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ABSTRACT

Automatic analysis of interactive people behavior is an
emerging field where significant research efforts of the audio
and image processing communities converge. In this paper
we present a particle filter for jointly tracking the position
of multiple people, their head orientation and speaking activ-
ity based on audio visual cues. These are integrated with a
novel fusion technique that takes into account the spatial dis-
tribution of the sensing infrastructure. The resulting system
provides real time information about peoples’ behavior and
activities that can be used to boost the awareness of technol-
ogy assisted working and living environments.

1. INTRODUCTION

There is an increasing demand from the society to realize
electronic systems that assist people in their working and liv-
ing environment. Applications in the field of Domotics, Am-
bient Assisted Living, Surveillance and Human-Computer
Interaction require such solutions to be sensitive and respon-
sive to the presence of people. Therefore, there is a need to
develop perceptual technologies able to provide detailed re-
ports on their behavior and activities. Audio visual analysis
hereby offers a convenient framework.

This paper focuses on the joint determination of head po-
sition and horizontal orientation, and speech activity of peo-
ple interacting in indoor environments monitored with multi-
ple cameras and microphones. A vast amount of literature is
available on the problem of people tracking and of head lo-
cation and pose estimation. The CLEAR workshops [1] ad-
dressed these tasks and provided a quantitative comparison
of several techniques. Many approaches are based on a two
step strategy: head detection followed by pose estimation,
often using neural networks classifiers (e.g. [2, 3, 4, 5]). A
somehow different approach is followed in [6] where pose
estimation is computed by Bayesian integration of the re-
sponses of multiple face detectors tuned to different views.
An alternative, potentially more robust approach proposed in
[7,8,9, 10, 11] is to estimate jointly location and orientation
using a mixed-state particle filter.

The system proposed in this paper follows the joint esti-
mation approach and is based on a particle filter for the inte-
gration of multiple sensor information and temporal dynam-
ics. We build upon our previous work on visual and acous-
tic tracking [12, 13, 14, 15] to come up with an integrated
approach that conveniently marries the advantages of each
modality.
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2. SEQUENTIAL BAYESIAN FRAMEWORK

To analyze the behaviour patterns of interacting people we
adopt a Bayesian approach. Such approach turns out to be
particularly convenient in a multi-sensor multi-modal setting.
It allows to easily link relevant information from different
sources by (i) defining a common reference frame represent-
ing the features of interest, (ii) modeling the dynamics on
the chosen representation, and (iii) implementing, for each
modality, a generative model of the measurement process.

For the task addressed in this paper, i.e. estimating the lo-
cation of people, their focus of attention and speech activity,
the representation x is chosen to be a five dimensional vector
composed of the two dimensional position x” of each person
measured on a horizontal reference plane, the horizontal ori-
entations of the head x" and torso x, and a binary variable x*
indicating speech activity or silence. For the temporal evo-
lution we assume that speaker turns can happen suddenly,
and that a person can move randomly within the environ-
ment and can orient its head in any direction. Thus our mo-
tion model relies on independence assumptions. Both move-
ments, though, can be executed only with limited velocity.
The resulting dynamical model p(x;|x;—_1) at time # does then
not depend on x* and can be expressed as a product of three
Gaussians p(x|x,—1) = G(x{ —xP_,|6P)-G(x! —x_||o")-
G(x, —x;_,|c"). The observation likelihood ¢(z|x) for the
multi-source signal z is the key components of the Bayesian
model and is designed in a generative fashion: we first render
the hypothesis x into the sensor domain using a model of the
target and the measurement physics and match it then with
the real observations. Specific models for the acoustic and
visual domain are detailed in the following sections.

The aim of tracking is then to recursively estimate the
posterior distribution p(x;|z,) of the representation condi-
tioned on a sequence of sensory observations z;.;. At each it-
eration this is done in two steps, by first propagating the pos-
terior obtained at the previous time p(x,_1|z1,—1) according
to the dynamical model p(x,|x,—1) and then updating it with
the information contained in the new observation using the
likelihood model g(z|x,) of the observation process

P(Xt|zlzt) o< Q(Zt‘xt) /P(Xt|xt—1)l7(xt—1|Z1:r—1) dx;_1.

