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ABSTRACT

For high-quality digital audio transmitted over error-prone short-
range wireless channels robust source decoding with low decoding
delay is desired. However, many previous approaches from the field
of audio error concealment are solely intuitively motivated or intro-
duce algorithmic delay. In contrast, this paper deals with a Bayesian
framework for delayless full-band soft-decision error concealment
for quantized but uncompressed audio utilizing only residual redun-
dancy in the audio signal and channel reliability information. In
principle, it can be applied to any channel providing reliability in-
formation. As a novelty, we employ multiple adaptively shaped
prior probability distributions in the decoding process. These are
utilized in conjunction with the autocorrelation method or the nor-
malized least-mean-square (NLMS) algorithm in order to compute
prediction probabilities within the Bayesian framework. Experi-
ments carried out on representative audio data transmitted over ad-
ditive white Gaussian noise (AWGN) channels show significant en-
hancements in audio quality.

1. INTRODUCTION

Robust source decoding algorithms are required in digital commu-
nications wherever signals are transmitted over error-prone chan-
nels. This is due to the fact that even single bit errors after a pos-
sible error correction scheme can lead to annoying distortions. For
example, a flipped most significant bit of a pulse-code modulated
(PCM) sample leads to a loud click in the corresponding audio sig-
nal. In addition, advanced channel coding algorithms like turbo
codes or low-density parity check (LDPC) codes introduce a water-
fall effect, i. e., above a certain signal-to-noise ratio (SNR) residual
bit errors occur only very rarely, whereas below this threshold error
rates rise tremendously. Therefore, it is reasonable to employ ro-
bust error concealment techniques in order to introduce a graceful
degradation in signal quality.

Numerous previous approaches exist for efficient error conceal-
ment of source-coded signals (see, e. g., [1-6]). However, these sig-
nals are either narrowband speech signals coded with a low bit rate
or signals coded with considerable delays due to efficient source
coding algorithms (e.g., MPEG-1 Audio Layer 2 [7] or MPEG-
4 Part 3 AAC [8]). In contrast, upcoming digital wireless audio
transmission systems like WirelessHD [9], Wireless Home Digital
Interface (WHDI) [10] or digital wireless head- and microphones
require very low end-to-end delays while transmitting CD-quality
audio signals, i.e., signals sampled at a minimum sampling rate of
44.1kHz and quantized with 16 bits per sample. For professional
grade and audiophile applications even sampling rates of 96 or
192 kHz and quantization with 24 bits per sample are common. Due
to delay and/or complexity restrictions, the signals are often trans-
mitted without computationally expensive source coding or even in
uncompressed form. As a result, the complexity for robust decod-
ing would increase greatly if known error concealment approaches
such as those presented in [3—6] were applied.

Error concealment strategies like denoising, declicking and de-
crackling of distorted audio signals have been widely investigated
(see, e.g., [11-15]). However, these algorithms process hard-
decided signals and do not benefit from a bit-wise reliability in-
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Figure 1: High-level block diagram of the simulation setup

formation obtained during demodulation or channel decoding. In
contrast, in [2] a Bayesian approach for robust speech decoding ex-
ploiting bit-wise reliability information together with residual re-
dundancy in a speech signal has been presented. We have shown
in [16] that a modified approach also yields significant performance
gains in delayless soft-decision decoding of high-quality audio sig-
nals. Precisely, we have presented two novel approaches for the
computation of prediction probabilities for audio samples within a
Bayesian framework, the autocorrelation/Levinson-Durbin method
and the normalized least-mean-square (NLMS) approach.

In this contribution, we introduce the employment of adaptively
shaped, amplitude-dependent pre-trained a priori probability distri-
butions for efficient error concealment of high-quality audio. This
means that multiple prediction error probability density functions
(PDFs) dependent on the amplitude range of a predicted audio sam-
ple are generated in a training process. These PDFs are employed in
the decoding process, taking the different signal statistics of quiet
and loud parts of an audio signal into account. As our investiga-
tions are focused on short-range line-of-sight scenarios, we employ
an additive white Gaussian noise (AWGN) channel. In addition,
we do not employ any channel coding. The extension of our ap-
proach to more complex channels yielding reliability information is
straightforward.

