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ABSTRACT
This paper proposes a new family of optimal training se-
quences in terms of minimizing the mean-square channel
estimation error for spectrally-efficient Multi-User MIMO-
OFDM systems with an arbitrary number of transmit anten-
nas and an arbitrary number of training symbols. It addresses
uplink transmission scenarios where the users overlap in time
and frequency and are separated using spatial processing at
the base station. In particular, optimal training sequences can
be obtained easily from standard signal constellations such as
QPSK with desired low PAPR, making it appealing for prac-
tical use.

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) [1] is
widely adopted in broadband communications standards for
its efficient implementation, high spectral efficiency, and ro-
bustness to Inter-Symbol Interference (ISI). OFDM in com-
bination with Multiple-Input-Multiple-Output (MIMO) can
support multiple users by assigning each time/frequency slot
to one user [2]. This combination greatly increases through-
put. In OFDMA systems which are adopted by WiMAX and
LTE standards, different users are assigned different subcar-
riers within the same OFDMA symbol. A different method
of separating users is through the random-access CSMA/CA
Medium Access Control (MAC) protocol used in WLAN
standards, e.g. IEEE 802.11n. Both methods require that
users do not overlap in either time or frequency and this re-
striction results in a significant loss in spectral efficiency. The
introduction of multiple receive antennas at the base station
makes it possible to improve spectral efficiency by allow-
ing users to overlap while maintaining decodability, as in
the recently-proposed Coordinated MultiPoint transmission
(CoMP) techniques in the LTE-Advanced standard [3].

Accurate Channel State Information (CSI) is required at
the receiver for coherent detection and is typically acquired
by sending known training sequences from the transmit an-
tennas and inferring channel parameters from the received
signals. It is more challenging in MIMO-OFDM systems be-
cause there are more link parameters to calculate, and their
estimation is complicated by interference between different
transmissions. The direct approach is to invert a large matrix
that describes cross-antenna interference at each OFDM tone
[4]. Complexity can be reduced by exploiting the correlation
between adjacent subchannels [5].
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Linear Least-Squares (LLS) channel estimation is of
great practical importance since it does not require prior
knowledge of the channel statistics and enjoys low im-
plementation complexity. We consider frequency-selective
block-fading channels where Time Domain (TD) representa-
tion usually requires much fewer parameters than Frequency
Domain (FD) representation. The design of optimal training
sequences for single-user MIMO-OFDM systems is investi-
gated in [6] and [7]. The construction of optimal training
sequences for multi-user MIMO-OFDM systems has been
studied in both TD [8] and FD [9], but these designs do
not directly extend to multiple OFDM training symbols. The
unitary filter bank developed from Instantaneous Radar Po-
larimetry [10] supports FD LLS channel estimation in a 2×2
MIMO-OFDM system [11] and is able to suppress interfer-
ence over two OFDM symbols with linear complexity. A
limitation of this method is that the number of OFDM train-
ing symbols required is a power of 2 and at least the number
of transmit antennas.

We focus on the design of training sequences for
Multi-User MIMO OFDM systems that minimize the Mean
Squared Error (MSE) of time-domain LLS channel estima-
tion. Our framework supports the design of optimal training
sequences for an arbitrary number of transmit antennas and
an arbitrary number of training symbols. It provides a gen-
eral family of MMSE-optimal training sequences for Multi-
User MIMO-OFDM systems where Spatial Division Mul-
tiple Access (SDMA) is employed to increase the spectral
efficiency. The optimality of our designs holds irrespective
of the number of transmit antennas per user, the number of
OFDM sub-carriers, the channel delay spread, and the num-
ber of users provided that the number of tones dedicated to
estimation exceeds the product of the number of transmit an-
tennas and the worst case delay spread. Moreover, individual
training sequences from standard signal constellations with
low Peak-to-Average Power Ratio (PAPR) can be derived
from our design, making it very attractive from implemen-
tation perspectives.

The rest of this paper is organized as follows. The uplink
Multi-User MIMO-OFDM communication system model is
described in Section 2. The design of optimal training se-
quences is given separately for one and for multiple training
symbol scenarios in Section 3. The properties and possible
candidates for training sequences are discussed in Section 4.
Simulation results are presented in Section 5. Finally, con-
clusions are drawn in Section 6.

