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ABSTRACT
The paradigm of Facial Action Coding System (FACS) of-
fers a comprehensive solution for facial expression measure-
ments. FACS defines atomic expression components called
Action Units (AUs) and describes their strength on a five-
point scale. Despite considerable progress in AU detection,
the AU intensity estimation has not been much investigated.
We propose SVM-based regression on AU feature space, and
investigate person-independent estimation of 25 AUs that ap-
pear singly or in various combinations. Our method is novel
in that we use regression for estimating intensities and com-
paratively evaluate the performances of 2D and 3D modali-
ties. The proposed technique shows improvements over the
state-of-the-art person-independent estimation, and that es-
pecially the 3D modality offers significant advantages for in-
tensity coding. We have also found that fusion of 2D and
3D can boost the estimation performance, especially when
modalities compensate for each other’s shortcomings.

1. INTRODUCTION

Automated measurement of facial actions has many poten-
tial applications for intelligent human-computer interaction
(HCI) and in behavioral science. Extracted facial actions can
be used to infer the emotional state of a person. As discussed
thoroughly in [2], computer perception of emotional states
can be useful for HCI in various ways. For instance, a more
effective automatic tutor can respond appropriately if it per-
ceives that the user is bored, computer games which respond
according to the player’s mood can be developed, or facial
actions can be used for generating performance-driven facial
animations.

Facial Action coding System (FACS) [4] is the most com-
mon facial action measurement methodology which involves
44 Action Units (AUs) related to facial muscle activations
that can be visually discerned. Being composed of very ex-
tensive set of rules, FACS requires certified human coders
and coding is a very time consuming process. These issues
motivate the development of automatic coders for facial be-
havior research and applications.

Although there is already a substantial literature on auto-
matic expression and action unit recognition [5], it still con-
tinues to be an active area of study due to the challenging
nature of the problem. However, in contrast to AU detection,
there is much less work in the literature on AU intensity esti-
mation. FACS defines AU intensities on a five-point ordinal
scale, i.e., from lowest A to strongest level E intensity. The
measurement of intensities can be useful in behavior research
and for improved FACS coding. For instance, if the expres-
sion is surprise, and if AU 5 - Upper Lid Raiser is avail-
able, then, it should only be at level B [4]. Second, estimat-

ing strength of the AUs yields more information about men-
tal state and emotional involvement of a subject. Moreover,
since humans can express their feelings in different ways un-
der different situations, information conveyed by AU inten-
sities can be exploited to adapt emotion recognizers to a par-
ticular user and context. An example adaptation framework
is proposed in [3] where landmark coordinates are employed.
Finally, when extended to video signals, AU intensity outputs
can be a basis for studying AU dynamics.

Most of the works on expression intensity are based on
the relationship between classification AU decision scores
and their intensities. For instance, Bartlett et al. [1] inves-
tigated correlations between intensity levels and SVM clas-
sifier margins of their Gabor filter-based detectors. They re-
ported moderate to high correlations for several AUs. One
criticism of using classifier scores is that they do not neces-
sarily incorporate only intensity information. Yang et al. [9]
have used the output scores of RankBoost based expression
classifiers to better deal with intensity variations. They train
RankBoost classifiers with onset to apex ranked image se-
quences, in order to rank the image pairs according to their
emotion intensities. They obtained better image pair order-
ing performance than the linear SVM-margin approach in
[1]. However, though related, correctly identifying ranking
of image pairs in a sequence whose intensity increases mono-
tonically is quite a different problem than estimating inten-
sities directly from single images. Besides, some additional
techniques should be figured out to convert ordering of im-
age pairs into intensities, and in such a way as to have con-
sistent intensity measurements between sequences. Recently
Mahoor et al. [6] studied measurement of AU 6 and AU 12
intensities over six subjects via person-specific AAMs. They
approach to intensity estimation as a classification problem
and apply six levels of SVM classifiers based on one-against-
one technique. For feature extraction they perform AU spe-
cific dimension reduction by applying regularized locality
preserving indexing on appearance data, and use delta fea-
tures (i.e., by neutral face feature subtraction).