The organization of the paper is as follows: Section 2 describes
the general steps of soft-decision audio decoding. Our new ap-
proach to compute prediction probabilities with adaptively shaped
a priori knowledge is presented in Section 3. Simulation results are
discussed in Section 4. Finally, Section 5 draws conclusions with
regard to the achieved results.

2. SOFT-DECISION AUDIO DECODING

The basic framework for soft-decision audio decoding is based
on the approach presented in [4]. The simulation setup is de-
picted in Fig. 1 and starts with audio samples s, € {—1,—1+
A,...,1 — A} quantized in M bit resolution, with n € {0,1,...} de-
noting the sample index and A = 2~M*! being the quantization
step size. After a mapping to a bit combination x, = (x,(0),x,(1),
<oy Xn(m), ..., xy(M—1)) with bipolar bits x,,(m) € {—1,1}, the sig-
nals are transmitted over an AWGN channel. A soft demodulator
yields log-likelihood ratios (LLRs)

o Bl (m) = +1)
LGalm)) =g & ) Fen(om) = —1)

ey

for each transmitted bit £, (m). These LLRs serve to compute bit er-
ror probabilities pe,(m) = 1/(1+exp(|L(£,(m))|)) for each hard-
decided bit £, (m) = sign(L(£,(m))) on the receiver side. Assuming
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Figure 2: Block diagram for the computation of prediction proba-
bilities P(x( \x ) with a number of Q adaptively shaped PDFs.

Dashed lines mdlcate paths only necessary for the normalized least-
mean-square (NLMS) approach.

a memoryless channel, this reliability information is used for the
computation of transition probabilities according to

M—1

T[T P@a(m) 5 (m)), 2)

m=0

P(%,[x1) =

with

Pen(m) if %p(m) # 20 (m), 3)

— Pen(m) else.

P o) ={ |

This describes the probability for a received hard-decided bit com-
bination X, given that the bit combination x 9 was transmitted, with
ie{0,1,....2M_1}.

For an estimation §,, of the transmitted audio sample s,, the min-
imum mean-square error (MMSE) E{(s, — §,)?} is used as an op-
timization criterion, with E{-} denoting the expectation value. The
corresponding MMSE estimation rule can be written as

x|%,, %071, )

') = (Rn,Xp—1,- )‘(0) being the complete history
of received bit combinations and s\) € {—1,—1+A,...,1 —A},
A =2"M+1denoting all possibly transmitted samples in Mblt res-
olution, represented by bit combination x@. An advantage of the
MMSE estimator is the inherent muting effect It results from the
a posteriori probabilities becoming P(x(?)|%,, Xy h = p(x®) for
the worst case channel with p, ,(m) = 0.5 and the assumption that
audio signals have a zero mean. As a result, estimated sample val-
ues are attenuated leading to a graceful degradation of audio quality
for very bad channel states.

A posteriori probabilities P(x!

with (R, %0~

|x,,7 ~1) describe the proba-
bilities for each possibly transmitted bit eombmatlon x () given the

received bit combinations X, )‘cg*l. As only present and past bit
combinations are regarded, no algorithmic delay is introduced in
this step. Assuming a memoryless channel, a posteriori probabili-
ties can be determined according to

P(x %, %01 = = -P(%ux) PRI, ()

C

with P(x( \”” 1) denoting prediction probabilities and C being a
constant, such that Z?j&l P(x()|%,, % Xy h=1.

Prediction probabilities comprise receiver-side a priori knowl-

edge about a possibly transmitted sample value x(0) before %,
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Figure 3: Examples of probability density functions pqE (e=sy—
Spn) with Q=16 and (a) ¢ = 1, (b) ¢ = 5 and (c) ¢ = 16. Solid ver-
tical bars mark the limits of s, , within an interval g, dashed PDFs
illustrate the maximum possible shifted positions of the correspond-
ing PDFs.

has been received. Without any a priori knowledge all x() are
uniformly distributed and the prediction probability reduces to

( | %11y =2~M_This is referred to as NAK (no a priori knowl-

edge) in the following. If the O™ order distribution of audio sample
values is known, e. g., by measurements in a training process, pre-
diction probabilities can be written as P(x( \ 1) =P(x, = x1).
As a consequence, for digital audio quantized w1th 16 bits per sam-
ple, a memory size of 2M = 216 words is required for the decoder.
This is denoted with AKO in the following.

