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ABSTRACT
In this paper the mean square convergence of the LMS algorithm is
shown for a large class of linearly filtered random driving processes.
In particular this paper contains the following contributions: i) The
parameter error vector covariance matrix can be decomposed into
two parts, a first part that exists in the modal space of the driving
process of the LMS filter and a second part, existing in its orthog-
onal complement space, not contributing to the performance mea-
sures (misadjustment, mismatch) of the algorithm. ii) The LMS
updates force the initial values of the parameter error vector covari-
ance matrix to remain essentially in the modal space of the driv-
ing process and components of the orthogonal complement die out.
iii) The impact of additive noise is shown to contribute only to the
modal space of the driving process independent of the noise statistic
and thus defines the steady-state of the filter. In particular it will be
shown that the joint fourth order moment m(2,2)

x of the decorrelated
driving process is a more relevant parameter for the step-size bound
and not as often believed the second order moment m(2)

x .

1. INTRODUCTION

The famed Least Mean Square (LMS) algorithm [1] is the most
successful adaptive algorithm. It can be found at million numbers
in electrical echo compensators, in telephone switches as well as in
the form of adaptive equalizers. With a fixed step-size, starting at
initial value w0, the LMS algorithm is given by

ek = dk−uT
k wk = vk +uT

k (w−wk) (1)
wk+1 = wk +µukek ;k = 0,1,2, .. (2)

Here, a reference model dk = wT uk + vk has been introduced as
it is common for a system identification problem, assuming that
an optimal solution w ∈ IRM×1 exists. It is further assumed that
the observed system output is additively disturbed by real-valued,
zero-mean, noise vk ∈ IR of variance σ2

v . Regression vector uk ∈
IRM×1, M denoting the order of the filter. The algorithm starts with
some initial value w0, trying to improve its estimate wk ∈ IRM×1

with every time instant k. All signals are formulated as real-valued
which makes the derivations easier to follow. In most cases it is
straightforward to extend the results to complex-valued processes.

While deterministic approaches have proven l2-stability for any
kind of driving signal uk [2–4], results from stochastic approaches
are restricted to specific classes of random processes (unfiltered In-
dependent Identically Distributed (IID) [5], Gaussian [6, 7], and
Spherically Invariant Random Processes (SIRP) [8]). Nevertheless,
such stochastic analysis is useful since it provides information about
how the speed of convergence and the steady-state error depend on
the step-size µ . The resulting stability bounds [5–9] are typically
conservative:

µclassic ≤
2

3tr[Ruu]
(3)

and are based on second order moments of the autocorrelation
matrix Ruu = E[uku

T
k ]. Furthermore, the derivation of this bound

for stability in the mean square sense of arbitrary filter structures

(e.g. FIR) is based on the so called

Independence Assumption (IA): Regression vector uk
is statistically independent of the past regression vectors, i.e.,
{uk−1,uk−2, ...,u0}.

A consequence of such assumption is that parameter estimate
wk (as well as parameter error vector w−wk) is independent of
uk and thus E[uku

T
k (w−wk)(w−wk)

T uku
T
k ] = E[uku

T
k E[(w−

wk)(w−wk)
T ]uku

T
k ] = E[uku

T
k Kkuku

T
k ] where the parameter

covariance matrix

Kk = E[(w−wk)(w−wk)
T ] (4)

(in literature this is also often called the weight error covariance
matrix) was applied. The IA holds exactly for the linear combiner
case in which the succeeding regression vectors are statistically
independent of each other (see for example in multiple sidelobe
canceller (MSLC) applications [10]) while in practice the LMS
algorithm is mostly run on transversal filters in which the regression
vectors exhibit a shift dependency. Nevertheless the shift property
of the regression vector will be considered here as part of the
process generation, that is uk = [uk,uk−1, ...,uk−M+1]

T . At the
same time, our derivations are exactly correct only for the linear
combiner, or assuming the IA for arbitrary structures. For very
long filters, it will be shown that the IA is the only requirement, no
matter what input statistic is given. The major advantages of the IA
are that the evolution of the parameter error covariance matrix Kk
can be computed and thus the learning curves of the algorithm can
be derived. With this knowledge also comes the steady-state values
and furthermore the derivation of practical step-size bounds.