2. SYSTEM MODEL
We consider the uplink of a Multi-User MIMO-OFDM sys-
tem where the ith user is equipped with Mi transmit antennas,
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0 ≤ i ≤ L− 1, and L ≥ 1 is the number of users. There-
fore, the total number of transmit antennas among all users
is given by M = ∑

L−1
i=0 Mi.

We assume that the channel is quasi-static and remains
constant over K successive OFDM training symbols. The
channel from the jth transmit antenna of the ith user to the
Base Station (BST) can be represented either in TD or FD.
Let the size of Discrete Fourier Transform (DFT) be N, and
the Channel Frequency Response (CFR) be

Hi, j = [Hi, j(0), · · · ,Hi, j(N−1)]T ,

where Hi, j(k) is the frequency response at the kth subcar-
rier. However, the Channel Impulse Response (CIR) in TD
is represented by a much smaller number of parameters. We
assume that the maximal memory over all CIRs is νmax, and
write the CIR as

hi, j = [hi, j(0), · · · ,hi, j(νmax)]
T .

Let ν = νmax + 1. Estimating the CIR instead of the CFR
leads to the reduction of the number of unknowns from MN
to Mν . Hence, a more accurate channel estimate is attainable
using the same amount of training. Furthermore, the CFR
can be reconstructed from the CIR as follows

Hi, j(k) =
1√
N

νmax

∑
t=0

hi, j(t)e− j 2π
N tk. (1)

At the jth (0 ≤ j ≤ Mi− 1) transmit antenna of the ith
user, an OFDM symbol Xi, j of size N is given by

Xi, j = [Xi, j(0), · · · ,Xi, j(N−1)]T .

A Cyclic-Prefix (CP) of length Lp is used for the guard in-
terval in the OFDM system where Lp is chosen to be greater
than the channel memory, and all users are assumed to be
synchronized with the BST. The received OFDM symbol
Y = [Y (0), · · · ,Y (N − 1)]T at the BST in one symbol time
can be written as

Y =
L−1

∑
i=0

Mi−1

∑
j=0

diag(Hi, j)Xi, j +N, (2)

where N ∼ N (0N×1,σ
2IN) is assumed to be Additive

White Gaussian Noise (AWGN). We consider the mapping
(i, j) 7→ m : m = ∑

i
s=0 Ms + j−Mi, 0 ≤ m ≤ M− 1, and re-

label Hi, j and Xi, j as Hm and Xm, respectively. Then, equa-
tion (2) can be written as

Y =
M−1

∑
m=0

diag(Hm)Xm +N. (3)

The mapping is used by the BST in the assignment of training
sequences for each user.

3. MMSE-OPTIMAL TRAINING SEQUENCES

3.1 One OFDM Training Symbol
We apply the IDFT of size N to Eq. (3), and get

y =
M−1

∑
m=0

Smhm +n , Sh+n (4)

where y ∈ CN , h = [hH
0 , · · · ,hH

M−1]
H , hm ∈ Cν , and S =

[S0, · · · ,SM−1] ∈ CN×Mν , Sm ∈ CNν is the circulant training

matrix constructed from the corresponding training sequence
transmitted over the mth antenna, 0 ≤ m ≤M− 1. Let F =
[f0, · · · , fN−1] be the DFT matrix of size N with fi denoting
its ith column, and let F0 = [f0, · · · , fνmax ] be composed of
the first ν columns of F. Then, Sm can be written as

Sm = FHDmF0, (5)

where Dm = diag(Xm(0), · · · ,Xm(N−1)). To enable LLS
channel estimation, the following condition on dimensional-
ity of the matrix S has to be satisfied [12]

N ≥Mν , or alternatively, M ≤ N
ν
. (6)

To minimize the MSE of the channel estimation error, the
matrix S is required to satisfy [6]

SHS = cIMν (7)
and this requires that

SH
mSn = cδmnIν , 0≤ m,n≤M−1. (8)

Given (5), the optimality condition becomes

FH
0 DH

mDnF0 = cδmnIν , 0≤ m,n≤M−1. (9)

Now we present a general approach which gives a family
of optimal training sequences. As a starting point, we choose
the FD training sequence as an arbitrary constant-amplitude
sequence X. Define

D = diag(X(0), · · · ,X(N−1)) , (10)
then DHD = cIN where c is determined by the signal con-
stellation and/or transmit power constraints. The FD training
sequence at the mth transmit antenna is given by

Xm = ΛmX, 0≤ m≤M−1. (11)
where

Λm = diag
(

1,e j 2πν
N m, · · · ,e j 2πν(N−1)

N m
)
. (12)

Equivalently, Dm = ΛmD = DΛm, 0≤ m≤M−1.
Let Fm be composed of ν consecutive columns of F start-

ing at index mν , i.e.

