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ABSTRACT

The detection of a multi-target scenario in radar-array pro-
cessing is a crucial step. When only a single source
is present, the computationally efficient beamformer for
direction-of-arrival (DOA) estimation is sufficient. When
multiple sources are present, subspace-based DOA estima-
tion is required to achieve high-resolution and unbiased es-
timation. To save computational cost, we propose computa-
tionally simple criteria for discriminating between a single-
target and multi-target scenario in automotive radar-array
processing. The suggested criteria can be applied with a
single snapshot, and are therefore suitable for classic pulsed
radar pre-processing. We present an empirical analysis of the
proposed criteria, and show results with real-life data.

1. INTRODUCTION

A radar-array can be used for direction-of-arrival (DOA) es-
timation and therewith target localization. The beamformer
(BF) is a direct approach: it is computationally efficient,
since it can be realized with an FFT for a uniform linear array
(ULA), and it constitutes the maximum likelihood estimate
for the single source case [7]. However, the BF has a low res-
olution with a beamwith (BW) for an ULA of≈ sin−1(2/M),
whereM denotes the array size. Therefore, when multiple
targets are present, the BF will result in biased DOA esti-
mation, or may even not be able to resolve all targets. In
these cases, we require high-resolution methods for DOA es-
timation [12]. Subspace-based algorithms typically require
an eigendecomposition of the spatial covariance matrix and
knowledge of the number of sources present. If the number
of sources is not known, it can be estimated using informa-
tion theoretic criteria (ITC) [13], see also [3]. Alternatives
to ITC are sequential hypothesis tests, such as the sphericity
test [14]. We remark that the mentioned methods for source
detection are also based on an eigendecomposition. Conse-
quently, subspace-based methods are computationally more
expensive than a direct approach with the BF, and may there-
fore not be suited for a real-time application with a high data
rate and limited processing power.

For the operation of a pulsed radar-array system, we as-
sume common pre-processing, i.e., pulse compression and a
Doppler FFT [10], to divide the recorded data in so-called
range-Doppler cells. For the considered application of au-
tomotive radar, we assume a parameter setting according
to sufficiently small range-Doppler cells such that the oc-
currence of single targets in range-Doppler cells is more
likely. On the other hand, multiple targets in individual
range-Doppler cells, i.e., targets at the same range with a

similar relative velocity, occur only in rare but crucial sce-
narios. These include:

• specular multipath with the guard rail which, if not re-
solved, result in a false target localization, or

• multiple scattering centers due to wide objects at differ-
ent orientations, as outlined in [2]. If resolved, multiple
scattering centers of a single object can be used to ex-
tract expansion or orientation parameters, which in turn
can be exploited by recent advances in automotive radar
target tracking and clustering [4].

Since the occurrence of single targets is more likely,
the application of computationally expensive high-resolution
methods is not always necessary. To save cost, we propose
to use computationally simple criteria, without eigendecom-
position, to discriminate between

(i) single-target situations, in which the computationally ef-
ficient BF can be used, and

(ii) multi-target scenarios, in which high-resolution algo-
rithms are necessary.

Consequently, a practical radar-array system, which em-
ploys a simple criterion for detecting a multi-target scenario,
is shown in Figure 1. As discussed above, the high-resolution
block may include subspace-based source detection using
ITC or the sphericity test, and a subspace-based method for
DOA estimation.
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Figure 1: A practical radar-array system: for each pre-
detected range-Doppler cell, a simple criterion is used to de-
cide if the number of sourcesD > 1.

The remaining part of the paper is organized as follows:
Section 2 contains the signal model and the problem formu-
lation. In Section 3, we present the suggested criteria for de-
tecting a multi-target scenario, along with an initial analysis
and empirical studies for a two-target scenario. A successful
application with experimental data is provided in Section 4.
Finally, some conclusions are drawn in Section 5.
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2. SIGNAL MODEL

Using classic pulsed radar pre-processing, as described
above, we obtain a single snapshot for each range-Doppler
cell. For the discrimination, we only consider cells with sig-
nificant energy, which correspond to one or more reflecting
objects. We remark that for subspace-based array process-
ing, especially for constructing a numerically stable spatial
covariance matrix, it is possible to use neighboring cells in
combination with decorrelation techniques [9], which effec-
tively increases the number of available snapshots.

