = P(H0) = 0.5. Further, a model for the likeli-
hood functions p(φq|H1), p(φq|H0) is needed. Cepstral co-
efficients are commonly assumed to be Gaussian distributed
[10] due to the central limit theorem and the summation in
(6). Thus, we obtain

p(φq|H1) =
1√

2πσ2
q,1

exp

(
−
(φq− µq,1)

2

2σ2
q,1

)
(9)

p(φq|H0) =
1√

2πσ2
q,0

exp

(
−
(φq− µq,0)

2

2σ2
q,0

)
. (10)

The mean µq,1 and variance σ2
q,1 of speech like cepstral co-

efficients are trained offline by taking empirical long-term
averages of the cepstral coefficients of 15 minutes of clean
speech of differentmale and female speakers from the TIMIT
database [11]. By doing so, we incorporate a priori knowl-
edge about the speech spectral structure.

On the other hand, we assume the cepstral coefficients
that represent non-speech like spectral structures to have
zero-mean, µq,0 = 0 and the variance in [12, Eq. (14)], which
is derived for cepstral coefficients obtained using Hann-
spectral analysis windows, as

σ2
q,0 =

{
2
N

(
κ0+ 2∑2

ν=0 κν cos
(
ν 2π

N
q
))

,q ∈
{
0, N

2

}
1
N

(
κ0+ 2∑2

ν=0 κν cos
(
ν 2π

N
q
))

,else
,

(11)

with κ0 = ζ (2,η) and Riemann’s zeta function ζ (2,η) =

∑∞
n=0 1/(η + n)2. For the derivation of (11) it is assumed

that the magnitude squared spectral coefficients are χ2-
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Figure 1: Comparison of the means (top) and variances

(bottom) of the cepstral coefficients representing speech-

like spectral structures (solid), and non-speech-like spectral

structures (dashed).

distributed with 2η degrees-of-freedom. The smoothing of
the spectra in (3) results in an increase of the degrees-of-
freedom [13]. Assuming that |Yk,m(l)|

2 is χ2-distributed with
η = 1, the increase of the degrees-of-freedom is approxi-

mated by η = 1+α
1−α , where α is the smoothing constant in

(3). The spectral correlation introduced by using Hann spec-
tral analysis windows is reflected by κ1 and κ2, which are de-
rived in [12, Eq. (16)]. Forα = 0.6 they result in κ1= 0.1166
and κ2 = 0.0070.

The resulting values for the means and variances are
compared in Figure 1.

3.3 Applying the a posteriori probability

Assume we have the cepstral representations

φq,nm(l) = CEPSq
{
|Φk,nm(l)|

}
, (12)

with n,m ∈ {1,2}. Then, the corresponding speech re-
lated cepstral coefficients can be obtained similar to (7), as

φq,nm = P(H1|φq,nm)φq,nm. However, instead we apply the

same a posteriori probability P(H1|φq) to φq,11, φq,22, and
φq,12, as

φq,nm = P(H1|φq)φq,nm, (13)

where φq = φq,11 is defined in (6). This simplification is done
for two reasons: first, the computational complexity is re-
duced as fewer cepstral transforms are needed. Secondly,
if we apply the same relative cepstral variance reduction to
all three power spectral density estimates, Φk,12, Φk,11, Φk,22,
the bias introduced by cepstral variance reduction cancels out
in (1), as will be explained next.

It has been shown in [12] that each cepstral coefficient
has a certain mean that depends on the spectral shape, and
a cepstral variance that decreases with an increase of the
degrees-of-freedom of χ2-distributed spectral coefficients.
Further, it has been shown that a change of the cepstral vari-
ance by temporal cepstrum smoothing or cepstral nulling re-

sults in a biased spectral estimate Φ̃k = ICEPSk

{
φ q

}
, and

that this bias is additive in the log-spectral domain and mul-
tiplicative in the linear-spectral domain. The unbiased co-

efficients Φk are then obtained using the bias correction B

as

Φk = B · Φ̃k = B · ICEPSk

{
φ q

}
. (14)

This bias also applies for cepstral weighting and is, in the
context of this work, a function of the a posteriori proba-
bility P(H1|φq). However, if the same weight P(H1|φq) is
applied to φq,11, φq,22, and φq,12, under the assumption that

|Φk,nm(l)| is χ2-distributed with the same shape parameter η
for all n,m (but possibly different spectral means and vari-
ances), the multiplicative bias cancels out in (1)

