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ABSTRACT

Sensing the presence and state of people is of paramount im-
portance in assistive living environments. In this paper we
utilise a set of fixed, calibrated cameras to model the bodies
of people directly in three dimensions. An adaptive fore-
ground segmentation algorithm is run per camera, provid-
ing evidence to be collected in 3D body blobs. A particle
filter tracker allows monitoring the modelled bodies across
time, offering estimations of their state by using hot-spots
and body posture. We apply our system on fall detection
and activity monitoring for the elderly, addressing both emer-
gency and cognitive care.

1. INTRODUCTION

Much interest has in resent years been directed at sensing the
presence and state of people. The possible applications in-
clude surveillance [1], assistive living environments [2, 3],
and human-machine interfaces [4, 5]. In this paper we build
a system for tracking the position and posture of human bod-
ies in 3D in real-time. For this, a set of 5 fixed and calibrated
cameras is utilized. An adaptive foreground segmentation al-
gorithm runs per camera. The detected 2D foregroundmasks
for each camera are combined into one set of 3D foreground
voxels using a hierarchical approach based on octrees [6].
Segmentation separates the voxels into a number of bodies,
giving indications of the number and position of persons in
the scene. A particle filtering tracker allows monitoring the
modeled bodies in time, offering estimations of their state.

One increasingly relevant application is emergency and
cognitive care for elderly, including fall detection [7, 8] and
activity monitoring [9]. We address these by using the state
estimations from the tracker to detect abrupt height changes
and position persistence. The former are classified as “person
sitting down” or “person falling” and the later are compared
against predefined hot-spots, to reason on possible activities
like “person at dinner table”, “at kitchen”, or “by the TV”.
Also multiple human tracks indicate visits, again classified
as “for dinner”, “for tea”, etc.

The novelty of the proposed system lies partly in the ef-
ficient combination of 2D foreground masks into 3D fore-
ground bodies and partly in the utilization of a bodymeasure-
ment likelihood function within the particle filtering frame-
work. From the 3D foreground representation, projections
onto the floor plan are obtained by summing the body evi-
dence at all heights for the given position. The resulting 2.5D
representation is used to evaluate the measurement likelihood
function of the proposed particle filter tracker.

This paper is organized as follows: In Section 2 the pro-
posed tracking system is detailed. Test results of the imple-

mented system are presented in Section 3, based on test video
from the setup at the AIT. The performance of the system is
evaluated and concluded upon in Section 4.

2. TRACKING SYSTEM

In this section our method for foreground detection in 3D,
target management and tracking is detailed. Tracking is done
using a particle filter based on an effective likelihood func-
tion, and the tracking results are interpreted to determine im-
mobile bodies located near hot spots and the posture of each
body.

2.1 Body Detection

Body detection is carried out in three stages: First foreground
evidence is collected in 2D per camera. This is then com-
bined to 3D foreground mostly following the approach of
[10], and it is finally used to model 3D bodies. Foreground
detection in 2D utilises per pixel Gaussian Mixture Models
inspired by Stauffer et. al. [11]. The performance of the
algorithm at the start-up phase is improved by increasing the
learning rate according to a window based approach, inspired
by [12]. Robustness of foreground blobs is increased by re-
moving shadows as in [13].

2.1.1 Modelling the space in 3D

The purpose of using several cameras for tracking is partly to
be able to track in 3 dimensions, but also to filter out noise.
Noise in the 2D foreground exists no matter the method used.
By combining information from a number of cameras, this
noise can be reduced significantly, thus increasing the robust-
ness of the body detection.

We employ a well-known approachwhere the 3D space is
modelled discretely by spanning a grid of voxels [10, 14, 15].
Information from the different cameras can then be combined
for each voxel, instead of for each person or region. The nov-
elty of our 3D body detection system is the speed improve-
ment by using a hierarchy of voxels of different sizes and
the efficient implementation using distance transform, both
described in the following.

2.1.2 Hierarchical Grid Structure

Foreground in the 3D space will mostly be structured in co-
herent volumes that indicate the presence of persons. Large
areas of the space will be completely without foreground. By
dividing the space into hierarchies of voxels, these areas can
be ruled out efficiently by only testing very large voxels for
foreground. Only if a large voxel contains foreground, is it
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1. Span the room with a grid of voxels on N
hierarchical levels.

2. Project the centre and corners of each voxel on

all levels to the image plane of each camera.

Use the corners to determine an enclosing

circle C.

3. Let the set S consist of all voxels on the

highest hierarchical level.

4. For each voxel in S:

(a) For each camera:

• Test foreground mask for foreground

evidence within the enclosing circle C.

(b) If enough cameras detect significant

foreground:

• If the voxel has any children, then

repeat 4 with S consisting of all

children of the voxel. else mark the

voxel as a foreground voxel.