Fm =
[
fmν , · · · , f(m+1)ν−1

]
= ΛmF0. (13)

It is straightforward that FH
mFn = δmnIν . We have the fol-

lowing theorem.
Theorem 1. The choice of FD training sequences in Eq. (11)
is optimal for a single training OFDM symbol.
Proof. Since DnF0 =ΛnDF0 =DΛnF0 =DFn, it follows

FH
0 DH

mDnF0 = FH
mDHDFn = cFH

mFn = cδmnIν .

Therefore Eq. (9) holds.

Therefore, the least-square estimates of h and hm are
given as

ĥ =
1
c
SHy, and ĥm =

1
c
SH

my.

Then, the CFR estimate is given by

Ĥm =
1
c
FSH

my =
1
c
(FFH

0 )D
H
mFy, (14)

and the MMSE of TD channel estimation is given by

σ
2
e = σ

2Tr
(
(SHS)−1)= Mν

c
σ

2. (15)

635



3.2 K OFDM Training Symbols with K ≥ 2

The major limitation of using only one training OFDM sym-
bol is that the total number of transmit antennas is limited by
N
ν

. When the channel is quasi-static over K ≥ 2 OFDM train-
ing symbols it is possible to increase the number of transmit
antennas and reduce MMSE by a factor of K.

Denoting the received TD OFDM symbol in the tth sym-
bol time by yt , 0≤ t ≤ K−1, we write

y0
y1
...

yK−1

=


S00 S01 · · · S0,M−1
S10 S11 · · · S1,M−1

...
...

. . .
...

SK−1,0 SK−1,1 · · · SK−1,M−1

h+n

,


S0
S1
...

SK−1

h+n = Sh+n, (16)

where Stm =FHDtmF0, and the matrices Dtm’s are diagonal
matrices with the FD training sequences of the mth trans-
mit antenna at the tth OFDM training symbol on their di-
agonals. Let St = [St1, · · · ,St,M−1] be the training matrix
at the tth OFDM training symbol. Least-square estimation
is possible when the following dimensionality condition for
S ∈ CKN×Mν holds

KN ≥Mν , or equivalently, M ≤ KN
ν

. (17)

The training matrix is required to satisfy

SHS = c̃IMν

for some c̃ to be MMSE optimal [6]. We propose the follow-
ing design of optimal training sequences. For 0≤m≤M−1,
let

p =
⌊m

K

⌋
∈
{

0, · · · ,
⌊

M−1
K

⌋}
, (18)

q = m−K p ∈ {0, · · · ,K−1}. (19)

Let U= [Utq]∈CK×K be a scalar unitary matrix with unitary
entries satisfying |Utq| = 1 and UHU = KIK . Possible can-
didates are a DFT matrix of size K or a perfect Space-Time
Block Code (STBC) matrix. Let X and D be defined in (10),
for the mth transmit antenna, its FD training sequence at the
tth OFDM training symbol is given by

Xtm =UtqΛpX, if m = K p+q, 0≤ m≤M−1, (20)

where Dtm = diag{Xtm(0), · · · ,Xtm(N−1)}=UtqΛpD and
Λp are defined in (12).

Let the matrix Σ ∈ CKN×KN be constructed as a Kro-
necker product Σ = U⊗D, where Σtq =UtqD is the N×N
diagonal matrix located at the (t,q) block of Σ. Therefore
the matrix Σ satisfies

ΣHΣ = UHU⊗DHD = c̃IKN , (21)

where c̃ = Kc. We have the following optimality result.

Theorem 2. The training sequences in (20) are optimal for
K ≥ 2 training OFDM symbols.

Proof. It is enough to show that

K−1

∑
t=0

SH
tmStn = FH

0

(
K−1

∑
t=0

DH
tmDtn

)
F0 = c̃δmnI(νmax+1) (22)

It is obvious that when m = n, the above Eq. (22) holds.
When m 6= n, we write m = K p1 +q1 and n = K p2 +q2 and
split the proof into two cases:
• q1 = q2 = q ∈ {0, · · · ,K−1} but p1 6= p2. Then,

SH
tmStn = FH

p1
ΣH

tqΣtqFp2

= c|Utq|2FH
p1

Fp2 = 0ν .