The main novelty of our work is in the application of
a nonlinear regression scheme for AU intensity estimation.
A second contribution is the detailed investigation of 3D
modality for improved AU intensity estimation and the com-
parison and eventual fusion of 3D with 2D modality data.
Finally we experiment with 25 AUs, which is three times
bigger variety of AU types treated so far in the literature for
intensity estimation.

Figure 1: The scale of evidence and intensity scores [4].
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2. PRELIMINARIES

2.1 FACS Intensity Scoring

FACS has developed certain conventions and rules for scor-
ing intensities of Action Units. Scoring is done on a five-
point ordinal scale, A-B-C-D-E, if evidence of an AU is
present. The interpretation of these levels is as follows: the
level A refers to a trace of the action; B, slight evidence; C,
marked or pronounced evidence; D, severe or extreme action;
and E, maximum evidence. Scoring criteria depend upon the
scale of evidences, and the evidence can be assessed in terms
of the degree of appearance change or in terms of the num-
ber of appearance changes. Scoring criteria are listed in the
FACS manual [4] for each AU, though sometimes modified
criteria are used depending on the AU combinations.

Each AU intensity level, as denoted by a letter, refers to a
range of appearance changes, and not to a single strength of
AU. Notice that the intensity scale is not divided into uniform
intervals; for example, the levels C and D cover a larger range
of appearance changes. The relationship between the scale of
evidence and intensity scores is depicted in Figure 1.

FACS manual states that scoring of lower intensities, the
levels A and B, requires particularly careful examination, and
level A actions can only be scored reliably by very experi-
enced coders. While scoring of lower intensities may not
be easy, distinguishing the level E AUs can be difficult as
well since the intense muscular contractions of the level E
combine with the person’s individual physical characteristics
causing variability on the appearance changes across differ-
ent people. Samples of some low level and high level AUs
are shown in Figure 5.

2.2 Expression Database

We aim to estimate the intensity scores of AUs in a com-
pletely person-independent manner (i.e., not trained on or
normalized for any one individual) using still images. There
are two reasons that makes this type of estimation prob-
lem more challenging. First, person-independent estimation
means existence of additional variability due to different sub-
jects. Second, without video we are deprived of the rich dy-
namic information. We worked on the Bosphorus Database
[7] which not only has the intensity scores for all of its face
samples and all AUs, but also it has a rich repertoire of AUs.
Our previous work on this database has shown for the first
time in the literature that pure 3D AU detection is better that
2D AU detection in general over 25 AUs, except for some eye
related AUs. Another AU recognition study on this database
has also been presented in [10] where singly occurring high
intensity AUs have been experimented with. However, [10]
performs forced-choice classification of 7 AUs, i.e., does not
address AU detection problem and co-occurred AUs.

Bosphorus database contains 105 subjects with various
expressions for which ground-truth FACS codes were at-
tributed by a certified FACS coder. The images were ac-
quired under good illumination conditions, in almost frontal
poses, i.e., with mild 3D rotations. In this database, faces
have also their 3D scans, captured by a structured light sys-
tem. The number of points on the resulting 3D faces varies
between 30K and 50K. This gives us the opportunity to esti-
mate the AU intensities based on 3D geometry data.

(a) 2D camera im.
(b) Raw 3D face (c) Filtered face

(d) Curvature im.

Figure 2: Illustration of pre-processing steps of 3D surface
data to produce surface curvature images. Input data (b) is
filtered (c) and its surface curvature is computed. The cur-
vature information is projected onto 2D domain and extrap-
olation is performed (d). The FACS code for this particular
expression is 6B+7C+12D+16A+25D.

3. FEATURE EXTRACTION

We apply Gabor wavelets and extract AU specific feature
sets. The procedure is as follows. First, the 2D face im-
ages are registered and normalized to 96× 96 size images
by means of translation, rotation and scaling using the eye
centers. Then, Gabor features are extracted from normalized
faces in eight directions and nine scales. In these scales, the
wavelengths vary in half octave intervals from 2 to 32 pixels.
This yields a redundant set of 9×8×96×96 = 663,552 fea-
tures, out of which we select only 200 Gabor magnitudes us-
ing AdaBoost feature selection scheme where the weak clas-
sifiers are nearest mean classifier trained for each feature to
decide the presence of the target AU. This process is repeated
for each AU to select AU specific features.

