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ABSTRACT

This paper presents a mathematically rigorous analysis of lin-
early constrained adaptive filtering algorithms based on the adap-
tive projected subgradient method. We provide the novel concept
of constraint-embedding functions that enables to analyze certain
classes of linearly constrained adaptive algorithms in a unified man-
ner. Trajectories of the linearly constrained adaptive filters always
lie in the affine constraint set, a translation of a closed subspace.
Based on this fact, we translate all the points on the constraint set
to its underlying subspace — which we regard as a Hilbert space
— thereby making the analysis feasible. Derivations of the lin-
early constrained adaptive filtering algorithms are finally presented
in connection with the analysis.

1. INTRODUCTION

In signal processing applications, we often encounter situations in
which an estimate is required to satisfy a system of linear equa-
tions. In the context of adaptive filtering, such linear constraints
appear in adaptive beamforming, blind multiple access interference
suppression in wireless communication systems, etc [1, 2]. A sig-
nificant amount of effort has been devoted to developing efficient
algorithms for each application [3–7].

Metric projection has been proven a powerful tool in a bunch of
signal processing applications including adaptive filtering/learning
[8, 9]. The adaptive projected subgradient method (APSM) [8]
serves as a unified guiding principle for various projection-based
adaptive filtering algorithms. It encompasses the normalized least
mean square (NLMS) algorithm, the affine projection algorithm
(APA), the adaptive parallel subgradient projection algorithm, and
their convexly-constrained versions. Also it offers a deterministic
analysis (which is much more challenging than a stochastic analy-
sis) for those algorithms, proving the strong convergence of a vector
sequence generated by APSM in a Hilbert space. The analysis was
however built under the (implicit) assumption that the constraint set
has an interior point, which does not hold true in the case of lin-
ear constraints. Therefore, the analysis cannot directly be applied
to this important case. It would thus be of theoretical interest to
develop a mathematically rigorous analysis for linearly-constrained
adaptive filtering algorithms.

In this paper, we present a deterministic analysis of linearly-
constrained adaptive algorithms. To resolve the conflict regarding
the assumption of the existence of an interior point, we shed light
on the fact that the trajectory of the vector sequence lies in the affine
constraint set. We translate the affine set to its underlying subspace
— which we regard as a Hilbert space — thereby making the analy-
sis feasible. We introduce the new concept of constraint-embedding
functions. This leads to a unified analysis for three classes of lin-
early constrained adaptive algorithm, each of which includes the
projected APA, the embedded-constraint APA, and the constrained
APA, respectively.

2. PRELIMINARIES

Following mathematical background, some examples of affine pro-
jection type algorithms for linearly constrained adaptive filtering are
presented to facilitate the access to the main body of the present
work.

2.1 Mathematical Tools
Throughout, R, N, and N

∗ denote the sets of all real numbers, non-
negative integers, and positive integers, respectively. Let H be a
real Hilbert space1 equipped with the inner product 〈·, ·〉H : H 2 →
R and its induced norm ‖·‖

H
: H → [0,∞). A set C ⊂ H is

said to be convex if αx +(1−α)y ∈ C, ∀x,y ∈ C, ∀α ∈ (0,1). A
function f : H → R is said to be convex if f (αx + (1−α)y) ≤
α f (x)+ (1−α) f (y), ∀x,y ∈ H , ∀α ∈ (0,1). Given a nonempty
closed convex set C ⊂ H and an arbitrary point x ∈ H , there ex-
ists a unique point y∗ ∈ C closest to x. In this case, d(x,C) :=
miny∈C ‖x− y‖

H
= ‖x− y∗‖

H
is called a metric distance function,

and PC(x) := y∗ is called the metric projection of x onto C; i.e.,
PC : H → C is an operator that maps x ∈ H to the unique vector
PC(x) ∈C satisfying ‖x−PC(x)‖H = d(x,C).

For any continuous (possibly nondifferentiable) convex func-
tion f : H → R and an arbitrary point x ∈ H , there always exists
x̂ ∈ H satisfying 〈z− x, x̂〉H + f (x) ≤ f (z),∀z ∈ H . Such x̂ is
called a subgradient of f at x. If in particular f is differentiable,
there exists a unique subgradient that coincides with the gradient.
The set of all subgradients of f at x ∈ H is called the subdifferen-
tial of f at x. In other words, the subdifferential is a set-valued func-
tion defined as ∂ f : H → 2H ,x 7→ {x̂ ∈ H : 〈z− x, x̂〉

H
+ f (x) ≤

f (z), ∀z ∈H }. Assume lev≤0 f := {x ∈H : f (x)≤ 0} 6= /0. Then,
the mapping Tsp( f ) : H → H defined as

Tsp( f ) : x 7→







x−
f (x)

‖ f ′(x)‖2
H

f ′(x) if f (x) > 0

x otherwise

is called a subgradient projection relative to f , where f ′(x)∈ ∂ f (x),
∀x ∈ H .