3. APPROACH TO PREDICTION PROBABILITIES BY
LINEAR PREDICTION

In order to perform efficient error concealment for audio it is obvi-
ous to include information from preceding estimated audio samples
into the estimation process. This can be accomplished by employ-
ing linear prediction schemes in the decoder [2, 16].

The audio signal is predicted according to Fig. 2 by a linear

combination of N, preceding estimated audio samples 8/~ 11\, =

(Sn—1,8n—2,--- ,sn,NP) , with N}, denoting the prediction order and
()T being a transposed vector. The predicted sample is obtained by

R ©)

with a, = (a,(1),...,as(N,))T denoting the N, predictor coeffi-
cients. a, is adapted for each sample index in order to minimize
the mean-square error E{&2[8"~ ,lv }, with é, = §, — §,, denoting
the prediction error. Two approaches for this are described briefly
in the following.
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3.1 Predictor Coefficient Adaptation
3.1.1 Autocorrelation Approach

The autocorrelation (ACOR) method is a well-known approach for
the computation of predictor coefficients [17]. First, L previously

estimated audio samples 8] 'L are windowed accordmg to W -8/~ 'L

with W = 0.54 - T — 0.46 - diag{cos(2ZL),...,cos(2Z1)} denot-
ing a left-half Hamming window, I bemg the 1dent1ty matrix and
diag{-} denoting a diagonal matrix with its diagonal elements de-
fined by its argument. These windowed samples are then used for
the computation of N, + 1 autocorrelation coefficients. Finally, the
predictor coefficients a,, are determined by the Levinson-Durbin al-
gorithm applied to a Toeplitz matrix of the autocorrelation coeffi-
cients [18]. The predictor coefficients are updated according to this
scheme for each sample index.

3.1.2 Normalized Least-Mean-Square Approach

For adaptive filtering and source coding of audio signals the normal-
ized least-mean-square (NLMS) algorithm is widely used [18-20].
The adaptation rule for the predictor coefficients can be written as

€n—1 an—1
ol g 7
VRS "
with A denoting a tuning parameter controlling the convergence
rate [19]. The NLMS algorithm uses the MMSE between the fil-
ter output $,, , and the desired response §), as an optimization crite-
rion. Due to the normalization with respect to the squared Euclidean

an—1
norm Hsszsz

a=a,-1 +

the coefficient update is only loosely dependent on
the energy of 8}~ 1]\’,,' This is especially important for high-dynamic
audio signals. The variables are initialized at sample index n =0
witha_; = (1/Np,...,1/Np)" and 8=y = (0,....0)" [19].

3.2 New Adaptively Shaped Priors

The predicted sample §), ,, serves to select and shift a pre-trained and
stored prediction error probability density function (PDF), yielding
the prediction probabilities P(x( \ &"~1) of the Bayesian framework
in (5).

First, the statistics of the prediction error e, = s, — sy, is
measured in a training process. Depending on the magnitude of
the corresponding predicted sample s, ,, each e, value is utilized
for the training of one of Q amplitude-dependent prior distribu-
tions p%(e), with g € {1,...,0}. The actual PDF is selected by

= Q" |sp,n| +1]. Only the magnitude of s, , is taken into account
in this step because audio signals are assumed to be symmetrical.

As we are interested in computing the prediction probabilities

P(x! |”’1 h ~ P(x( |”’1 ' )m (5), we notethatx<>andx -

can be directly mapped to 51gnals s and s N], allowing us to
write ) X ) X

P 1%, 7x,) = PGS, ). ®)
8 1]\,[ on the
MMSE estimate §, can be summarized in the predicted value §), , =

The sole influence of the past estimated samples

E{$:|8, "y ! } Therefore we can write

s 5pm) )

with P(s(?) |§p,n) being the PDF of the prediction error. Using a num-
ber of Q different prediction error PDFs dependent on the amplitude
of the predicted sample, generated as described above and stored as

priors, we finally can write

PxO[%n=) ) = P(s|5p,0) (10)

—pl (W) —8,,) with G=[Q-[8pal+1]. (11)

The aim of this novel approach with adaptively shaped a pri-
ori PDFs for soft-decision audio decoding is to take advantage of
the different signal characteristics (predictability) of audio signals
within a certain amplitude range. For example, the amplitudes of
adjacent samples are all expected to be rather small for quiet parts
of an audio signal. As aresult, linear prediction yields small predic-
tion errors and the shape of the corresponding PDF is narrow (see
Fig. 3(a)). Conversely, in loud parts the audio signal is more likely
highly non-stationary, i.e., the amplitudes of neighbored samples
are more likely large but still low-amplitude samples occur. In these
cases, dependent on the adaptation rate of the predictor coefficient
update algorithm, prediction errors become larger. Consequently,
the corresponding PDF has a broader shape (see Fig. 3(b)). Addi-
tionally, in Fig. 3 the maximum shifted positions of the PDFs for
the given intervals g are shown with dashed lines, solid lines denote
the central PDF position.