Figure 1: Recursive algorithm for converting the 2D fore-
ground masks to a 3D grid of foreground voxels using dis-
tance transforms.

necessary to test smaller voxels it contains (its children) to
improve the resolution of the model.

An efficient way to construct hierarchies is to use octrees;
that is to divide every voxel on a particular hierarchical level
into 8 voxels on a lower level [6]. For the test results in
this paper we use a 4-level octree with the following voxel
widths: 40 cm, 20 cm, 10 cm and 5 cm. Only if a parent
voxel contains foreground are its children voxels tested for
foreground. A problem for this approach arises in the bor-
der areas of the 3D space of interest, where the larger vox-
els might not fit very well. If a voxel is partly outside the
3D space but with its centre inside the space, it is used di-
rectly. If the centre is outside the room, it cannot be tested
for foreground, and must therefore be omitted. Instead, the
border region is filled directly with smaller voxels (that have
centres inside the 3D space). The algorithm for converting
the 2D foreground masks into a grid of foreground voxels is
summed up as pseudo-code in Figure 1.

For our system, all of the cameras are stationary. This
causes the projection of voxels to the image plane of each
camera to be identical for all frames. Therefore, the items 1
and 2 in Figure 1 can be carried out off-line, leaving 3D fore-
ground testing as the only potentially computationally heavy
part.

The hierarchical algorithm is a speed optimization of the
non-hierarchical version, and has been tested to reduce the
computational cost of the algorithm by around 80 % when
a distance transform is used to combine the 2D foreground
masks into 3D foreground as described in the following sec-
tion.

2.1.3 Efficient Combination of 2D Foreground Masks into
3D Foreground

To test whether a voxel projected to the image plane of a
camera contains foreground, all foreground mask pixels lo-
cated in that projected voxel should ideally be tested. The
percentage of pixels with foreground can then either be com-
pared with a threshold for significant foreground, or used as

a non-boolean indication for foreground. This is, however,
computationally intensive, since pixels in the 2D foreground
masks are included in many voxels, and will thus be tested
many times.

The speed of the foreground testing can be increased by
making certain simplifications. In many cases, the centre
pixel of the projected voxel indicates correctly if the voxel
contains foreground. To give some resistance to noise, a blur-
ring kernel can be applied before testing. The hierarchical
grid structure causes, however, the voxels to be of very dif-
ferent sizes, which again causes the optimal kernel size to
be very different. Therefore it is chosen to apply a distance
transform instead, where each pixel gets a value correspond-
ing to the distance to the nearest pixel with foreground. After
the distance transform has been applied, the centre pixel can
be tested and compared to the radius of the enclosing circle,
C, of the projected voxel, calculated off-line. This reduces
item 4a in Figure 1 to testing one pixel and comparing to
the radius of C. To minimize the computation time of the
distance transform an approximating 3×3 kernel is applied
following the approach in [16]. This causes the calculated
distances to be slightly imprecise, but also enables the time
consumption to be comparable to a 3×3 blur kernel. In our
implementation, the optimal values 0.95509 and 1.36930 are
used for the horizontal/vertical and diagonal entries in the
kernel, respectively.

It is worth noting that the results of the hierarchical and
non-hierarchical algorithms when based on distance trans-
forms are not completely identical. In some cases, perspec-
tive and camera distortion can cause the enclosing circle of
a child voxel (Cchild) to contain an area not included in the
enclosing circle of its parent voxel (Cparent). If foreground
is present in this area, but not in the rest of Cparent, this will
cause the hierarchical structure to sort out the child voxel,
even though foreground exists within its enclosing circle.
Minor tests have indicated that around 0.1% of the fore-
ground voxels are sorted out for this reason. The issue could
easily be avoided by using a circle slightly larger thanCparent

for parent voxels. However, since this only happens when
there is foreground inside the enclosing circle of a child vox-
els but not inside the voxel itself, there is no actual reason to
prevent it.

2.2 Target Management

Target management includes detection and initialization of
new targets and destruction of older targets.

2.2.1 Detection of Targets

Target detection is necessary for initialization of new targets.
A simple and fast approach which in many cases will work is
to do 3D blob analysis of the detected foreground voxels. For
our system, additional measures are taken in an attempt to
utilise the typical structure of the 3D foreground. These are
illustrated in Figure 2. When two individuals are positioned
close together, their detections will easily be connected near
the ground, e.g. because of shadows. Near their heads they
will, however, often be more easily separable, partly because
the heads are located farther from the ground, and partly be-
cause the head is thinner than the rest of the body. For this
reason the height of the connection of two connected blobs
are compared with a threshold, τ1. The blobs are merged
only if they are connected above this τ1. To make the system
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Figure 2: Top/down detection of targets.

robust to people sitting down or falling, an additional thresh-
old τ2 is used. If the height of one of the blobs relative to the
connection point are below τ2, they are always connected.