2.2 Three Examples of Affine Projection Type Algorithms for
Linearly Constrained Adaptive Filtering
Let u ∈ H be the estimator, or the adaptive filter, on which a linear
constraint is imposed as follows: u ∈V , where V is a linear variety
in H with its underlying closed subspace M ⊂ H . Define v :=
PV (0), where 0 ∈ H denotes the null vector. It holds then that
V ∩M⊥ = {v} [11], where M⊥ denotes the orthogonal complement

1We present our analysis in a real Hilbert space to cover general cases
where the space is non-Euclidean; e.g., in the case of kernel adaptive filters
the space consists of functions and has a possibly infinite dimension [10].
The reader who is interested solely in linear adaptive filters may regard H

simply as a Euclidean space equipped with the standard inner product.
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Figure 1: A geometric interpretation of PAPA,
EAPA, and CAPA for λk = 1. We define Πk :=
{

x ∈ H : 〈PVk(uk)−uk,PVk(uk)− x〉
H

= 0
}

.

of M (H = M ⊕M⊥). The linear variety can be expressed2 as
V = M + v := {x + v : x ∈ M}.

Let Vk be a data-dependent linear variety in H at time instant
k ∈ N. We present a specific example in the case of linear adaptive
filters. Given an input process (xk)k∈N ⊂ R, suppose that the out-
put process (yk)k∈N ⊂ R is generated as yk := xT

k u∗ + nk, where
xk := [xk,xk−1, · · · ,xk−N+1]

T for some N ∈ N
∗, u∗ ∈ R

N is an un-
known linear system, and (nk)k∈N ⊂ R is the noise process. Here
(·)T denotes transpose. Define Xk := [xk xk−1 · · · xk−r+1] and
yk := [yk,yk−1, · · · ,yk−r+1]

T for some r ∈ N
∗. Then Vk can be de-

fined as Vk := argmin
u∈RN

∥

∥XT

k u−yk
∥

∥

Rr , where ‖·‖
Rr denotes the

Euclidean norm in R
r.

In a general case, affine projection type algorithms for linearly
constrained adaptive filtering are given as follows:

uk+1 := PV (uk +λk(PVk (uk)−uk)) , (1)

uk+1 :=
{

uk +ηkPM (PVk (uk)−uk) if PVk (uk)−uk 6∈ M⊥

uk otherwise,

ηk := λk
‖PVk(uk)−uk‖

2
H

‖PM (PVk(uk)−uk)‖
2
H

≥ λk, (2)

uk+1 :=
{

uk +λk(PVk∩V (uk)−uk) if Vk ∩V 6= /0
uk otherwise, (3)

where λk ∈ [0,2] is the step size parameter of each algorithm. We re-
fer to the algorithms in (1), (2), and (3) respectively as the projected
APA (PAPA), the embedded-constraint APA (EAPA) [8], and the
constrained APA (CAPA) [6]. A geometric interpretation of each
algorithm is presented in Fig. 1. If in particular Vk is a hyperplane
(i.e., if r = 1 in the previous paragraph), then (1) is reduced to the
projected NLMS algorithm [3], and both (2) and (3) are reduced to
the constrained NLMS algorithm [4] (see also [5, 7]). For reference,
the performance of the algorithms in an adaptive beamforming ap-
plication [12] is depicted in Fig. 2, although we omit to show the
details about the simulation conditions (The conditions are exactly
the same as in [13] except the algorithms tested; MPDR stands for
minimum power distortionless response). It should be mentioned
that the algorithms in (1) and (2) do not have their generalized side-
lobe canceller (GSC) counterparts for r ≥ 2 and hence one cannot
follow the typical way of analyzing a linearly constrained adaptive
algorithm through the analysis of its GSC counterpart.

3. A DETERMINISTIC ANALYSIS

Let (Θk)k∈N be a sequence of cost functions, where Θk : H →
[0,∞), k ∈ N, is an instantaneous cost function that reflects the data
observed at each time instant k. We assume Θk to be continuous and
convex. A simple example is Θk(x) := d(x,Vk), x∈H (see Section

2V is a translation of M by v. Although not necessarily required, we let
v ∈ M⊥ to simplify the discussion.