• q1 6= q2. Then we have

K−1

∑
t=0

DH
tmDtn = ΛH

p1

(
K−1

∑
t=0

ΣH
t,q1

Σt,q2

)
Λp2 = 0N .

Now, Eq. (22) follows trivially.

The bijection π : m 7→ {p,q} groups the antennas into
K classes depending on the equivalence of the residue q.
For two antennas not in the same class, the orthogonality
between their training sequences can be proved over any
OFDM training symbol similar to Theorem 1. For two anten-
nas in the same class, their training sequences can be proved
orthogonal over all K OFDM training symbols. We give the
detailed proof below.

Finally, the least-square estimate of h and hm are given
by

ĥ =
1
c̃

K−1

∑
t=0

SH
t yt , and ĥm =

1
c̃

K−1

∑
t=0

SH
tmyt .

Then, the CFR is given by

Ĥm =
1
c̃
Fĥm =

1
c̃
(FFH

0 )
K−1

∑
t=0

DH
tmFyt .

The resulting MMSE of TD channel estimation is improved
by a factor of K, given by

σ
2
e = σ

2Tr

(
K−1

∑
t=0

SH
t St)

−1

)
=

M(νmax +1)
Kc

σ
2.

3.3 The case K = 2

When K=2, there is a special construction using Hamilton’s
Biquaternions that is similar in spirit to the Alamouti STBC
[13]. We will choose two FD training sequences X and Z
where the sum of their squared amplitudes is constant, i.e.

DH
X DX +DH

Z DZ = 2cIN . (23)

where DX = diag(X(0), · · · ,X(N−1)), and DZ =
diag(Z(0), · · · ,Z(N−1)).

For 0 ≤ m ≤ M− 1, let p =
⌊m

2

⌋
, 0 ≤ p ≤

⌊M−1
2

⌋
and

q = m− 2p ∈ {0,1}. Let Xp = ΛpX and Zp = ΛpZ, 0 ≤
p≤

⌊M−1
2

⌋
, where Λp is defined in Eq. (12).
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The diagonal FD training matrices of the mth antenna in
the 0th and 1st training symbols are given by D0m and D1m
respectively:

D0m =

{
ΛpDX , if q = 0,m = 2p
ΛH

p DH
Z , if q = 1,m = 2p+1 ,

and D1m =

{
ΛpDZ , if q = 0,m = 2p
−ΛH

p DH
X , if q = 1,m = 2p+1 . (24)

Without proof we state the following optimality result.

Theorem 3. The FD training sequences in Eq. (24) are op-
timal for two training OFDM symbols.

If all the users employ two transmit antennas and Alam-
outi STBC, their training sequences in two symbol intervals
are assigned according to Eq. (24), which can be generated
simply using the same Alamouti code generator, greatly re-
ducing the training assignment complexity.

4. DISCUSSIONS

4.1 PAPR of training sequences
The PAPR of a training sequence S(n), 0 ≤ n ≤ N − 1, is
given by

PAPR(S) =
max

n
|S(n)|2

1
N ∑

N−1
n=0 |S(n)|

2 . (25)

The transform operator Λm between different FD training
sequences can be viewed as a frequency modulation operator,
which is equivalent to circulant shift of the training sequence
in the TD. Hence, we have the following proposition.

Proposition 4. All TD training sequences in (11) and (20)
have the same PAPR.

This property is important when designing the training
sequences. As long as the PAPR of X is low, all training
symbols will have same low PAPR. Another merit of our de-
sign is that if we choose ν such that N

ν
= 2k for some integer

k, and choose X from a 2k-Phase Shift Keying (PSK) con-
stellation, then the transform Λm guarantees that all FD train-
ing sequences {Xm, 0≤ m≤M−1} belong to the same 2k-
PSK constellation, which is very convenient to generate.