In this paper the classic stochastic approaches from Horowitz
and Senne [6] and Feuer and Weinstein [7] are pursued and ex-
tended in numerous directions, relying on an MA driving process
similar to [11]. Symmetric matrices as they appear in the form of the
parameter error vector covariance matrix Kk can be decomposed
into two complementary subspaces [12], i.e.,

Kk = b0I+b1Ruu + ...+bM−1R
M−1
uu +K⊥k

= P(Ruu)+K⊥k . (5)

Here, P(Ruu) denotes a polynomial in Ruu and K⊥k is an ele-
ment of its orthogonal complement. It turns out that only mem-
bers in subspace P(Ruu) contribute to the error performance mea-
sures (see (41) for mismatch: tr[KkR

0
uu], see (42) for misadjust-

ment: tr[KkRuu]) of the algorithm as only terms of tr[KkR
l
uu] are

of interest while the complementary part tr[K⊥k Rl
uu] = 0 and thus

does not contribute to the performance measures. In Section 2 it
is demonstrated that an initial parameter error vector covariance
matrix K0 = P(Ruu) is forced by the LMS algorithm to remain
a member of the modal space of Ruu. However this rule is not true
in a strict sense for arbitrary driving processes and requires some
mild approximations to make it a more general statement. In Sec-
tion 3 our considerations are complemented by adding noise terms
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and finally all elements are merged to a strong statement about a
large class of linearly filtered random processes of moving average
type. This class certainly includes linearly filtered IID processes
but even some particular statistically dependent terms can also be
included so that SIRPs are covered as well. A crucial parameter to
describe dynamical as well as stability behavior turns out to be the
joint fourth order moment m(2,2)

x = E[x2
kx2

l ]; for l 6= k of the corre-
sponding decorrelated (white)1 driving process. Some conclusions
in Section 4 round out the paper.

The notation A[xk] is used to describe a linear operator on a
scalar input and A[xk] on a vector input. As the linear operator A[·]
in our contribution is limited to a linear time-invariant filter, it can
equivalently be described by a convolution A[xk] = ∑

P
m=0 amxk−m

with the coefficients am describing the impulse response of the
filter. Consequently, A[xk] = ∑

P
m=0 amxk−m. Equivalently, such

convolution can be described by a linear transformation applying
an upperright Toeplitz matrix A ∈ IRM×(M+P) to an input vec-
tor xk ∈ IR(M+P)×1. In this case the output vector uk = Axk is
of dimension IRM×1. If the vector xk = [xk,xk−1, ...xk−M−P+1]

T

exhibits a shift property, so does the corresponding output uk =
[uk,uk−1, ...uk−M+1]

T . The variable xk denotes a white process
while uk denotes the corresponding filtered process throughout this
paper. Furthermore, two other linear operators on square matrices
will be used: 1) Λ = diag[L] on a matrix L results in a diagonal ma-
trix Λ whose diagonal entries are identical to the diagonal of L and
all other entries are zero; 2) tr[L] indicates the trace of the matrix,
i.e., tr[L] = ∑

M
m=1 Lmm.

2. MODAL SPACE OF THE LMS ALGORITHM

Let us consider the classical LMS analysis [5–7] utilizing the IA as
stated in the introduction. For simplicity, noise is ignored at this
point as interest is only in the evolution of Kk. In a first step the
following homogeneous equation

K1 = E[(I−µu0u
T
0 )K0(I−µu0u

T
0 )

T ] (6)
= K0−µRuuK0−µK0Ruu

+µ
2E[u0u

T
0 K0u0u

T
0 ]

is obtained to illustrate the behavior. Let us start with two examples.

Example 1: Assume first a specific solution for a Gaussian random
process and for K0 = R0

uu = I, that is K0 is member of modal
space Ru of Ruu. If it is for example assumed that initial parameter
estimate w0 = 0 and an average over many possible systems w is
performed, K0 = E[wwT ] = I can be a realistic assumption. If on
the other hand a-priori knowledge on the set of systems is present,
other values may be more realistic. In the first step

K1 = I−2µRuu +µ
2(2R2

uu +Ruutr[Ruu]), (7)

is obtained that is K1 is a second order polynomial in Ruu and thus
in the modal space of Ruu. Assume now that Kk develops into an
arbitrary polynomial in Ruu. How does it change from time instant
k to k+1?