Furthermore, very high audio sample magnitudes greater than 1
simply cannot occur and have a probability of zero, leading to an
asymmetrical shifted PDF (e. g., dashed PDF on the right-hand side
in Fig. 3(c)). In this case, the values of the clipped PDF tail are
summed up and inserted as a corresponding weighted unit impulse
(illustrated by the dashed arrow in Fig. 3(c)).

4. SIMULATIONS
4.1 Experimental Setup

We transmitted 13 monaural audio signals having a total length
of 96s from various sources (passages from classical pieces and
a motion picture sound track with music and effects, with differ-
ent instruments like organs, brass instruments, strings, percussions,
pianos and synthesizers) over an AWGN channel with Ej, /Ny ra-
tios ranging from 0-12 dB, as seen in Fig. 1. A priori probabilities
P(x()) and Q = 16 prior distributions pl:(e) have been gathered
from training material comprising 15 musical pieces used only for
training (pieces of classical music, electronic music and a motion
picture soundtrack including music, speech and effects) with a to-
tal length of 81 min. All audio signals have been normalized to
—26 dBFS (dB relative to full-scale), are sampled with 48 kHz and
are linear pulse-code modulated (PCM) with 16 bits per sample.
In order to measure the decoding performance, we use the global
signal-to-noise ratio (SNR)

2
SNRgigpa1 = 10 log g ﬁ , (12)

and the segmental SNR

10 5! Yoo Sokn
SNRee = — Zl 0210 (13)
k*O

YN Guen = Snraen)?

with K being the number of frames and N = 480 (i.e., 10 ms) de-
noting the frame length for evaluation. In the field of error con-
cealment schemes both measures have been proven to be notably
useful [2,4]. SNRge, serves as an indicator for permanent but low-
amplitude artifacts like crackling; SNRgjopq reflects rare transient
artifacts like sporadic loud clicks. Only for the SNR measurements
reference signal §is available in 24 bit resolution. Assuming a per-
fectly Laplacian-distributed signal at —26 dBFS and fine uniform
quantization (E{(§ —$)?} ~ A%/12), a maximum global SNR of
approximately 77 dB can be achieved.

In the preparatory stage of our experiments we made several
numerical investigations regarding well-suited window sizes L, pre-
diction orders N, and convergence parameters A. Our analyses
showed that A =20 for the NLMS, L=960 for the ACOR approach
and N, = 10 for both approaches are reasonable choices regarding
signal-to-noise ratios. Furthermore, it turned out that for the worst
investigated channel state it is more sensible to utilize the previ-
ously estimated sample value §,_| instead of the prediction value
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Figure 4: Global SNR performance with soft-decision decoding us-
ing the autocorrelation (ACOR) and NLMS approaches with Q=16
and Q =1 priors, 0 order a priori knowledge (AKO), no a priori
knowledge (NAK) and hard-decision decoding (HD).

Spn for the selection of the prior distribution. For all other simu-
lated channel states, no differences in either SNRgjopar 0r SNReg
were measurable. Therefore, we used § = | Q- |$,—1| + 1] through-
out all E;,/Ny conditions in our experiments. Note that the predic-

tion error PDF shift p}, (s — $pn) is of course performed with the
predicted sample §, ;.

In the current work, we investigate the parameters Q € {1,16}
for the ACOR and NLMS approaches. This means that either only
a single prior distribution (Q = 1) or multiple adaptively shaped
prior distributions (Q = 16) are employed for the computation of
prediction probabilities in the estimation process.

4.2 Discussion

The simulation results are depicted in Figs. 4 and 5 for the ACOR
and NLMS soft-decoding approaches with Q € {1,16}, for soft-
decision decoding with O™ order a priori knowledge (AKO) and
without a priori knowledge (NAK), and for hard-decision decoding
(HD). The channel E;, /Ny ratios are given on the abscissae, the re-
sulting SNRs after error concealment are provided on the ordinates.