Since we are interested in measuring AU intensities on
3D faces as well, we replicate the same set of operations. 3D
faces are first smoothed, registered and normalized in 3D.
However, the Gabor feature extraction is not done directly
on 3D surfaces, but on 2D maps of the mean curvature maps
computed from 3D data [7]. Figure 2c illustrates the raw 3D
data, its smoothed version and the curvature field in 2D. In
addition, we evaluate the fusion of 2D and 3D modalities.
For this purpose, we apply AdaBoost to select 200 features
from the combined feature set of Gabor magnitudes that are
extracted from luminance and curvature data.

4. REGRESSION BASED INTENSITY ESTIMATION

We formulate the estimation of AU intensity levels as a re-
gression problem. The dependent variable is the intensity
in ordinal scale varying from one to five. The explanatory
variables are either SVM scores or selected image features.
Since the output of the regressor is continuous, the outputs
are quantized into five discrete intensity levels.

4.1 Regression on SVM Margins

It was shown in [1] that distances to SVM margins (sep-
arating hyperplanes) used for AU detection are correlated
with intensity levels of AUs. This indicates that AU detec-
tor decision scores can also be used to estimate AU inten-
sities. Figure 3 shows the scatter of AU 12 decision scores
(RBF-SVM margins) for 2D and 3D modalities as box-and-
whisker plots. As expected higher AU intensities correspond
to bigger SVM scores. Also, there are substantial overlaps
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2D 3D

Figure 3: Distributions of decision scores (RBF-SVM margins) of AU 12 - Lip Corner Puller for 2D and 3D data modalities
shown as box-and-whisker plots (central mark: median, box: interquartile range, whiskers: extreme values, ‘+’: outlier)

between some adjacent intensity grades. Note that the medi-
ans of the distributions do differ significantly at the 5% sig-
nificance level if their notches (first quartile-to-median and
median-to-third quartile ranges) do not overlap. One expla-
nation for these overlaps is that the SVM algorithm was de-
signed to detect an AU, but not necessarily to estimate its in-
tensity. Also, whatever technique is employed some degree
of overlap is perhaps unavoidable, that is, a strict separation
of intensities should not be expected since FACS does not
define a quantitative measure between levels. Furthermore,
in person-independent intensity estimation, one is confronted
with more variability since different subjects can enact AUs
differently and facial surface and texture vary from subject to
subject. Finally, a perfect ground-truth human FACS scoring
is not a realistic assumption due to very detailed nature of the
annotating procedure, hence it is a noisy estimation problem
which might be handled better with more robust methods.
These factors make the estimation problem more challeng-
ing. Though not shown here, we have also observed that
overlap of the scores considerably changes for some AUs de-
pending on the 3D and 2D modalities. Shortcomings of each
modality will be partly compensated for when we resort to
fusion of 2D and 3D in Section 5.

We estimate the AU intensity levels, f (r), using logistic
regression on SVM scores r:

f (r) =
1

1+ e−(a+br) (1)

4.2 Regression on Image Features
Although we have used the distances to the hyperplanes in
SVMs designed as indicative of AU intensity, this propor-
tionality between SVM scores and intensities is not guaran-
teed since the support vectors are chosen for the classifica-
tion task but not for intensity level estimation. We therefore
consider an alternative regression in the feature space of se-
lected Gabor wavelet magnitudes of luminance or of mean
curvature field.

This regression problem is not straightforward since we
have a high number of explanatory variables (features), and
the dependent variable (annotator’s scores) are noisy, as there
is considerable overlap between intensity grades as discussed

in Section 4.1. Hence, we apply SVM regression based on
Vapnik’s ε-insensitive loss function [8]. ε-SVM regression
is appropriate because, first, high dimensionality of the input
space is not an issue for SVMs, and second, the ε-insensitive
loss function is robust and generates a smooth mapping.