Gk =
|Φk,12|

2

Φk,11 Φk,22

=
|BΦ̃k,12|

2

BΦ̃k,11BΦ̃k,22

=
|Φ̃k,12|

2

Φ̃k,11 Φ̃k,22

. (15)

Further, if the same a posteriori probability is applied to
all φq,nm, the a posteriori probability can also be applied di-
rectly to the cepstral transform of the gain function. Starting
from (15) with (13) and (14), we have

Gk =

(
ICEPSk

{
φq,12P(H1|φq)

})2

ICEPSk
{

φq,11P(H1|φq)
}
ICEPSk

{
φq,22P(H1|φq)

}

= exp
{
2DFTk

{
IDFTq

{
log
(
|Φk,12|

)}
P(H1|φq)

}

−DFTk

{
IDFTq

{
log
(
|Φk,11|

)}
P(H1|φq)

}

−DFTk

{
IDFTq

{
log
(
|Φk,22|

)}
P(H1|φq)

}}

= exp

{
DFTk

{
P(H1|φq)IDFTq

{
log

(
|Φk,12|

2

Φk,11Φk,22

)}}}

= ICEPSk
{
P(H1|φq)CEPSq{Gk}

}
. (16)

Thus, for this multichannel algorithm, in total three cepstral
transforms are needed. One to compute φq in (6), and two for
(16). The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed algorithm

1: Learn and store the mean µq,1 and the variance σ2
q,1 of

speech cepstral coefficients offline using e.g. [11].

2: Set µq,0 = 0, and σ2
q,0 according to (11).

3: for all signal segments l do

4: Estimate the power spectral densities Φk,nm(l) using
(3) and α = 0.6.

5: Compute the spectral gain function (1)

Gk(l) = |Φk,12(l)|
2/
(
Φk,11(l)Φk,22(l)

)
.

6: Limit Gk(l) to be larger than −22dB.

7: Compute φq(l) = CEPSq
{

Φk,11(l)
}
(6).

8: Compute P(H1|φq(l)) using (8), (9), and (10).

9: Obtain the smoothed gain (16)

Gk(l) = ICEPSk
{
P(H1|φq(l)) ·CEPSq{Gk(l)}

}

10: Limit Gk(l) to be larger than −17dB.

11: Apply the gain function to the microphone spectra

Ŝk,1(l) = Gk(l)Yk,1(l)

Ŝk,2(l) = Gk(l)Yk,2(l) .

12: end for

2311



4. EVALUATION

To evaluate the proposed Algorithm 1, we use recordings
inside a cafeteria with a reverberation time of 1.76 s. The
recordings have been obtained using two hearing aid dum-
mies on an artificial head, where we use one microphone of
each hearing aid, respectively. Babble noise of the crowded
cafeteria has been recorded, and the acoustic impulse re-
sponses to the two hearing aids has been measured in the
empty cafeteria. With the measured impulse responses, we
synthesize 4 minutes of speech from 3 female and 5 male
speakers that are in frontal direction to the artificial head, and
in a distance of 1.5m. We shorten the measured impulse re-
sponse to 2 seconds, resulting in a direct-to-reverberation ra-
tio [2, (2.33)] of 10dB. Besides babble noise, we also create
diffuse pink Gaussian noise with an inter-microphone corre-
lation typical for human heads using [14].

We compare the proposed algorithm, Algorithm 1, to the
coherence based dereverberation (1) without cepstral weight-
ing which we refer to as the reference algorithm in the se-
quel. For both approaches we set α = 0.6 in (3). For this
low value of α the reference algorithm yields little speech
distortions but severe spectral outliers that are perceived as
musical noise. For both the proposed algorithm and the refer-
ence algorithm, the gain function (1) is bounded to be larger
than Gmin = −17dB. The training for the proposed method
is speaker independent.

In Figure 2 the segmental signal to interference ratio
(SIR) [2, (2.45)] and the segmental bark spectral distortion
(BSD) [15], [2, (2.38)] are given for several segmental input
signal-to-noise ratios (SNRs). All quality measures are eval-
uated on microphone signal one. The segmental input SNR
and the segmental SIR are only evaluated where reverber-
ant speech is present. For the input SNR, the “signal” is the
reverberant speech of one input channel, and the “noise” is
the difference between the noisy reverberant speech and the
reverberant speech of the same channel. For the SIR the “sig-
nal” is the non-disturbed direct speech component, while the
“interference” is the difference between the enhanced signal
and the non-disturbed direct speech component,. The SIR
thus increases with an increasing noise reduction, increas-
ing dereverberation, and decreasing speech distortions. The
BSD predicts the perceived quality of speech coders [15] and
speech enhancement algorithms [2]. For this, it measures
the difference between the loudness-equalized bark-scaled
non-disturbed direct speech component and the loudness-
equalized bark-scaled processed signal. This difference is
then normalized on the loudness-equalized bark-scaled non-
disturbed direct speech component.