2.2.2 Maintenance of Existing Targets

To determine which targets that have significant supporting
evidence in the measurements, the position of all targets are
associated with the detected blobs using theMunkres or Hun-
garian algorithm [17]. Non-associated blobs are used to ini-
tialize new targets. A variableM for each target is set to 1 if
it is associated, and 0 otherwise. The reliability of targets is
updated using a simple IIR-filter:

r = r+ l(M− r) (1)

where r is the reliability and l is the learning rate. By com-
paring r with two thresholds, it can be determined whether
the target should be trusted as an individual and (if not) if it
should be destroyed. To allow new targets to become reli-
able relatively fast if they are associated in each frame, while
preserving older targets even if they have been unassociated
for some frames, the learning rate is adjusted according to
the age (given as the number of consecutive frames that the
target has existed). The following equation is used:

l = min(lmax,
1
age

+ lmin) (2)

It may occasionally happen, that two targets follow the
same individual. Therefore targets that are placed very close
to one another consecutively for several frames are merged.

2.3 Tracking

The tracking algorithm used in the system is Particle Filter-
ing (PF) [18, 19]. PF’s are able to provide a numerical solu-
tion to the recursive Bayesian estimation problem when the
system dynamics are not linear and/or the noise models are
not Gaussian. They hence provide robust solutions to the
tracking problem when the object model or the measurement
likelihoods are multimodal. This is offered at the expense of
additional computational complexity due to their numerical
nature. We build a PF that follows the approach for motion
tracking described in [19].

Foreground detection is done in 3D and thus tracking
should ideally also be done in 3D. To make the tracking al-
gorithm fast enough to allow real-time tracking, we propose
what we call a 2.5D approach. All voxels are projected to
the floor, and the number of voxels in each column are used
to calculate likelihood. The vertical dimension thus provides
some additional data for tracking, without itself being part of
the target state, hence the term “half dimension”. The states
related to position can thus be limited to x and y. Note that
the vertical position will provide little extra information for

α

α x

y

Figure 3: The state space consists of the coordinates x and
y on the floor-plan, and the size variable α . The variable α
can vary from 0 to the distance between the centre and the
boarder of the projection map. Note that the area of a state is
given as (2α +1)2.

tracking since the difference in height between different per-
sons humans are typically small.

To reduce the dimensionality of the state-space as much
as possible, only a single dimension α is used to determine
size. The state space S is therefore 3 dimensional, and the
dimensions are illustrated in Figure 3.

2.3.1 Likelihood Function

The multi hypothetical nature of the particle filter allows
tracking of non-global maxima. However, to achieve robust
tracking the likelihood function must in as many situations as
possible give local maxima close to the correct location and
size of the persons in the scene.

To determine a good likelihood function, a number of
values can be taken into consideration (where x and y have
been left out as function arguments for simplicity):

Volume: A person is expected to constitute a certain vol-
ume, which can be given as a number of voxels N(α).

Density: A person is expected to fill most of the volume,
V , inside his bounding box. This amount is expressed as:

F(α) =
N(α)

V
=

N(α)

h · (2α+1)
(3)

where α and h are measured in number of voxels. The height
h is set to the maximum number of voxels in a single column
in that area.

Derivative of density: A good state will be centred close to
the centre of a person and include most of that person. This
means that F(α) is expected to drop fast if α is increased.
This is due to the fact, that most of the area around a person
typically is without foreground. The change in F(α) can be

measured by its derivative
∂F(α)
∂α

, which can be approximated
by:

Fd(α) =
∆F(α)

∆α

=
F(α + k)−F(α− k)

2k

≈
1

2kh

(

N(α + k)

(2(α + k)+1)2
−

N(α − k)

(2(α− k)+1)2

)

(4)
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Figure 4: Different values as a function of α .

where h is simplified to be the maximum height of the
smaller area (which in most cases is identical to that of the
larger area).

Figure 4 shows F(α), Fd(α) and N(α) along with the
final likelihood function when α is varied in the example
shown in Figure 5a. In this example, the maximum of
−Fd(α) is located at the α = 5, which Figure 5a proves is
a good result. This is not sufficient for the likelihood func-
tion, however, since Fd reacts equally strongly on few voxels
of noise and a real person. To counter this effect, the like-
lihood function could be chosen to L(α) = −Fd(α) ·N(α).
N(α) biases towards larger areas. A problem with this ap-
proach is apparent by comparing Figure 5a and N(α) in Fig-
ure 4. When α grows to include both persons, N(α) just
keeps growing. To avoid including multiple persons, F(α) is
also included to give the final likelihood function:

L(α) = −F(α− k)2 ·
√

N(α + k) ·Fd(α) (5)