0 1000 2000 3000 4000 5000
−10

−5

0

5

10

15

Number of Iterations

O
ut

pu
t S

IN
R

 (d
B

)

 

 

Ideal MPDR Filter

EAPA

PAPA

CAPA

Figure 2: A numerical example in adaptive beamforming.
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Figure 3: A constraint-embedding function ψ for (Θ,V ).

2). Many of the problems encountered in adaptive signal processing
fall into the linearly constrained asymptotic minimization problem
shown below.

Problem 1 Minimize the sequence of cost functions (Θk)k∈N over
V in an asymptotic sense.

Problem 1 is a subclass of the problem addressed in [8] where any
closed convex set can be used in place of V . Applied to Problem
1, APSM iteratively generates the vector sequence (uk)k∈N, for any
initial point u0 ∈ H , by

uk+1 :=











PV

(

uk −λk
Θk(uk)

∥

∥Θ′
k(uk)

∥

∥

2
H

Θ′
k(uk)

)

if Θ′
k(uk) 6= 0

uk otherwise,

k ∈ N, (4)

where λk ∈ [0,2] is the step size. Unfortunately, a large part of
the analysis presented in [8] cannot directly be applied to this case,
because V has no interior point in H .

We present a deterministic analysis of a family of linearly con-
strained adaptive filtering algorithms (including PAPA, EAPA, and
CAPA) in a unified way. To this end, we address Problem 1 via con-
sidering an alternative problem of minimizing a sequence (ψk)k∈N

of constraint-embedding functions over V asymptotically. The key
is the following: the function ψk (i) inherits the information about
the solution (i.e., ψk and Θk share the same minimizers and the same
minimum value over V ), and (ii) enjoys a certain favorable structure
which we call constraint embedding.

3.1 Constraint-Embedding Functions — Definition and Idea
We define the constraint-embedding functions as follows.

Definition 1 (Constraint-embedding functions) Let Θ : H →
[0,∞) be a continuous convex function having a minimum over
a linear variety V . Then, another continuous convex function
ψ : H → [0,∞) is said to be constraint-embedding for (Θ,V ) if
the following conditions are satisfied.
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(C1) Preservation of the minimizers:
argminx∈V ψ(x) = argminx∈V Θ(x).

(C2) Preservation of the minimum:
ψ(x) = Θ(x), ∀x ∈ argminx∈V ψ(x) ⊂V .

(C3) Lower boundedness by Θ:
ψ(x) ≥ Θ(x), ∀x ∈V.

(C4) Constraint-embedding structure:
ψ(u) ≤ ψ(u+ y), ∀(u,y) ∈V ×M⊥.

Figure 3 illustrates a constraint-embedding function; the left panel
describes (C1)–(C3) and the right one describes (C4). To make
the idea of constraint-embedding function clear, let us consider the
problem of minimizing Θ over V , which is a static counterpart of
Problem 1. Due to (C1) and (C2) in Definition 1, we may obtain a
solution to this problem indirectly by solving the alternative prob-
lem of minimizing a constraint-embedding function ψ for (Θ,V )
over V . With an initial point on V , we can apply the subgradient
method to the alternative problem without performing the metric
projection onto V to enforce the constraint. This is the key for the
unified analysis to be presented in Section 3.2, and it is supported
by the following lemma.

Lemma 1 Let ψ : H → [0,∞) be a continuous convex function sat-
isfying (C4) in Definition 1. Then, PM(∂ψ(u)) ⊂ ∂ψ(u), ∀u ∈V .

Proof: Fix u ∈ V . Any subgradient ψ ′(u) ∈ ∂ψ(u) is uniquely de-
composed as ψ ′(u) = ψ ′

M(u) + ψ ′
M⊥(u) with (ψ ′

M(u),ψ ′
M⊥ (u)) ∈

M ×M⊥. Because ψ ′
M(u) = PM(ψ ′(u)), it is sufficient to show

that ψ ′
M(u) ∈ ∂ψ(u). Any x ∈ H has a unique decomposition as

follows: x = xM + xM⊥ = (xM + v) + (xM⊥ − v) with (xM ,xM⊥) ∈

M×M⊥. Let xV := xM + v ∈V . We can then verify

ψ(u)+
〈

ψ ′
M(u),x−u

〉

H

=ψ(u)+
〈

ψ ′
M(u),xV +(xM⊥ − v)−u

〉

H

=ψ(u)+
〈

ψ ′
M(u),xV −u

〉

H
+
〈

ψ ′
M(u),xM⊥ − v

〉

H

=ψ(u)+
〈

ψ ′
M(u)+ψ ′

M⊥ (u),xV −u
〉

H

≤ψ(xV ) ≤ ψ(xV +(xM⊥ − v)) = ψ(x). (5)