When the observation likelihood is complex, like in our
case, the posterior cannot be expressed in closed form and
one has to resort to approximations. The particle filter main-
tains a compressed representation of the posterior by means
of a set of representative sample states, the particles. At each
iteration z, a new set of representative particles, {x;}, is i.i.d.-
sampled from the motion prior mixture evaluated over pre-
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Figure 1: The plot shows the estimated horizontal y-

displacement (in mm) of the speech source while a person
turns around at a fixed position (at y ~ 3m) and speaks to-
wards the four walls and four corners of the room. There is
an evident offset of the speech source from the body center of
about 20 cm. This plot shows also that the proposed acoustic
and visual likelihoods provide estimates that are sufficiently
accurate to exploit this offset for jointly estimating the orien-
tation of an acoustic source.

vious particles. Then, the particle likelihoods are computed
on the new observation z; and used as importance weights
m; = q(z|x;). To focus on likely trajectories, particles are
periodically resampled according to their weights.

3. AUDIO VISUAL LIKELIHOOD

Following a generative approach, in this section we describe
likelihood functions to estimate the position and head orien-
tation of a person by audio visual means. While audio visual
localization and tracking has been subject of extensive re-
search in the past, not much attention has been paid to the
joint estimation of the speaker orientation. Here we focus on
this latter, exploiting that (i) the acoustic signal is directional
(we use this fact in Sec. 4), (ii) the head orientation is directly
observable in an image by its color and body shape pattern,
and (iii) the location of the speech source has a horizontal
offset from the body along the head orientation. Assuming
that the individual modalities support sufficiently accurate lo-
calization of the speech source and the body center they can
be explicitely conditioned to each other by this offset, sug-
gesting that a joint approach may be most convenient. Fig. 1
shows that with the acoustic and visual likelihoods proposed
in this section this assumption is met in our sensor setup.

3.1 Acoustic likelihood

Given a sound source in spatial position p and two micro-
phones with 3D coordinates s; and s», the direct wavefronts
reach the two sensors with a certain time delay which is re-
ferred to as Time Difference of Arrival (TDOA) by 7(p) =
(Ilsi = pll = |Is2 = pl|) /¢, where c is the speed of sound and
I - |l is the Euclidean norm. Since this equation maps a hy-
pothesis p into its corresponding time delay 7 (p) it can be
interpreted as a rendering function into the TDOA measure-
ment domain. Knapp and Carter [16] introduced the general-
ized cross correlation phase transform (GCC-PHAT), which
is the most popular method for TDOA estimation. Denot-

ing by z; and z, the digitized sequences captured by the two
microphones over a small time window, GCC-PHAT is for-
mulated as follows:

GCC(t) = FFT™! { FFT () FFT"(2)) }

|FFT (z21)|- |[FFT(z2)]

where 7 is the time lag in samples between the signals. For
each time lag, GCC-PHAT evaluates the similarity between
the two signals and, in ideal conditions, it presents a dominat
peak for 7 equal to the actual TDOA. Alternative approaches
to TDOA estimation adopt multiple microphone set up [22]
or information theory [21].

It is a known fact that particle filters do not behave well
with sharply peaked and irregular likelihoods [17]. Therefore
we compute the acoustic likelihood using a smoothed version
of GCC-PHAT computed as follows. For a given hypothe-
sis x an audio source is hypothesized at p = (x,y,z) where
(x,y) are the particle coordinates shifted by an offset of 20
cm along the direction of the particle orientation, and z is
fixed to 90% of target height (which is assumed to be known
apriori). We then compute for each microphone pair the in-
terval of TDOAs which map inside a sphere centered at this
point (in the experiments of Sec. 5 the radius of the sphere
is set to 50 cm). The highest GCC-PHAT response in this
interval is found and weighted with the relative distance to
the source location. Taking its exponential we get the likeli-
hood computed on a microphone pair, which is now a smooth
function of x. This likelihood is used both for tracking and
speech activity detection. If the acoustic likelihoods on a tar-
get’s particle set exceed a given threshold (empirically set
to exp(2) = 7.4 in our implementation) the event is marked
as active speech for that person, and the acoustic likelihoods
are used in the calculation of the particle weights. Otherwise,
the audio scores are neglected and only the visual likelihoods
are considered in the filter update. The presence of multiple
targets is dealt with by removing the GCC-PHAT measure-
ments associated to the active speaker [15] so that they do not
compromise the speech activity detection associated to other
targets.