Kk+1 = Kk−2µRuuKk +µ
2(2RuuKkRuu

+Ruutr[RuuKk]). (8)

In other words, it remains a polynomial in Ruu. The same is in
fact true if K0 is any polynomial in Ruu. It can thus be concluded
that the LMS update equation under a real-valued Gaussian process
forces the parameter error vector covariance matrix K0 = P(Ruu)
to evolve into a polynomial in the modal space of Ruu. Terms of
the orthogonal complement are never generated.

1The terms white and decorrelated will be used interchangeably in the
following.

Example 2: Let us now assume that the initial covariance matrix is
entirely from the orthogonal complement R⊥u , that is K0 =K⊥. In
the first step

K1 = K⊥−µRuuK
⊥−µK⊥Ruu

+µ
2E[u0u

T
0 K⊥u0u

T
0 ] = K⊥1 (9)

is obtained. As tr[K1] is of interest, tr[K⊥1 ] = 0 is found. Thus
all terms originating from K⊥ have no impact on tr[K1] (or on
tr[K1Ruu]). Now in the next step:

K2 = K1−µRuuK1−µK1Ruu +µ
2E[u1u

T
1 K1u1u

T
1 ]

= K⊥1 −µRuuK
⊥
1 −µK⊥1 Ruu +2µ

2RuuK
⊥
1 Ruu

= K⊥2 . (10)

Part K⊥1 from the orthogonal complement space thus only con-
tributes to this space as K⊥2 but has no influence in the modal space
of Ruu. Thus, any component from the orthogonal complement will
remain there and will not generate a component in the modal space
of Ruu.

A general K0 will be a linear combination as shown in (5).
Take for example a fixed system w to be identified. In this case
K0 = wwT . This value can be decomposed into P(Ruu) in the
modal space of Ruu and a component K⊥ from its orthogonal
complement. As the polynomial evolves, it will stay in the modal
space and contribute to the learning performance terms while the
perpendicular terms will not contribute to the algorithm’s perfor-
mance curves under the trace operation. This also allows a descrip-
tion of the evolution of the individual components, starting with
Kk = K

‖
k +K⊥k , with K

‖
k ∈ Ru and K⊥k ∈ R⊥u a set of homoge-

neous equations is obtained

K
‖
k+1 = K

‖
k −µRuuK

‖
k −µK

‖
kRuu (11)

+µ
2(2RuuK

‖
kRuu +Ruutr[K‖kRuu]).

K⊥k+1 = K⊥k −µRuuK
⊥
k −µK⊥k Ruu (12)

+2µ
2RuuK

⊥
k Ruu,

which in turn allows the formulation of a first statement for Gaus-
sian driving processes.

Lemma 2.1 Assume driving process uk = Axk, a linearly filtered
white Gaussian process xk with E[xkx

T
k ] = IM+P, and A an upper-

right Toeplitz matrix for linearly filtering. Under the IA the initial
parameter error vector covariance matrix K0 of the LMS algorithm
evolves into 1) a polynomial in AAT = Ruu of the modal space of
Ruu, solely responsible for the mismatch and the misadjustment of
the algorithm and 2) a part in its orthogonal complement that has
no impact on the performance measures.

As such examples are rather intuitive for the particular case
of a Gaussian driving process, (spherically invariant process as a
generalization of Gaussian processes can be included straightfor-
wardly), it is of interest what can be said about larger classes of
driving processes. To achieve this goal, a few considerations with
respect to the driving process are required.