Here, the third equality holds because xV − u ∈ M and xM⊥ − v ∈

M⊥, and the second inequality comes from (C4). The equation (5)
implies ψ ′

M(u) ∈ ∂ψ(u), which verifies the claim. 2

Lemma 1 guarantees the existence of a subgradient of ψ in M;
i.e., ∂ψ(u)∩M 6= /0, ∀u ∈ V . Such a subgradient is indicated by
the blue arrow in Fig. 3. As M is parallel to V , one can search for
a solution without stepping away from V by using a subgradient
ψ ′(u) ∈ ∂ψ(u)∩M, u ∈ H , hence there is no need to perform the
metric projection onto V to enforce the constraint. This implies that
the information regarding the linear constraint V is embedded into
ψ due to (C4). The condition (C3) is a technical one required for the
discussion in Section 3.2. Two examples of constraint-embedding
function are given below.

Example 1 (Constraint-embedding functions)
1. Given any continuous convex function Θ : H → [0,∞), the func-

tion ψ : H → [0,∞), x 7→ Θ(PV (x)), is constraint-embedding
for (Θ,V ). In this case, the equality holds for (C3) and (C4)
in Definition 1, and PM (Θ′(PV (x))) ∈ ∂ψ(x), ∀x ∈ H , where
Θ′(x) ∈ ∂Θ(x) [8, Example 5] (cf. Lemma 1 below). The func-
tion ψ is convex because the convexity of Θ is preserved under
the composition with the affine mapping PV [14]. The continuity
of ψ is readily verified by that of PV .

2. Let Ci ⊂ H , i = 1,2, · · · ,q, be closed convex sets satisfying
C := V ∩

(

⋂q
i=1Ci

)

6= /0. Define an average distance func-
tion Θ : H → [0,∞),x 7→ ∑q

i=1 wid(x,Ci), where wi > 0 sat-
isfies ∑q

i=1 wi = 1. Then the function ψ : H → [0,∞),x 7→

∑q
i=1 wid(x,Ci ∩V ) is constraint-embedding for (Θ,V ); this

type of function is used in [7]. For (C1) in Definition 1,

argminx∈V ψ(x) = argminx∈V Θ(x) = C. The fact d(x,Ci ∩V )≥
d(x,Ci)(⇐ Ci ∩V ⊂ Ci) implies (C3). For (C4), note that
d(u,Ci ∩V ) ≤ d(u + y,Ci ∩V ), ∀(u,y) ∈ V × M⊥, for each
i = 1,2, · · · ,q. It is clear that ψ is continuous and convex.

3.2 Convergence Analysis of APSM under Linear Constraints
via Constraint-Embedding Functions
For each k∈N, let ψk : H → [0,∞) be a continuous convex function
that is constraint-embedding for (Θk,V ), where Θk : H → [0,∞) is
a continuous convex function having a minimum over V . Consider
the following problem.

Problem 2 Minimize (ψk)k∈N over V in an asymptotic sense.

Due to (C1) and (C2), Problems 1 and 2 share the same minimum
and minimizers. For Problem 2, we have an observation similar
to the one presented in Section 3.1 for the static cost function ψ .
Starting at some initial point u0 ∈ V and adopting a subgradient
ψ ′

k(uk) ∈ ∂ψk(uk)∩M, ∀k ∈ N, the following recursion generates a
vector sequence (uk)k∈N ⊂V :

uk+1 :=







uk −λk
ψk(uk)

∥

∥ψ ′
k(uk)

∥

∥

2
H

ψ ′
k(uk) if ψ ′

k(uk) 6= 0

uk otherwise,
(6)

where λk ∈ [0,2]. Note here that ψk(uk) > infx∈H ψk(x) ⇔ 0 6∈
∂ψk(uk). Lemma 1 with the assumption uk ∈ V , k ∈ N, guarantees
the existence of ψ ′

k(uk) ∈ ∂ψk(uk)∩M, and the recursion (6) moves
(if it moves) uk in the direction of ψ ′

k(uk) ∈ M along with V , which
ensures uk+1 ∈V .