3.2 Visual likelihood

Following again a generative approach, we define a visual
likelihood that builds upon a rendering function g(x) to map
a hypothesis x into a set of visual features (color histograms
in our case). The rendered features are then scored against
features extracted from the actual observation using an ap-
propriate distance function d (Bhattacharyya distance).

The rendering model has two components: a coarse 3D
shape model assembled from five cone truncs representing a
standing person, and a body part- and viewpoint-based rep-
resentation of the targets color pattern, in form of head, torso
and legs histograms. To obtain its image projection for a state
x we fit a silhouette template around the segment joining the
image projection of the two 3D points representing the tar-
gets center of feet and top of head under x. To account for
the change in the targets profile width we rescale the template
width according to the relative orientation 6; of the torso to
the camera by 0.7+ 0.3 - | cos 6;|. In addition, the head patch
is shifted horizontally by a quantity equal to 0.2 - | sin 6| - wy,
where 6, is the relative orientation of the head to the cam-
era under x and wy, is the width of the head patch. This
makes the shape projection model sensitive to head orien-
tation. The projected shape is decomposed into three body
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parts: head, torso and legs. Within each of these parts, the
appearance of the target is described by a RGB color his-
togram (8 x 8 x 8 bins). To obtain the histograms under x
we follow a view-based rendering approach. Given a set of
pre-acquired key views of the target, we extract the color his-
tograms for each body part, and generate the histograms for
a new view by interpolation. To compute the interpolation
weights for a given particle, the orientation of the body part
0 with respect to the camera is taken into account. The set of
neighboring model views ¥ is identified and the histogram
is computed by ¥,y w,(0) - h,, where h, indicates the his-
togram of key view v. The interpolation weights account
linearly for the angular offset between the two orientations
wy(8) =2cos™1(6,6,)/1 where 6,6, denote the 3D versors
oriented according to 8 and key view v. The visual likelihood
for x is then computed by matching the color histograms ex-
tracted from the head, torso and leg patches identified by the
shape projection with the interpolated model histograms us-
ing Bhattacharyya-coefficient based distance.

4. LIKELIHOOD INTEGRATION IN UNEVENLY
DISTRIBUTED SENSOR NETWORKS

In this section we propose a method to consistently integrate
multi-sensor observations in a Bayesian framework that ac-
counts for the spatial distribution of the sensors in the moni-
tored environment. We claim that this is an important aspect
in asymmetric deployments when the signal source is direc-
tional and/or the sensitivity of the signals to variations in the
state variables (i.e. likelihood sharpness) varies significantly
with sensor position and/or modality. We give an example to
support this claim at the end of this section.

To derive the method from a theoretically grounded
model we consider the ideal case in which we have a spa-
tially dense population of sensors, each one providing a con-
ditionally independent measurement z(s) indexed by its po-
sition s. To account for directional sources, we introduce a
model e(s|x) of the emission pattern of the target under state
x, whose purpose is to suppress the contributions of those
measurements that are out of the influence range of the emit-
ted signal under x. The likelihood of a dense measurement
z = {z(s) }s can then be evaluated by

—logg(z|x) o< /e(s|x)l(z(s)\x)ds (D

where [ denotes the local log-likelihood evaluated on the sen-
sor at s.

In practice, however, we do have only a finite number of
sensors deployed at {s;}; in the environment to compute an
approximation of the above integral. To do so in a Monte
Carlo fashion we interpret their measurements {z(s;)} as
i.i.d. samples of a importance density s(s|x), such that

| /'e(s|x)z<z(s)|x)ds ~ Y e(sifx)I(2(s0)[%)/s(si/x). ()

To apply this method the values of s at the sensor positions s;
have to be estimated. This can be done by a density estima-
tion technique using a kernel K that accounts for the expected
correlation of the measurements under x.