Driving Process: The properties of Lemma 2.1 are not only
maintained by Gaussian random processes but by a much larger
class of driving processes. It will be shown that these properties
hold for random processes that are constructed by a linearly filtered
white, zero mean random process uk = A[xk] = ∑

P
m=0 amxk−m,

whose only conditions are that:
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Driving Process Assumptions (A1):

m(2)
x = E[x2

k ] = 1 (13)

m(2,2)
x = E[x2

kx2
l ]≤ c2 < ∞;k 6= l (14)

m(4)
x = E[x4

k ]≤ c3 < ∞ (15)

m(1,1,1,1)
x = E[xkxlxmxn] = 0;k 6= l 6= m 6= n (16)

m(2,1,1)
x = E[x2

kxmxn] = 0;k 6= m 6= n (17)

m(1,3)
x = E[xkx3

l ] = 0;k 6= l (18)
mx = E[xk] = 0. (19)

The last four conditions (16)-(19) are listed here for completeness.
They exclude processes that do not have a zero mean in some sense
and have been assumed in most of the literature, even though not of-
ten explicitly mentioned. Linearly filtering such processes will pre-
serve the zero mean properties (16)-(19). These processes include
certainly real-valued Gaussian and SIRP (3m(2,2)

x = m(4)
x = 3), as

well as IID processes
(

m(2,2)
x =

(
m(2)

x

)2
)

. Constructing vectors

xk = [xk,xk−1, ...,xk−N+1]
T the following second and forth order

expressions are found:

E[xkx
T
k ] = IN , (20)

E[xkx
T
k xkx

T
k ] = (m(4)

x +(M−1)m(2,2)
x )IN . (21)

Correspondingly the linearly filtered vectors read uk = Axk with
an upperright Toeplitz matrix A of dimension M×N. The impulse
response of the coloring filter is given by a0,a1, ...aP and appears
on every row of A starting with a0 on its main diagonal. In general
driving process vector xk is longer than uk, depending on the order
P of the impulse response2.

Lemma 2.2 Assume driving process uk = A[xk] to originate from
a linearly filtered white random process xk so that uk = Axk with
xT

k = [xk,xk−1, ...,xk−N+1], A denoting an upperright Toeplitz ma-
trix with the correlation filter impulse response and xk satisfying
conditions (13)-(21). Parameter error vector covariance matrix
K0 = K

‖
0 +K⊥0 of the LMS algorithm essentially (with error of

order O(µ2/M)) evolves into a polynomial in AAT in the modal
space of Ruu while terms in its orthogonal complement K⊥ remain
there or die out.

Note that this formulation may associate that this is only true
for linearly filtered processes of moving average (MA) type. As no
condition on the order P of such process is imposed, P (and thus
N = M +P) can become arbitrarily large and thus autoregressive
processes (AR) or combinations (ARMA) can be resembled as well
(e.g., see [9](Chapter 2.7)).
Proof: The proof proceeds in two steps: first, rewriting (6) for K0 =
I to get to know the most important terms and mathematical steps
based on a simpler formulation, and then refining the arguments for
arbitrary values of Kk to Kk+1.

For K0 = I and recalling that Ruu = E[uku
T
k ] =

AE[xkx
T
k ]A

T = AAT the following is obtained:

K1 = I−2µAAT +µ
2AE[xkx

T
k AT Axkx

T
k ]A

T . (22)

On the main diagonal of the M×M matrix AAT identical elements
are found: ∑

P
i=0 |ai|2, thus tr[AT A] = tr[AAT ] =M ∑

P
i=0 |ai|2, with

P denoting the filter order of the MA process.

2Alternatively, the IA can be removed by employing particular processes
in which each element of the regression vector uk = [uk,1,uk,2, ...,uk,M ]T is
generated by a filtered version of individual processes xk,1, ...,xk,M . As such
processes seem artificial, this approach is not followed here.

Due to properties (13)-(21) of driving process xk

E[xkx
T
k Lxkx

T
k ]i j (23)

=

{
m(2,2)

x (Li j +L ji) ; i 6= j
m(4)

x Lii +m(2,2)
x ∑k 6=i Lkk ; i = j

E[xkx
T
k Lxkx

T
k ] = m(2,2)

x (L+LT )+m(2,2)
x tr[L]IM+P

+
(

m(4)
x −3m(2,2)

x

)
diag[L] (24)

is found, where diag[L] denotes a diagonal matrix with the
diagonal terms of a matrix L as entries. For spherically
invariant random processes (including Gaussian) the term
(m(4)

x − 3m(2,2)
x ) for real-valued signals vanishes and thus

the problem can be solved classically. In our particular case
L = AT A ∈ R(M+P)×(M+P) with tr[AT A] = M ∑

P
i=0 |ai|2,

diag[AAT ] = ∑
P
i=0 |ai|2IM+P = tr[AT A]/MIM+P. One problem-

atic term remains however: diag[AT A]. At this point the following
is proposed with an identity matrix IM+P of the corresponding
dimension:

Approximation A2: diag[AT A]≈ tr[ATA]
M IM+P.