For the same reason as stated under (4), there is a difficulty
in the convergence analysis of (6) in H . To eliminate the dif-
ficulty, we focus on the fact that the trajectory of uk lies in V ,
and shift the stage of analysis from H to M. To be precise,
we turn our attention to the real Hilbert space (M,〈·, ·〉M), where
〈x,y〉M := 〈x,y〉H , ∀(x,y) ∈ M2. Accordingly the induced norm is
defined by ‖x‖M :=

√

〈x,x〉M = ‖x‖H , x ∈ M.
Define a function ϕk : M → [0,∞),x 7→ ψk(x + v), k ∈ N; ϕk is

a translation of ψk. We then obtain ψk(uk) = ψk(wk + v) = ϕk(wk),
where wk := uk − v ∈ M, k ∈ N. Moreover, M ⊃ ∂ϕk(wk) =
∂ψk(wk +v)∩M = ∂ψk(uk)∩M [15, Theorem 4.2.1], hence we let
ϕ ′

k(wk) := ψ ′
k(uk) ∈ ∂ϕk(wk) ⊂ M. Subtracting v (= PV (0)) from

both sides of (6) and letting wk = uk − v, (6) can thus be rewritten
as

wk+1 :=







wk −λk
ϕk(wk)

∥

∥ϕ ′
k(wk)

∥

∥

2
H

ϕ ′
k(wk) if ϕ ′

k(wk) 6= 0

wk otherwise.
(7)

The sequence (uk)k∈N on V is translated to (wk)k∈N on M. We
emphasize that, without using the constraint embedding functions,
the existence of a common subgradient is not guaranteed, and thus
we cannot analyze properties of (uk)k∈N through an analysis of
(wk)k∈N. The analysis in [8] can directly be applied to (wk)k∈N

in (M,〈·, ·〉M), yielding the following theorem on the analysis of
(uk)k∈N in (H ,〈·, ·〉H ).

Theorem 1 Let M ⊂ H be a closed subspace and V := M + v for
v ∈ M⊥. Also let ψk, k ∈ N, be a continuous convex function that is
constraint-embedding for (Θk,V ). Then, the sequence (uk)k∈N ⊂V
generated by (6) for an arbitrary u0 ∈V and ψ ′

k(uk)∈ ∂ψk(uk)∩M,
∀k ∈ N, satisfies the following.
(a) Monotone approximation : Assume that uk 6∈ Ωk :=

argminx∈V ψk(x) 6= /0; note that Ωk = V ∩ argminx∈H ψk(x)
and Ωk = /0 ⇔ argminx∈H ψk(x) = /0. Then,

∀λk ∈
(

0,2
(

1− ψ∗
k

ψk(uk)

))

, where ψ∗
k := minx∈H ψk(x) =

minx∈V Θk(x), k ∈ N,
∥

∥

∥
uk+1 −u∗(k)

∥

∥

∥

H
<

∥

∥

∥
uk −u∗(k)

∥

∥

∥

H
, ∀u∗(k) ∈ Ωk. (8)
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(b) Asymptotic optimality of the sequence (uk)k∈N : Assume

(i) ∃K0 ∈ N s.t.
{

ψ∗
k = 0, ∀k ≥ K0, and

Ω :=
⋂

k≥K0
Ωk 6= /0.

Then, (uk)k∈N is

bounded. Moreover, if we specially use λk ∈ [ε1,2−ε2]⊂ (0,2)
and (ψ ′

k(uk))k∈N is bounded, then

lim
k→∞

Θk(uk) = 0. (9)

(c) Convergence & asymptotic optimality of the limit point : As-
sume (b-i) and that Ω has a relative interior w.r.t. V ∩H 6= /0 for
a hyperplane H ⊂ H . Then, by using λk ∈ [ε1,2− ε2] ⊂ (0,2),
∀k ∈ N, (uk)k∈N converges strongly to some û ∈V , i.e.,

lim
k→∞

‖uk − û‖H = 0. (10)

Moreover, limk→∞ Θk(û) = 0, if (i) (ψ ′
k(uk))k∈N is bounded and

(ii) there exists bounded (ψ ′
k(û))k∈N where ψ ′

k(û) ∈ ∂ψk(û),
∀k ∈ N.