Although the proposed technique may most conveniently
be adopted in a multi-modal setting (where K has to be de-
signed to jointly consider all modalities, which may not be
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Figure 2: Microphone arrays in the experiment room

straightforward) in this paper we focus on its application to
the acoustic component of the likelihood (i.e. we sete/s = 1
for the visual contributions in Eq. 2). This choice is also mo-
tivated by the fact that acoustic estimates are generally more
affected by the sensing and room geometry than their visual
counterparts, and, as a consequence, it allows us to highlight
the advantages deriving from the method. Fig. 3(a) shows a
plot of the density s, the emission pattern e and the weighting
factor e/s we use to approximate the joint acoustic likelihood
in the experiments in Sec. 5. The kernel accounts for the ra-
dial distribution of the microphone pairs s; around the source
hypothesized in x (here (-, -) is the internal product, [-]* is the
y coordinate, .4 is the density of the normal distribution)

| {s—x,8;—X)

K(s,si|x) = A (cos™ ;0,00)  (3)

Is —xI[[lsi =x||”

and

S s=xP

e(s|x) = 4 (tan St X', o) “
models the acoustic radiation pattern of the directed speech
of a person. Note in the figure that the microphones are un-
evenly distributed around the position of the directed sound
source: three close microphone pairs are available at the left
(T4 in Fig. 2) but only one at the right (T3). In addition,
the reverberation of the room injects more noise in the sig-
nals recieved by the microphone pairs at the left than in the
single microphone pair at the right. By neglecting the den-
sity s the joint likelihood will be heavily biased towards the
(noisy) estimates obtained from the three microphone pairs at
the right. By considering the distribution of the microphones
around the source location by means of s the contribution of
the three pairs are properly down-weighted and the bias is
attenuated (see Fig 3(b)).

5. EXPERIMENTAL RESULTS

To validate the approach, three sequences of graded diffi-
culty have been acquired in our lab. The room dimensions
are 6.0 x 4.8 x 5.0m. The acoustic sensor set up consists of
a distributed microphone network which includes 7 micro-
phone arrays distributed in the monitored environment (see
Fig. 2). Since each array consists of 3 microphones spaced
at 20 cm, the overall number of available microphone pairs
for GCC-PHAT computation is 21. The reverberation time
of the room is 0.7 s and the sampling rate is 44.1 kHz. Four
firewire cameras with a field of view of about 90deg are in-
stalled in the corners of the room. They deliver RGB images
of size 512 x 384 at a rate equal to 15 Hz.

In the first sequence (90 s) a person located at the cen-
ter of the room turns around in steps of about 45deg and
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Figure 3: Source orientation estimation with unevenly distributed microphone arrays. (a): importance density s, emission
pattern e, and weigthing function e/s for the directional acoustic source in Fig 2. (b): joint acoustic likelihood in Eq. 2
computed using radial kernel (Eq. 3), and without re-weighting (uniform s). (c) shows the orientation estimation based on
acoustic likelihood. Notice how the estimation is biased towards the three microphone pairs at the left if their contributions
are not re-weighted according to their radial distribution around the source.

speaks towards the four walls and four corners of the room.
The ground truth (position and head orientation) for this se-
quence has been generated manually. The second sequence
(95 s) involves two people moving in the room and speaking
to each other in turn. Both people continue to look to each
other while moving: this way we were able to generate the
references for evaluation in an automatic way by tracking the
spatial position of both targets and using the ray connecting
the two targets to compute a reference for their head orienta-
tions over time. The walking trajectories hereby were com-
puted offline with the color based particle filter described in
this paper using high quality color models acquired offline
and a high number of particles. The quality of the references
obtained this way are comparable to manual labelling. The
third sequence (131 s) is the most challenging one, with two
people moving quickly while speaking in turn. After about
60 s one person sits down and continues to speak to the other
which moves around. After that, a loudspeaker is turned on
and emits the speech of a person at a comparable volume for
about 40 s in the central area of the room (a coherent noise
source in view of our evaluation). The references for evalua-
tion have been generated in the same manner as for the sec-
ond sequence. However, since the targets moved much faster
than in the second sequence the references in this case may
be less reliable, also because visually following a moving
target does not necessarily mean that a persons head orienta-
tion is tightly aligned with the gaze direction: if the direction
changes quickly, as happening in this sequence, one tends to
delay the movement of the head while gazing correctly.

The presented multi-modal particle filter has been imple-
mented as an extension of the SmarTrack system [18, 19]
(http://tev.fbk.eu/smartrack) and runs comfort-
ably in real time on a modern workstation on the evaluation
sequences. It automatically detects people as they enter the
monitored room, acquires their visual signature, and tracks
their position, head orientation and speech activity using
the audio visual likelihoods and fusion technique proposed
in this paper. See http://pumalab.fbk.eu/amm for
videos of some of the evaluation runs and to assess the qual-
ity of the references. We also intend to make the sequences
publicly available for evaluation purpose.