Another consideration is the non-linearities between the
scale of evidence and intensity levels, as depicted in Figure 1.
This relationships points out to the possible benefits of non-
linear modeling. Notice that, there are also other sources
of non-linearities, such as due to combinations of AUs, that
is, AU co-articulation. SVMs are also great tools for effec-
tively learning various types of complex mappings by means
of kernels. The SVM regression function has the form:

f (x) = ∑
i

αik(xi,x)+b (2)

where x is the feature vector, k(xi,x) the kernel function,
f (x) is the predicted intensity level and xi are the support
vectors. Recall that x represents the vector of 200 Gabor fea-
tures that were also used for AU detection.

In our study we investigated both linear SVM and SVM
with nonlinear kernels of the Gaussian radial basis function
(RBF) variety. Advantage of RBF is its ability in handling
various types of non-linearity despite having a single spread
parameter. Depending on this parameter and SVM capac-
ity many non-linearity types can be captured. Therefore, we
optimize these two hyper-parameters also together with in-
sensitivity range ([-ε ,ε]) for each AU by performing cross-
validation over the training sets.

SVM Margins Image Features
Data Direct Logistic ε-SVM-Lin ε-SVM-RBF
2D 52.2 52.8 53.9 57.6
3D 50.5 50.9 52.9 55.7

3D+2D 56.0 56.4 59.1 61.7

Table 1: Correlation (percentages) of the estimated intensi-
ties with the scores of the FACS annotator.
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5. EXPERIMENTAL RESULTS AND DISCUSSIONS

For testing our AU intensity predictors, we used 2902 images
from the Bosphorus database. This subset of the Bosphorus
dataset involves 25 AUs which occur in various intensities
and combinations. Some sample images are shown in Fig-
ure 5. We train and test intensity estimators by 10-fold sub-
ject cross validation such that training subjects are not seen in
the test sets. To measure the performance of the intensity es-
timators we evaluate correlation coefficient between AU in-
tensity estimates and the discrete ground-truth AU intensity
levels. The overall performances are calculated by weighted
average according to the number of positive AU samples.

The correlations calculated over all AUs are listed in Ta-
ble 1. In the first column we see the performance of SVM-
margins method, and in the second column the performance
of the logistic regression on SVM-margins. Notice that in
a previous study Bartlett et al. [1] have obtained a correla-
tion performance 0.53 with 2D luminance images over six
AUs using linear SVM-margins. Using 2D data and RBF
SVM margins over the same set of AUs (1, 2, 4, 5, 10 and
20) we have obtained 0.62; however, over 25 AUs the aver-
age performance is 0.52. When we apply logistic regression,
we obtain 0.53 (Table 1). On the other hand, we see that
the improvements with ε-SVM regressor with image features
yield higher correlations, and the non-linear RBF modeling
achieves 0.58 correlation. The best overall result, 0.62, is
obtained by fusion using ε-SVM with RBFs.

When we compare the performance of data modalities
we see that 3D brings some improvement on averaged re-
sults only when used in conjunction with 2D data. Overall
averaging may hide some important information, hence we
compare intensity estimation for each AU over 2D and 3D
data modalities in Figure 4a. The number of the available
AU samples are inscribed on each AU bar. We see that, with
2D data, most of the upper face AUs, AU 4 - Brow Low-
erer, AU 5 - Upper Lid Raiser, AU 6 - Cheek Raise, AU 7 -
Lids Tight and AU 43 - Eye Closure, as well as AU 9 - Nose
Wrinkler achieve noticeably higher correlation than 3D data.
On the other hand, 3D data seems to be more convenient for
many lower face AUs, especially for AU 16 - Lower Lip De-
pressor, AU 18 - Lip Pucker, AU 22 - Lip Funneler, AU 25 -
Lips Part, AU 27 - Mouth Stretch and AU 34 - Puff, as well
as for AU 2 - Outer Brow Raise.