(d) A characterization of the limit point : Assume (b-i), (c-
i), and (c-ii). Assume also that Ω has a relative inte-
rior uri ∈ Ω w.r.t. V . With λk ∈ [ε1,2 − ε2] ⊂ (0,2), ∀k ∈
N, let û := limk→∞ uk ∈ V. Then, it follows that û ∈
liminfk→∞ Ωk , provided that3 (i) there exists δ > 0 such
that infuk∈Γk(ε ,ρ),k≥K0

ψk(uk) ≥ δ , ∀ε > 0, ∀ρ > 0, where
Γk(ε,ρ) := {u ∈ H : d(u, lev≤0ψk) ≥ ε,‖u−uri‖H ≤ ρ}.

Proof: The claims (a)–(d) are proved by translating the anal-
ysis of (wk)k∈N to (uk)k∈N, as shown below. Define Γk :=
argminx∈M ϕk(x). Then, recalling ϕk(x) = ψk(x + v), ∀x ∈ M, we
have Ωk = Γk +v := {x + v : x ∈ Γk} hence Γk 6= /0(⇔Ωk 6= /0); note
that v = PV (0). Let ϕ∗

k := minx∈M ϕk(x) = ψ∗
k , k ∈ N.

Proof of (a) : By the assumption and uk = wk +v, we obtain wk +v 6∈
Γk + v (= Ωk 6= /0), hence wk 6∈ Γk 6= /0. Therefore, [8, Theorem

1(a)] tells us that, ∀λk ∈
(

0,2
(

1− ϕ∗
k

ϕk(wk)

))

=
(

0,2
(

1− ψ∗
k

ψk(uk)

))

,
w∗

(k) := u∗(k)− v ∈ Γk for any u∗(k) ∈ Ωk satisfies

∥

∥

∥
wk+1 −w∗

(k)

∥

∥

∥

M
<

∥

∥

∥
wk −w∗

(k)

∥

∥

∥

M
. (11)

By wk −w∗
(k) = uk − u∗(k) and wk+1 −w∗

(k) = uk+1 − u∗(k), we can
verify the claim.
Proof of (b) : By the assumption, we have

∃K0 ∈ N s.t.
{

ϕ∗
k (= ψ∗

k ) = 0, ∀k ≥ K0, and
Γ :=

⋂

k≥K0
Γk(= Ω− v) 6= /0.

(12)

Therefore, [8, Theorem 1(b)] tells us that, (wk)k∈N is bounded, and,
for λk ∈ [ε1,2− ε2] ⊂ (0,2), limk→∞ ϕk(wk) = 0 if (ϕ ′

k(wk))k∈N

is bounded. The boundedness of (uk)k∈N is verified by noting
‖uk‖

2
H = ‖wk + v‖2

H = ‖wk‖
2
H + ‖v‖2

H = ‖wk‖
2
M + ‖v‖2

H . The
rest of the claim is proved by noting 0≤Θk(uk)≤ψk(uk) = ϕk(wk)
and ψ ′

k(uk) = ϕ ′
k(wk).

Proof of (c) : The assumption (b-i) implies (12). Moreover, the ex-
istence of a relative interior of Ω w.r.t. V ∩H ensures the existence
of a relative interior of Γ w.r.t. H̄ := {x ∈ M : 〈x,a〉M = b} 6= /0 for
some (a,b) ∈ M \ {0} ×R. Note here that H̄ is a hyperplane in
(M,〈·, ·〉M). Therefore, [8, Theorem 1(c)] tells us that by using
λk ∈ [ε1,2− ε2] ⊂ (0,2), ∀k ∈ N, (wk)k∈N converges strongly to
some ŵ ∈ M, and limk→∞ ϕk(ŵ) = 0 if (i) (ϕ ′

k(wk))k∈N is bounded
and (ii) there exists bounded (ϕ ′

k(ŵ))k∈N where ϕ ′
k(ŵ) ∈ ∂ϕk(ŵ),

∀k ∈ N. Letting û := ŵ+v and noting 0 ≤ Θk(û)≤ ψk(û) = ϕk(ŵ),
∂ψk(û) = ∂ϕk(ŵ), and ψ ′

k(uk) = ϕ ′
k(wk), we can verify the claim.

Proof of (d) : The assumptions (b-i) and (c-i) imply (12) and
the boundedness of (ϕ ′

k(wk))k∈N, respectively. The assump-
tion (c-ii) automatically ensures the existence of a bounded se-
quence (ψ ′

k(û))k∈N where ψ ′
k(û) ∈ ∂ψk(û) ∩ M, ∀k ∈ N, be-

cause PM(∂ψk(û)) ⊂ ∂ψk(û) by Lemma 1 and
∥

∥PM(ψ ′
k(û))

∥

∥

H
≤

3lim infk→∞ Ωk :=
⋃∞

k=0
⋂

n≥k Ωn. The overline denotes closure.