For now, we consider a single snapshot model for the de-
tection of a multi-target scenario. TheM × 1 array output
vector is then modeled as

x =
D

∑
k=1

a(θk)sk +n (1)

whereD is the source number,sk and θk are the complex
scaling factor and the DOA of thekth source, respectively.
The noise vectorn is assumed to be spatially white, circular
complex Gaussian distributed with a common varianceσ2.
For an ULA, the steering vector is

a(θ ) =
[

1,e jκd sinθ , . . . ,e jκ(M−1)d sinθ
]T

(2)

whereκ = 2π/λ , λ is the wavelength andd is the sensor
spacing. To distinguish betweenD = 1 andD > 1 based on
snapshotx, a hypothesis test can be formulated as

H0 : E{x} ∝ a(θ )

H1 : not H0.

Note that H0 corresponds toD = 1 and is characterized by
planar wavefront characteristics, i.e., constant magnitude and
linear phase among the sensor outputs. The alternative H1
corresponds toD > 1 and is left unspecified. This is because
H1 involves a number of possible combinations and unknown
parameters, which is difficult to exploit with simple criteria.
In the following, we want to use the structure ofx when H0
is true.

3. PROPOSED CRITERIA

If multiple sources are resolved by the BF, the problem at
hand becomes trivial. In this case, we can simply count the
number of local maxima which exceed a certain threshold.
We remark, however, that the BF resolution capability, when
using a single snapshot, is generally dependent on the rela-
tion between phase parameters∠{sk}.

If two spatially separated sources are not resolved, i.e.,
their angular separation is smaller than the beamwidth, we
expect the angular width of the merged mainlobes to be wider
than the mainlobe for a single source. Here, we could use a
measure of angular spread, e.g. the 3-dB beamwidth, as a cri-
terion. This is generally difficult to calculate and requires the
evaluation ofP(θ ) = |xH

a(θ )|2/M on a relatively fine grid.
A non-parametric measure for angular spread, which allows
a simpler calculation, is e.g. suggested in [11]. However, we
do not focus on this approach in here.

3.1 Plane wave characteristics

The following criteria are conceptually similar to the idea
in [6], where it is suggested to compare the magnitudes and

phases of neighboring sensors. Based on this idea, the con-
tribution of the paper is to provide a detailed formulation of
suitable criteria in a statistical framework, and to present an
empirical performance analysis and an application with ex-
perimental data.

According to Equations (1) and (2), a single source re-
sults in approximately constant magnitude and linear phase
at the sensors, when the noise influence is low. We want to
exploit this observation by considering the sum of squared
errors of sensor magnitudes|xm|, m = 1, . . . ,M as a suitable
criterion

Cmag=
1

M−1

M

∑
m=1

(

|xm|− µ̂|x|
)2

(3)

whereµ̂|x| is the sample mean of sensor magnitudes. Sim-
ilarly, another suitable criterion is the sum of squared error
residuals of a first-order linear regression among the sensor
unwrapped phases∠{xm}, m = 1, . . . ,M

Cphase=
1

M−2

M

∑
m=1

(∠{xm}− ν̂1m− ν̂0)
2 (4)

whereν̂1 and ν̂0 are estimates of the slope and intercept of
the linear regression, and can be obtained using the method
of least-squares.

A simple detection of a multi-target scenario can be done
by comparing the proposed criteria, in Equations (3) and (4),
with a thresholdγ

Cmag/phase

H1
≷
H0

γ

If γ is exceeded, we reject H0 and decide forD > 1, otherwise
we accept H0 and decide forD = 1.