Instead of F(α) and N(α), F(α − k) and N(α + k) are
used to avoid calculating N(α). The functions are weighted
by squaring F(α− k) and taking the square root of N(α + k)
to bias towards single coherent persons. Figure 5 illustrates
the performance of the likelihood for a particular situation,
where two persons are located close to one another. The
projection of the voxels to the floor is shown in Figure 5b,
where a brighter colour correspond to more voxels in the
same column. Figure 5a illustrates the likelihood for all val-
ues of x and y with α fixed to 4. The set (xi,yi) that satisfy
(xi,yi) = argmaxα(L(x,y,4)) is marked, and α is adjusted at
that location to satisfy αi = argmaxα(L(xi,yi,α)). The state
S(xi,yi,αi) is shown as a box in Figure 5a.

2.3.2 Body Posture and Hot Spots

When noise is present in the detected 3D foreground, it is
mostly located close to the floor. This is partly due to shad-
ows and partly due to the fact, that other kinds of noise in
the 2D foreground detections in most cases are filtered out
by the combination of the cameras. This means, that the
height of the persons can be accurately estimated by taking
the maximum vertical position of the voxels located within

(a) Projection of voxels to the floor.
L is optimised with respect to α with
fixed x and y. The optimal value is
found to be α = 5.

(b) Likelihood L((x,y,4)|~y).

Figure 5: Illustration of likelihood function.

2D-position of the tracked target. By comparing the height
with different thresholds, the body posture is identified as
either standing, sitting or fallen. FIR-filters are applied to
ensure robustness to noise.

People staying near hot spots are detected by analysing
the movement of the targets over a predetermined period of
time. The variance in the distance from the mean 2D location
in the period under consideration is calculated and compared
to a threshold.

3. RESULTS

The system is tested on a setup of 5 calibrated cameras avail-
able at AIT. Four cameras are placed in the corners of a room
and one camera with a fish-eye lens is placed in the ceiling.
Using this setup, qualitative tests of the systems ability to de-
tect people falling, sitting, and spending time on hot spots are
carried out.

In a test sequence, up to four people move around in the
area under surveillance for 6:23 min. At 3 occasions in to-
tal a person falls and at 6 occasions a person sits down. All
of these events are detected correctly and there are no stand-
ing/sitting persons that are falsely detected as fallen. When a
person kneels or bows he can be classified as sitting but not
as fallen.

An image from one of the corner cameras from the test
sequence is shown and compared with the detected fore-
ground in Figure 6 and the complete test videos of both de-
tected foreground and images from the camera are available

on our website1.
With a recorded set of test videos, a single dual-core

2.2 GHz computer is capable of processing a frame in ap-
proximately 1/8 second excluding the time required to load
the images from the hard drive. To make the system run in
real time, a distributed version has been developed, which
enables the whole system to run in real-time on five 3.0 GHz
dual-core computers when the cameras are recording at
15 fps.

4. DISCUSSION AND CONCLUSION

We have in this paper presented an adaptive 3D approach
for sensing people in a multi camera setup. Foreground is
found per camera using a per pixel Gaussian Mixture Model
and combined to a discrete 3D foreground. For this, a novel

1http://kom.aau.dk/~zt/online/3DSensing/

967



(a) Detected foreground is shown
as green voxels, targets are shown
using wire frame boxes, and info
boxes are shown for each target.

(b) Frame from one of the corner
cameras with targets and info super-
imposed.

Figure 6: Detected 3D foreground are shown in (a) and rea-
soning results are shown both on top of the foreground and
in (b) superimposed on a frame from a corner camera. The
person lying in the floor is marked as “Fallen”.

approach is used to determine the 3D foreground that com-
bines a hierarchical octree structure with distance transforms
to computational cost of the algorithm.

Our tracker is based on a 2.5D particle filter that pro-
vides fast tracking with relatively little computational cost.
A likelihood function is developed that uses the amount of
foreground, the density of the foreground, and the approxi-
mate derivative of the density with respect to the size of the
target.

The system has been tested on a test video and is able
to detect all occasions where a person falls or sits down. It
should be noted that the system can fail in detecting a fall
if another person is standing close by. This is, however, not
critical for monitoring elderly since the fallen can get help
from the other person.

It is possible for the system to run in real-time using 5
cameras at 15 fps when distributed to 5 computers. Using
5 computers might not be optimal in a real-life implementa-
tion. The major reason is that the computers use USB 2.0,
whose bandwidth prevents more cameras from running si-
multaneously. However, when USB 3.0 gets available one
computer will be able to handle a much larger data flow than
our test computers.

One major limitation in our system is that tracking is
based solely on foreground estimation which again is based
solely on motion. Therefore, if a person stays immobile for
a long duration, the associated target will eventually be lost.
This can be avoided by adding additional modalities to the
tracker such as colour, faces, or even sound [14, 19].
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