Note the approximation would be exact (up to the dimension)
if there would be the term diag[AAT ] instead of diag[AT A]. The
approximation can be interpreted as replacing each of the diagonal
elements of AT A by their average value tr[AT A]/M. Consider the
relative difference matrix

∆ε =

(
tr[AT A]

M

)−1 [
diag[AT A]− tr[AT A]

M
IM+P

]
=

M
tr[AT A]

diag[AT A]− IM+P (25)

of dimension (M+P)× (M+P). Its P diagonal terms at the begin-
ning and end of the diagonal remain non-zero while those terms in
the middle (whose range can be substantially large if M � P) are
zero. The first P elements on the diagonal are for example given by
∆ε,ii = −∑

P
m=i |am|2/∑

P
m=0 |am|2; i = 1..P. It is worth comparing

the long filter derivations by Butterweck [13] that exclude border
effects at the beginning and ending of the matrices. Our approxima-
tion can thus be interpreted along the same lines of approximations,
just originating from a different approach. With this error term ∆ε ,
we find

E[xkx
T
k AT Axkx

T
k ] (26)

= 2m(2,2)
x AT A

+(m(2,2)
x +(m(4)

x −3m(2,2)
x )/M)tr[AT A]IM+P

+(m(4)
x −3m(2,2)

x )∆ε

= 2m(2,2)
x AT A+ γxm(2,2)

x tr[AT A]IM+P

+(γx−1)m(2,2)
x tr[AT A]∆ε ,

is obtained with a newly introduced pdf-shape correction value

γx = 1+

(
m(4)

x

m(2,2)
x

−3

)
1
M

, (27)

a value that depends on the statistics of process xk. The term m(4)
x

m(2,2)
x
−

3 is similar to the excess kurtosis E[|x−mx|4]
E[|x−mx|2]2 −3 = m(4)

x

(m(2)
x )2
−3. Pro-

cesses with negative excess kurtosis are often referred to as sub-
Gaussian processes while a positive excess kurtosis leads to so-
called super-Gaussian processes. This (slightly abused) terminol-

ogy will be used correspondingly to discriminate the term m(4)
x

m(2,2)
x
−3.

128



Thus sub-Gaussian processes in this sense take on γx values smaller
than one while super-Gaussian processes have values larger than
one. However, it is also noted that our approximation error ∆ε has
an impact only in case γx 6= 1 which vanishes not only for Gaussian
pdfs but also with growing filter order M! Note further that the term
in the LMS algorithm where Approximation A2 applies, is propor-
tional to µ2. It thus has no impact for small step-sizes but certainly
on the stability bound. A first conclusion thus is that the error on
the parameter error vector covariance matrix due to this approxi-
mation is of O(µ2). Furthermore, the approximation error term is
proportional to γx− 1 that is proportional to 1/M. Approximation
A2 can thus be concluded to cause an error of the parameter error
vector covariance matrix of order O(µ2/M). The consequence that
the applied approximation is negligible for large filter order M as
well as for Gaussian-type processes is reflected in Lemma 2.2 by
the wording ”essentially”. This means that in extreme cases (small
M and far away from Gaussian) indeed a very small proportion can
leak into the complementary space. At the first update with K0 = I

K1 = I−2µAAT +2µ
2m(2,2)

x (AAT )2 (28)

+µ
2m(2,2)

x γxtr[AT A]AAT +O(µ2/M)

is obtained, a polynomial in AAT .
Now the proof starts for general updates from Kk to Kk+1.

While the first terms that are linear in µ are straightforward, the
quadratic part in µ needs more attention.

E[uku
T
k Kkuku

T
k ] =

= AE[xkx
T
k AT KkAxkx

T
k ]A (29)

= m(2,2)
x A

(
2AT AKkA

T A+AT Atr[AAT Kk]
)

AT

+ (m(4)
x −3m(2,2)

x )Adiag[AT KkA]AT .