In contrast to intensity estimation, the improvements in
overall AU detection performances by 3D data were much
more substantial as shown in [7]. The AuC detection results
averaged over 25 AUs are 93.5%, 95.5% and 96.6% for 2D
(luminance) data, 3D data (mean curvature) and for their fu-
sion, respectively. Nevertheless, from Figure 4a it is under-
stood that the this overall performance contrast between de-
tection and estimation is actually not due to the inferiority of
3D modality. In fact, the advantages and disadvantages of
the 3D modality for intensity estimation conforms to the re-
sults of detection for most of the AUs, however higher perfor-
mance drops on certain AUs that have much more samples,
such as AU 7, inverts the overall performances. We present
the AU detection problem with 3D and 2D modalities in de-
tail in [7]. One expects normally that 3D data would be more
informative for he intensity estimation problem. Explanation
for why this promise is not fulfilled are as follows. 3D sens-
ing noise is excessive in the eye region and 3D misses the
eye texture information. Moreover, the ground-truth data in

(a) 3D vs 2D (ε-SVM with RBFs)

(b) Fusion vs 2D (ε-SVM with RBFs)

Figure 4: Performance (correlation) comparison between 3D
vs 2D vs fusion. The AU code and the total number of oc-
currences are inscribed in the bars.

manual FACS scoring is generated based on the observation
of 2D appearances, which may generate a bias in favor of 2D.
It is imaginable that the FACS annotator could have defined
the intensity labels slightly differently using 3D data.

From Figure 4b we see that by means of modality fusion
we are able to preserve the highest correlations of 2D and 3D
modalities in general. However, interestingly, even though
the correlation values of AU 22 are around 0.5 for 2D and
3D, it is boosted to 0.7 with fusion. These results shows the
importance of fusion with 3D.

6. CONCLUSION AND FUTURE WORK

In this paper we have investigated person-independent inten-
sity estimation of 25 AUs from still images comparatively on
2D and 3D modalities. Our intensity estimator operates in
a data-driven manner, thus does not require the aid of land-
marks. The only other person-independent study in the lit-
erature on estimation of AU intensities apply SVM margins
and Gabor features and address only eight AUs [1]. Our pro-
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Neutral Intensity: B Intensity: C,D,E Neutral Intensity: B Intensity: C,D,E
0 4B+7D 4D+7D 0 1B+2B+5B R2B+5D

(a) AU 4 - Brow Lowerer (b) AU 5 - Upper Lid Raise
0 9D+16B+25E 16E+25D 0 22B+25C+26D 22E+25D

(c) AU 16 - Lower Lip Depressor (d) AU 22 - Lip Funneler

Figure 5: Color, surface mean curvature and 3D surface images are shown for low (level B) and high (level C, D or E) intensity
instances of several upper and lower face action units together with the neutrals from the same subject.

posed intensity estimator based on regression of appearance
features proves to be superior to that based on SVM mar-
gins, both for 2D and 3D data modalities. To the best of
our knowledge we are the first one to employ regression for
intensity estimation, whether for subject-independent or for
subject-dependent estimation.

Our experiments show that 3D is not necessarily better
than 2D; in fact, while 3D show improvements on some AUs,
it incurs into performance drops on some other AUs, both in
the detection and intensity estimation problems. However,
when 3D is fused with 2D luminance images, the overall per-
formance increases significantly in both problems. We have
observed that whenever a modality is better for detection of
an AU, its intensity estimation is also superior in the same
modality. However, the performance drop in intensity esti-
mation for certain AUs with 3D data is more pronounced as
compared to the performance differential for detection. As
discussed in Section 5, we have conjectured that this may
be because of 3D acquisition noise in eye regions, since tex-
ture is missing, and also because FACS ground-truths were
scored on 2D appearance data, which might have created a
bias toward 2D modality.

Our future plans involve investigation of feature selection
specifically for regression and not regress on features bor-
rowed from the detection problem. Among novel features we
intend to evaluate local shape indicators as well as mean cur-
vature, such as Gaussian curvature, shape index, and curved-
ness. Since each of them convey slightly different informa-
tion, we may be able to find better features for 3D intensity
estimation.
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