From Figure 2, it can be seen that the proposed method
that includes cepstral weighting yields a larger SIR improve-
ment as opposed to the reference algorithm. The spectral
distortion measured using BSD is lower for low input SNRs,
and similar to the reference for high SNRs.

Informal listening revealed, that both for high and low in-
put SNRs cepstral weighting results in more natural sounding
results and far less processing artifacts. For a more formal
assessment of musical noise, we use the log kurtosis ratio as
proposed in [16]. For this we apply the proposed algorithm to
8 minutes of diffuse white Gaussian noise, compute the ratio
of the empirical kurtosis before and after processing in each
frequency band, and then the log of this ratio. The resulting
log kurtosis ratio is given in Figure 3. For the reference al-
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−5 0 5 10 15 20
−20

−15

−10

−5

0

input SNR

S
IR

 

 

proposed
reference
noisy

−5 0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

input SNR

B
S

D

 

 

proposed
reference
noisy

babble noise

−5 0 5 10 15 20
−20

−15

−10

−5

0

input SNR

S
IR

 

 

proposed
reference
noisy

−5 0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

input SNR

B
S

D

 

 

proposed
reference
noisy

Figure 2: Signal to interference ratio (SIR) (top) and bark

spectral distortion (BSD) (bottom) for the proposed and the

reference algorithm, evaluated on 4 minutes of speech dis-

turbed by diffuse pink noise (left) and babble noise (right).

It can be seen that the proposed algorithm results in a higher

SIR improvement, and lower or similar spectral distortions.
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Figure 3: The log kurtosis ratio is an indicator for the amount

of musical noise [16]. In this example we processed a spec-

trally white, spatially diffuse, Gaussian distributed random

noise-only signal. It can be seen that the proposed method

effectively reduces the log kurtosis by a factor of two, in-

dicating a reduction of spectral outliers and thus of musical

noise.

gorithm, we obtain a mean log kurtosis ratio of 1.89 while
for the proposed method we obtain a mean of 0.86. Thus, the
proposed algorithm reduces the log kurtosis ratio by a factor
of 2.20, indicating an effective reduction of musical noise.

In Figure 4 spectrograms of clean, noisy and processed
speech are given, where it can be seen that the proposed al-
gorithm reduces spectral outliers.

5. CONCLUSIONS

In this work we propose to reduce musical noise in derever-
beration algorithms by instantaneously weighting the cep-
stral coefficients of parameters of the dereverberation algo-
rithm. As opposed to temporal smoothing techniques, the
proposed instantaneous weighting does not smear the signal
over time. This is particularly beneficial for dereverberation
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Figure 4: Spectrograms of clean non-reverberant speech

(top), noisy reverberant speech (2nd from top), the refer-

ence’s output (3rd from top), and the proposed algorithm’s

output (bottom) for 0dB input segmental SNR, and diffuse

spectrally pink Gaussian noise. It can be seen that the pro-

posed algorithm effectively reduces spectral outliers.

algorithms, as a smearing over time is expected to decrease
the dereverberation performance. Further, in contrast to tem-
poral cepstrum smoothing, the proposed cepstral weighting
does neither require a voiced/unvoiced detector nor funda-
mental period estimator.

For the weighting function we apply the a posteriori
probability that a certain cepstral coefficient is speech re-
lated. The means and variances of the likelihood function of
speech-related cepstral coefficients are obtained empirically
from 15 minutes of speech from the TIMIT database.

We apply cepstral weighting to a coherence based dual
channel dereverberation algorithm where the two micro-
phone signals are obtained from two hearing aids worn by
an artificial head inside a cafeteria. The proposed method in

shown to result in larger signal to interference ratio (SIR) im-
provements and less spectral distortions as measured by the
bark spectral distortion (BSD). Further, informal listening
and the log kurtosis measure indicate an effective reduction
of musical noise. The price for the improved performance is
an increase in the computational complexity, dominated by
three real-valued and symmetric DFTs.
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