Here the same approximation method as before in A2 is imposed,
that is diag[AT KkA]≈ tr[AAT Kk]IM+P/M resulting in

E[uku
T
k Kkuku

T
k ] = 2m(2,2)

x AAT KkA
T A (30)

+ γxm(2,2)
x AAT tr[AAT Kk]+O(µ2/M)

and obtaining eventually

Kk+1 = Kk−µAAT Kk−µKkAAT (31)

+ µ
2m(2,2)

x

(
2AAT KkAAT + γxAAT tr[AAT Kk]

)
+O(µ2/M).

Now this can be split in two parts into modal space K‖ and in
its orthogonal complement K⊥ as in (11) and (12) before and the
following is obtained:

K
‖
k+1 = K

‖
k −µAAT K

‖
k −µK

‖
kAAT (32)

+ µ
2m(2,2)

x

(
2AAT K

‖
kAAT + γxAAT tr[AAT K

‖
k ]
)

+O(µ2/M)

= K
‖
k −2µAAT K

‖
k (33)

+ µ
2m(2,2)

x

(
2[AAT ]2K

‖
k + γxAAT tr[AAT K

‖
k ]
)

+O(µ2/M),

K⊥k+1 = K⊥k −µAAT K⊥k −µK⊥k AAT (34)

+2µ
2m(2,2)

x AAT K⊥k AAT +O(µ2/M).

The consequence of this statement is that the parameter error
vector covariance matrix is forced by the driving process to remain

only in the modal space of the driving process. This is not only true
for its initial values but at every time instant k. The components of
the orthogonal complement remain in there or die out. This state-
ment will be addressed next in the context of step-size bounds for
stability.

3. INFLUENCE OF NOISE AND COMPLETE LMS
LEARNING BEHAVIOR

So far, additive noise vk has been neglected in the evolution of Kk.
Adding noise in our reference model (dk = wT uk + vk) introduces
an additional term µ2Ruuσ2

v = µ2AAT σ2
v in the evolution of Kk

and thus defines the inhomogeneous equations. Independent of the
noise statistics, this additional term lies also in the modal space
of the driving process and thus will not change our previous state-
ments, as long as the IA holds. Therefore components of the orthog-
onal complement die out as long as 0 < µ < 1/[m(2,2)

x λmax], λmax
denoting the largest eigenvalue of Ruu

3. As we will see later, the
step-size bound for the component K‖ of the modal space is smaller
and thus all terms in the orthogonal complement will die out for the
step-size range of interest. As terms in the orthogonal complement
die out, K∞ = limk→∞ Kk is expected to exist only in the modal
space of Ruu. Computing the steady-state solution for k→ ∞ and
omitting the approximation error terms O(µ2/M), simplicity leads
to

K∞ = K∞−2µAAT K∞ +µ
2
σ

2
v AAT (35)

+ µ
2m(2,2)

x

(
2(AAT )2K∞ + γxAAT tr[AAT K∞]

)
,

or equivalently

2AAT K∞−2µm(2,2)
x (AAT )2K∞ (36)

−µm(2,2)
x γxtr[AAT K∞]AAT = µσ

2
v AAT .

Since K∞ exists only in the modal space of AAT diagonalizing
both by the same unitary matrix4 leads to QK∞QT = ΛK and
QAAT QT = Λu. Thus, we have

2ΛuΛK −µm(2,2)
x (2Λ

2
uΛK − γxΛutr[ΛuΛK ]) = µσ

2
v Λu. (37)

Stacking the diagonal values of the matrices into vectors: Λu1 =
λu,ΛK1 = λK , λ T

u = [λ1,λ2, ...,λM ], the following is obtained[
2Λu−2µm(2,2)

x Λ
2
u−µm(2,2)

x γxλuλ
T
u

]
λK = µσ

2
v λu. (38)

resulting in the well-known form [8][Eqn. (3.15)]:

λK = µσ
2
v

[
2Λu−2µm(2,2)

x Λ
2
u−µm(2,2)

x γxλuλ
T
u

]−1
λu

= β∞

[
2Λu−2µm(2,2)

x Λ
2
u

]−1
λu, (39)

with the definition

β∞ =
2µσ2

v

2−µm(2,2)
x γx ∑i

λi

1−µm(2,2)
x λi

(40)

3The procedure to obtain such result is the same as explained in the fol-
lowing paragraph for K‖, just much simpler as the trace terms do not appear.