Our results show that soft-decision audio decoding with adap-
tively shaped priors (Q = 16) is consistently superior to the cor-
responding conventional approach with only Q = 1 a priori prob-
ability distribution with virtually no notable increase in complex-
ity. In fact, improvements of up to 2dB in Ej, /Ny and 6 dB in both
SNRgjobat and SNRgeg can be reached. Compared to HD decod-
ing, even gains of 8.5dB in Ej,/Np, 40dB in SNRgjopa1 and 45 dB
in SNRgeg are achieved. At very high Ej,/Np ratios all decoding
algorithms approach SNRyjgpa1 =75.1dB and SNRgeg =72.1dB,
respectively, which corresponds to the signal-to-noise ratios of the
error-free transmission.

As shown in Fig. 5, simple HD decoding outperforms the NAK
algorithm in SNRe, performance for Ej/Np ratios greater than
5dB. This is because distortions become less likely for rising E;, /Ny
ratios but the NAK algorithm constantly introduces audible noise
due to the effectively uniformly distributed a priori probabilities.
This shows that exploitation of channel reliability information alone
without the utilization of residual redundancy in the audio signal
does not lead to satisfying results. Furthermore, for the worst inves-
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Figure 5: Segmental SNR performance with soft-decision decoding
using the autocorrelation (ACOR) and NLMS approaches with Q=
16 and Q=1 priors, 0" order a priori knowledge (AKO), no a priori
knowledge (NAK) and hard-decision decoding (HD).

tigated channel state with an E}, /Ny ratio of 0 dB the AKO algorithm
reaches the SNRgjop, performance of both ACOR and NLMS ap-
proaches with Q = 1. This is due to the fact that it is more meaning-
ful to use a correct amplitude distribution P(x(i)) than exploiting the
correlation of unreliably estimated samples. However, the introduc-
tion of Q = 16 adaptively shaped priors leads to a performance gain
compared to AKO decoding of approximately 7 dB for the ACOR
approach and 4 dB for the NLMS algorithm, respectively. Informal
listening tests confirm these instrumental results.

Please note that soft-decision decoding with a priori knowledge
(AKO, NLMS, ACOR) always leads to SNRs greater or equal than
0dB. This is due to the inherent muting effect of the MMSE esti-
mator (see Sec. 2).

Regarding the results for SNRyeg in Fig. 5, it can be seen that
the performance gain for both Q = 16 approaches is large compared
to the corresponding Q = 1 approaches for bad channel qualities and
diminishes for rising Ej, /Ny ratios. On the other hand, Fig. 4 reveals
that the performance gap in SNRgjopa between both approaches re-
mains considerable throughout a wide Ej,/Ny range. In fact, the
performance gain in SNRgjop, ranges between 4.5-6 dB for the
NLMS approach and is constantly 6 dB for the ACOR approach, re-
spectively, between Ej, /Ny ratios of 0-7 dB. This suggests that the
employment of adaptively shaped priors in the estimation process
especially supports the concealment of strong distortions.

5. CONCLUSIONS

In this paper we have presented a fully Bayesian approach to soft-
decision error concealment of high-quality audio signals. As a
novelty, we have employed multiple adaptively shaped, amplitude-
dependent prior distributions in the estimation process. The soft-
decoding algorithm uses channel reliability information and predic-
tion probabilities gained by linear prediction for the computation
of a posteriori probabilities. Predictor coefficients needed for lin-
ear prediction are updated by either the autocorrelation/Levinson-
Durbin method or a normalized least-mean-square (NLMS) ap-
proach. For each sample index, a prior distribution required for the
Bayesian framework is determined by the currently predicted au-
dio sample. We have investigated the effects of employing multiple
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prior distributions, each one trained for a specific amplitude range of
predicted samples. Thereby, we take account of the different char-
acteristics of audio signals within different amplitude ranges. Sim-
ulations with an AWGN channel show that the suggested approach
yields improvements of up to 2 dB in Ej, /Ny compared to our previ-
ous works without introducing noticeable computational overhead.
Our approach can be employed in a wide range of audio applications
such as audio streaming in WirelessHD, Wireless Home Digital In-
terface (WHDI) or in wireless microphones or headphones.
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