4.2 Candidates
Once the initial sequence X = {X(k)}N−1

k=0 is chosen, the
family of training sequences is completely determined.
One possibility for X is a Constant-Amplitude-Zero-Auto-
Correlation (CAZAC) sequence [14] with optimal PAPR (
0dB), such as the chirp sequence given below:

X(k) =

{ √
ce j πuk2

N , if N is even
√

ce j πuk(k+1)
N , if N is odd

, 0≤ k ≤ N−1. (26)

where u is any integer relatively prime to N. This sequence
is also known as the Zardoff-Chu sequence, which is widely
adopted in the LTE systems. A disadvantage of this and
other CAZAC sequences is that the entries are not restricted
to a standard signal constellation. An alternative is pro-
vided by Golay complementary sequences [15] which only
assume values from {−

√
c,
√

c} with a PAPR smaller than
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Figure 1: BER versus SNR for K = 1 (dashed) and 2 (solid)
training OFDM symbols from optimal training sequences
(generated from Golay, TD impulsive and chirp) and non-
optimal random sequence compared with perfect CSI.

3dB. A third possibility is the flat sequence (TD impulsive)
{X : X(k) =

√
c, for all k} with unbounded PAPR. The per-

formance of these three sets of training sequences are evalu-
ated in Section 5 by simulation.

5. NUMERICAL RESULTS

We consider uplink transmission in a Multi-User MIMO-
OFDM system with N = 64 and νmax = 15. Each BST is
equipped with two co-located receive antennas and two users
are each equipped with two transmit antennas over which the
Alamouti STBC is employed. Each user employs a non-
systematic rate-1/2 convolutional code with octal generator
(133,171) and constraint length 7, which are further QPSK
modulated. All channel paths are assumed to have uncor-
related and identically-distributed CIRs with 8 zero-mean
complex Gaussian taps following an exponentially-decaying
power delay profile with a 3 dB decay per tap. K OFDM
training symbols are transmitted over each transmit antenna
for channel estimation as described in Section 3. The CIR
estimates are used for detection of the OFDM data sym-
bols through the joint Linear Minimum-Mean-Square-Error
(LMMSE) technique [16] where the received signals from
the two receive antennas are processed jointly to separate the
two users.

Using these parameters, the dimensionality condition in
(17) is met with K ≥ 1. In Fig. 1, the Bit Error Rate (BER)
performances of three FD training sequences proposed in
Section 3.4 (namely: Chirp, Golay, and TD Impulsive) with
K = 1 and 2 are compared with the perfect CSI case. All
training sequences can be generated from standard QPSK
constellation except chirp sequences. In Fig. 1, all users are
assumed to have perfect frequency synchronization with the
receiver. All training sequences achieve roughly the same
BER performance with SNR losses of 1.5 and 0.7 dB for
K = 1 and 2, respectively compared with the perfect CSI
case. The performance of a random BPSK sequence not
satisfying the optimality condition is also shown for com-
parison. The performance of the random sequence is in-
ferior to that of the other sequences satisfying the optimal-
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Figure 2: BER versus SNR for different PN levels σ2
pn = 0

(solid), 10−5 (dashed), and 10−4 (dash-dotted) with K = 2
training OFDM symbols.

ity condition; especially with K = 1 training symbol where
the number of equations equals the number of unknowns
making the channel estimate unreliable when the optimal-
ity condition is not satisfied. From another perspective, our
optimally-designed training sequences with K = 1 training
symbol achieve comparable performance to that of the ran-
dom sequence with K = 2 training symbols, i.e. with 50%
less training overhead. This is besides the additional com-
plexity needed to invert the matrix SHS which is not a scaled
identity in the case of non-optimal sequences.

We further examine the performance of the optimal train-
ing sequences when Phase Noise (PN) is present at the trans-
mitter and receivers in Fig. 2 when its variance σ2

pn = 0, 10−5

and 10−4. Although all the optimal training sequences obtain
MMSE, their PAPR and robustness to PN is different. This
tradeoff is further explored in [17].

6. CONCLUSIONS

A family of MMSE-optimal training sequences is proposed
for spectrally-efficient Multi-User MIMO-OFDM systems
with an arbitrary number of transmit antennas and an arbi-
trary number of training symbols for LLS channel estima-
tion. The capability to sense more channels with optimal
MMSE is systematically obtained by modulating the cyclic
stucture of the Fourier matrix with entries from a unitary ma-
trix in the multiple OFDM training symbol case. Numeri-
cal results confirms the benefits of our design, in particular
showing its advantage when the number of channel parame-
ters is close to the number of available equations.
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