The proposed algorithm is evaluated using the MOT
scoring tool adopted in the CLEAR 2007 evaluation cam-

modality runl [ run2 | run3 | run4 | runS
video 68 62 68 68 62
= 0.167 | 1.38 | 0.185 | 0.175 | 1.35
£ wudio 105 | 104 | 108 | 105 | 105
g 0.421 | 0421 | 0414 | 0417 | 0.420
CH — 77 77 75 77 82
audio-video | g 187 | 0.194 | 0.164 | 0.183 | 0.253
video 62 81 62 94 63
) 0.922 | 0.867 | 0.908 | 0.440 | 0.802
£ oo T4T | 141 | 143 | 142 | 140
2 0.485 | 0.489 | 0.474 | 0.491 | 0.479
@ audio-video o4 64 >4 05 63
0.391 | 0.414 | 0.346 | 0.374 | 0.404
“ » 65 49 36 46 81
g Vo° 160 | 1.56 | 0278 | 2.63 | 1.17
% audio-video >4 40 5 38 35
2 120 | 0506 | 1.19 | 0225 | 1.243

Table 1: Experimental results for each session and each
modality. The first row reports the localization precision
(mm) while the second row shows the precision in the head
orientation estimation (rad). The MOTA index is not reported
in the table because it is always above 95%.

paign [20]. The tool was extended to evaluate head orienta-
tion as well by means of the average absolute angular error.
In order to better appreciate the impact of using acoustic and
visual likelihoods jointly, we report on the performance of
the system during speech segments only. Although the be-
haviour of the filter is conditioned also by what happens dur-
ing silence, it can quickly adapt when new acoustic observa-
tions are available, making this kind of analysis reasonable.
When two targets are present, only the speaking one is eval-
uated. For comparison, two mono-modal trackers operating
on either visual [18, 19] and acoustic [15] observations are
also evaluated on the acquired sessions. The acoustic tracker
is designed for a single source and is therefore not evaluated
on session 3 where an interfering speech source is present.
Table 1 reports on the performance for each session and
for each modality. The table shows the results obtained on
5 independent runs on each modality. Since the visual ap-
pearance model of the targets are acquired on-the-fly (color
histograms, but also target height is estimated) their quality
may change significantly from run to run. It is clear that the
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quality of the model has a major impact on the filters ability
to visually track the head orientation; this can be observed
in the table, where the performance of the visual tracker ex-
hibits a high variance in the head orientation error. This is
most evident in session 1 (run 2 and 5). Conversely, adding
the acoustic likelihood, which is not target dependent, en-
sures more uniform performance among different runs. It
is worth noting that the acoustic observations do not signifi-
cantly improve the estimation performance when good visual
models are available. Concerning localization performance,
the visual likelihood alone can already provide accurate esti-
mations of the target position.

The results achieved in session 2 seem to confirm the
trend observed in session 1. It is worth underlining that ref-
erences here are obtained automatically and therefore only
qualitative assessments can be derived from those numbers.
Finally, session 3 shows that the system is not robust to the
presence of interfering sound sources which are not dealt
with in the current implementation. As a matter of fact, the
sound irradiated by the interferer conditions all GCC-PHAT
measurements, weakening the acoustic likelihood. A pos-
sible solution may be to handle the interferer as a non hu-
man target, thus going for a multi-target multi-speaker frame-
work. In this session the performance on head orientation
estimation is further deteriorated by the fact that the quality
of the automatically extracted target model associated to the
second person is low in 4 cases out of 5.

6. CONCLUSION

We have presented an integrated approach to audio visual
tracking of interacting people to determine their spatial posi-
tions, head orientations, and speaking activities. It is based
on a particle filter that operates in real time, thus providing
a suitable online tool for higher level analysis about the be-
haviour of interacting people. Despite the enriched reports
provided by a multi-modal analysis, the integrated use of
both acoustic and visual cues have shown to provide also
more robust and accurate results than their single modality
counterparts. Our plans are to further investigate on the cor-
relations that exist across space, time and modality building
on the integration technique presented in this paper.
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