∥

∥ψ ′
k(û)

∥

∥

H
. This surely implies the existence of (ϕ ′

k(ŵ))k∈N where
ϕ ′

k(ŵ) ∈ ∂ϕk(ŵ), ∀k ∈ N. Moreover, the existence of a relative inte-
rior of Ω w.r.t. V ensures the existence of an interior wint := uri − v
of Γ in (M,〈·, ·〉M). With λk ∈ [ε1,2 − ε2] ⊂ (0,2), ∀k ∈ N, let
ŵ := û− v = limk→∞ wk ∈ M. The condition (d-i) implies

inf
d(wk , lev≤0ϕk) ≥ ε
‖wk −wint‖M ≤ r

k ≥ K0

ϕk(wk) ≥ δ , ∀ε > 0, ∀r > 0, ∃δ > 0, (13)

because d(uk, lev≤0ψk) = d(wk, lev≤0ϕk), ‖uk −uri‖H =
‖wk −wint‖M , and ψk(uk) = ϕk(wk). Therefore, [8, Theorem 1(d)]
tells us that ŵ ∈ liminfk→∞ Γk. Recalling Ωk = Γk + v, it follows
that û ∈ liminfk→∞ Ωk, which completes the proof. 2

4. DERIVATIONS OF LINEARLY CONSTRAINED
ADAPTIVE ALGORITHMS

This section presents some examples of linearly constrained adap-
tive algorithms. First we consider the general case of Problem 2
in Section 4.1, and then narrow down our focus to the set-theoretic
problem formulation. PAPA, EAPA, and CAPA are obtained as par-
ticular examples.

4.1 A Generic Approach to Problem 1
Given a continuous convex function Θk : H → [0,∞), it can be
verified that

ψk : H → [0,∞),x 7→ Θk(PV (x)), k ∈ N, (14)

is constraint-embedding for (Θk,V ); see Example 1.1. It holds
that ψ ′

k(x) := PM
(

Θ′
k(PV (x))

)

∈ ∂ψk(x), x ∈ H , where Θ′
k(x) ∈

∂Θk(x), x ∈ V [8]. An application of (6) to (ψk)k∈N in (14) yields
the following recursion:

uk+1 :=







uk−λk
Θk(uk)

∥

∥PM(Θ′
k(uk))

∥

∥

2
H

PM(Θ′
k(uk)) if Θ′

k(uk) 6∈M⊥

uk otherwise.
(15)

We repeat here that, starting at some u0 ∈ V , all the sequence
(uk)k∈N generated by (6) lies on V (i.e., PV (uk) = uk, ∀k ∈ N) be-
cause of the constraint-embedding structure of ψk . We mention
that Θ′

k(uk) 6∈ M⊥ ⇐ 0 6∈ ∂ψk(uk) ⇔ ψk(uk) > infx∈H ψk(x) =
infx∈V ψk(x) ⇔ Θk(uk) > infx∈V Θk(x) ≥ infx∈H Θk(x); see Defi-
nition 1. Assume Θ′

k(uk) 6∈ M⊥ (⇔ PM(Θ′
k(uk)) 6= 0). Then, by (i)

the relation4 PV (x) = PM(x)+v for any x ∈H and (ii) the linearity
of PM , we can verify that (15) becomes

uk+1 = PV

(

uk − λ̃k
Θk(uk)

∥

∥Θ′
k(uk)

∥

∥

2
H

Θ′
k(uk)

)

, (16)

where λ̃k := λk

∥

∥Θ′
k(uk)

∥

∥

2
H

∥

∥PM(Θ′
k(uk))

∥

∥

2
H

≥ λk, k ∈ N. It is seen that, with

the range of λ̃k restricted to [0,2], the recursion (16) coincides with
the original APSM presented in (4).

Remark 1 The derivation above brings the following insight: the
original APSM for the linear constraint V , i.e. (16) for λ̃k ∈

[0,2], needs the sequence

(
∥

∥PM(Θ′
k(uk))

∥

∥

2
H

∥

∥Θ′
k(uk)

∥

∥

2
H

)

k∈N

⊂ (0,1] to be

4Given any closed convex set K ⊂H and any v ∈H , PK+v(x) = PK(x−
v) + v for x ∈ H [16]. Letting K = M yields PV (x) = PM(x − v) + v =
PM(x)+ v, x ∈ H : note the linearity of PM and PM(v) = 0 (as v = PV (0) ∈
M⊥).
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bounded below by a positive constant. The condition is required for
ensuring that (λk)k∈N is bounded below to apply Theorem 1. On the
other hand, (15) does not require such a boundedness condition.