4Even if A2 is not satisfied and K∞ had a component in the orthogonal
complement space, the method of applying Q can be used. Although then
K∞ is not diagonalized and ΛK is not of diagonal form, for the performance
measures only its diagonal terms are of importance and will be considered
later on.
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obtained by employing the matrix inversion lemma [9]: [P(Λu)+
λuλ T

u ]−1λu = 1/[1+λ T
u P−1(Λu)λu]P−1(Λu)λu. The final steady-

state system mismatch is thus given by

tr[K∞] = 1T
λK =

µσ2
v ∑i

1
1−µm(2,2)

x λi

2−µm(2,2)
x γx ∑i

λi

1−µm(2,2)
x λi

(41)

and the misadjustment

M =
λ T

u λK

σ2
v

=
µ ∑i

λi

1−µm(2,2)
x λi

2−µm(2,2)
x γx ∑i

λi

1−µm(2,2)
x λi

. (42)

The only difference between this and the classic solution for
SIRPs [8] is the term γx that contains influences of the fourth order
moments m(4)

x and m(2,2)
x as well as m(2,2)

x explicitly. After show-
ing several aspects of the LMS solution, a more general statement
can be formulated for the transient and steady-state behavior of the
algorithm.

Theorem 3.1 Assuming driving process uk = A[xk] to originate
from a linearly filtered white random process xk with proper-
ties (13)-(21), any parameter error vector covariance matrix K0
evolves essentially into two parts: a polynomial in AAT , stemming
from its decomposition onto the modal space of Ruu and a second
part K⊥k of its orthogonal complement. The LMS update affects
these two parts independently of each other.

The proof is straightforward by applying all previous results. In
other words, the complementary subspace part K⊥k has no impact
on the LMS performance measures and can thus be neglected not
only for Gaussian but for a large class of linearly filtered random
processes. A consequence of this theorem is that the step-size bound
can be derived either from (41) or by Gershgorin’s circle theorem
from the matrix in (38). The result is identical and conservative:

0 < µ ≤ 2

m(2,2)
x (2λmax + γxtr[Ruu])

. (43)

Depending on the statistics of the driving process a more or less
conservative bound is obtained. It is worth to distinguish sub- and
super Gaussian cases. For sub-Gaussian distributions, γx < 1 while
for super-Gaussian γx > 1. The step-size bound thus varies with
the distribution type more or less by tr[Ruu] in the bound (43). For
SIRPs (and thus Gaussian) distributions as well as for very long
filters γx = 1 and thus

0 < µ ≤ 2

3m(2,2)
x tr[Ruu]

≤ 2

m(2,2)
x (2λmax + tr[Ruu])

. (44)

This result is identical to (3) for Gaussian processes as m(2,2)
x = 1.

Note that the results are conservative. For a statistically
white driving process, for example, an exact bound leads to µ ≤
2/[m(2,2)

x tr[Ruu](γx + 2/M)], thus a significantly larger bound and
still depending on the distribution by the value of γx.

Further note that the components in the orthogonal complement
space indeed vanish as argued at the beginning of Section III. Take
for example Eqn. (12) or (34) as the evolution of the orthogonal
complement. It is straightforward to show that for the given step-
size range in (43) or (44) the components K⊥k vanish as long as
there is no new components induced by violating Assumption A2.

4. CONCLUSION

In this contribution a stochastic analysis of second order moments in
terms of the parameter error covariance matrix has been shown for

the LMS algorithm under the large class of linearly filtered, random
driving processes. While results were only known for few statis-
tics, in this contribution the large class of linearly filtered white
processes with arbitrary statistics is treated. Particularly interest-
ing is that the parameter error covariance matrix is essentially being
forced to remain in the modal space of the driving process Ruu, in-
dependent of the correlation and the pdf of the driving process. In
addition to the independence assumption some mild approximation
is required for this derivation, causing minor errors only for short
filters and pdfs being very different from Gaussian. Even such mild
approximation is no longer required once the filter order grows to
very large values. All results have been validated by MC simula-
tions but due to limited space will be reported elsewhere.
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