4.2 Three Classes of Algorithm for Set-Theoretic Problem For-
mulation
We present three classes of algorithm with a set-theoretic problem
formulation. Exploiting a set of available data at each iteration, we
construct nonempty closed convex sets, say C(i)

k ⊂H , i∈Ik ⊂N
∗,

which contain the optimal filter (e.g., the MPDR filter in beam-
forming applications) with high reliability. The reader may refer
to [7, 9, 13] and the references therein for particular designs of C(i)

k .
In this case, the goal is to find a common point x ∈V of the convex
sets C(i)

k for all k ∈ N, if such x exists, otherwise find x ∈ V that is

’closest’ (in some sense) to all C(i)
k . To specify a criterion for ’clos-

est’, define ω(i)
k > 0, i ∈ Ik, k ∈ N, satisfying ∑i∈Ik

w(i)
k = 1, and

let Lk := ∑i∈Ik
ω(i)

k d(uk,C
(i)
k ). If Lk 6= 0

(

⇔ uk 6∈
⋂

i∈Ik
C(i)

k

)

, the

weight to each C(i)
k is given by ν(i)

k :=
ω(i)

k d(uk,C
(i)
k )

Lk
; it holds that

∑i∈Ik
ν(i)

k = 1, k ∈ N. The factor d(uk,C
(i)
k ) appearing in the defini-

tion of ν(i)
k assigns a larger weight to such C(i)

k that is more distant
than the other sets from the current estimate uk, while the user de-
signing parameter ω(i)

k may reflect the priority of each set; e.g., a

large ω(i)
k could be assigned to such C(i)

k that is associated with a re-
cently measured datum. The cost function Θk : H → [0,∞) is then
defined as follows:

Θk : x 7→







∑
i∈Ik

ν(i)
k d(x,C(i)

k ) if Lk 6= 0

0 otherwise.
(17)

The set-theoretic problem formulation is given as follows: mini-
mize (Θk)k∈N in (17) over V in an asymptotic sense. Our first algo-
rithm for this problem — which we refer to as projected type — is
obtained by applying (16) with λ̃k ∈ [0,2] to (Θk)k∈N defined as in
(17). The resultant algorithm is the adaptive parallel projection al-
gorithm [8, 9] composed with the orthogonal projection operator PV .
Our second algorithm — which we refer to as embedded-constraint
type — is obtained by applying (15) to (Θk)k∈N defined as in (17),
yielding a general form of the blind constrained parallel projection
algorithm [7]. To obtain our third algorithm — which we refer to as
constrained type — we define Lk :=

{

i ∈ Ik : C(i)
k ∩V 6= /0

}

, Nk :=

∑i∈Lk
ω(i)

k d(uk,C
(i)
k ∩V ) with ω(i)

k > 0 satisfying ∑i∈Lk
ω(i)

k = 1,

and µ(i)
k :=

ω(i)
k d(uk,C

(i)
k ∩V )

Nk
, i ∈ Lk, for Nk 6= 0. The algorithm

is then derived by applying (6) to (ψk)k∈N with ψk : H → [0,∞)
defined as follows:

ψk : x 7→







∑
i∈Lk

µ(i)
k d(x,C(i)

k ∩V ) if Lk 6= /0,Nk 6= 0

0 otherwise.
(18)

In the particular case that we only have a single linear variety
C(1)

k := Vk (Ik := {1}) at each time k ∈ N, the three algorithms de-
scribed above are reduced respectively to PAPA, EAPA, and CAPA.
Most of the conditions in Theorem 1 are automatically satisfied for
the algorithms described in this subsection; cf. [8].

5. CONCLUSION

We have presented a deterministic analysis of the linearly con-
strained adaptive filtering algorithms with the adaptive projected

subgradient method. Based on the fact that the trajectory of instan-
taneous estimate lies in the affine constraint set, all the points on the
constraint set have been translated to its underlying subspace, which
has been regarded as a Hilbert space. The constraint-embedding
functions introduced has enabled to analyze the three classes of lin-
early constrained adaptive algorithms in a unified way. The general
framework with the constraint-embedding functions will be useful
in deriving efficient algorithms for a wide range of adaptive signal
processing applications involving linear constraints.
Acknowledgment: This work was partially supported by KAK-
ENHI (20760252).
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