For an optimalα-level test, we require an appropriateγ
given a certain false-alarm rateα. This can be found using an
analytical expression for the distributions ofCmag andCphase
under H0, i.e., model (1) withD = 1. We know that real and
imaginary parts of the noise are i.i.d. Gaussian with common
variance(σ/

√
2)2. If σ is small, the magnitude|xm| and un-

wrapped phase∠{xm} can also be approximated as Gaussian
with the same variance (this is demonstrated easily by con-
sidering the circularly symmetric pdf of a two-dimensional
Gaussian random variable in the complex plane). We remark
that the assumption of a smallσ is reasonable, since we only
consider snapshots above a certain detection threshold. Us-
ing the described approximation, it can be shown that the
distributions ofCmag andCphaseunder H0 are

2(M−1)

σ2 Cmag∼ χ2
M−1 and

2(M−2)

σ2 Cphase∼ χ2
M−2,

respectively, whereχ2
n denotes a chi-square distribution with

n degrees of freedom [8]. In Figure 2, we show the empirical
density (histogram) of both criteria for a single source from
directionθ1 = 10◦, based on 2500 Monte-Carlo runs. We use
an ULA with M = 8 elements,d = λ/2 and noise standard
deviationσ = 0.15. The analytically found distributions are
overlaid in the plot, which confirm the approximation made.

We note that the evaluation ofCmag andCphaseis com-
putationally cheap with a complexity ofO(M), and can be
done independently from the BF. On the other hand, due to
the involved eigendecomposition, subspace-based source de-
tection has a complexity ofO(M3).
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Figure 2: Empirical (solid line) and analytic distribution
(dashed line) of criteriaCmag andCphaseunder H0.

3.2 Collinearity with array manifold

Another criterion is based on the collinearity between snap-
shotx and the array manifold, defined as{a(θ ) : θ ∈ Ω}
whereΩ contains all directions of interest. As collinearity
measure we consider

P̃(θ ) =
|xH

a(θ )|2
‖x‖2‖a(θ )‖2 (5)

which is equivalent to the BF spectrum of a normalized snap-
shot. We haveP̃(θ ) ∈ [0,1] with 0 if vectorsx anda(θ )
are orthogonal and 1 if they are perfectly collinear. The
collinearity criterion can now be defined as

Ccol = min
θ∈Ω

1− P̃(θ ) (6)

which requires the evaluation of the BF spectrum. We note,
that often in practical array processing the BF spectrum is
calculated as a consistency check, since it provides a simple
and low-resolution spatial power indicator. So by normal-
izing the snapshot and considering the peak amplitude, we
obtain another criterion for detecting a multi-target scenario.
Computational savings are possible by evaluatingP(θ ) only
on a sparse grid, and obtaining a refined peak location and
value using quadratic interpolation, as used e.g. in [5].

3.3 Performance in a two-source scenario

Here, we consider the simplest case for an alternative H1 and
use model (1) withD = 2 ands1 = 1. Using empirical stud-
ies, we want to analyze the influence of different superpo-
sitions of vectorsa(θ1) anda(θ2) on the suggested criteria,
especially w.r.t. angular separation∆θ = θ2−θ1, and corre-
lation phase∠{s2}. We allows2 to be modeled as

|s2| ∼ Nlog(0 dB,0.2 dB2) and ∠{s2} ∼ U [0,2π).

whereNlog(µ ,σ2) denotes a log-normal distribution with
meanµ and varianceσ2, andU [a,b) denotes a uniform dis-
tribution betweena andb. We consider two sources from
θ1 = 0◦ and θ2 = 10◦, and an ULA withM = 8 elements
andd = λ/2, which corresponds to an angular separation of
≈ 0.7BW. The noise variance isσ2 = 0.01. In Figure 3, we
show empirical quantilesq from histograms of the described
criteria vs. ∠{s2}, which have been obtained using simula-
tions with 2500 Monte-Carlo runs.

We observe that there is a region for∠{s2} where the
superposition of the sources results in a linear phase char-
acteristic of snapshotx, as if only one source is present.
This mainly influences criteriaCphaseandCcol. It has been
found in numerical studies that this region only occurs for
|θ2−θ1| < BW. Additionally, it has been found withD = 3
sources, that superpositions withs2 ands3, which result in a
linear phase characteristic, are rare.
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Figure 3: Empirical quantiles from histograms ofCmag,
CphaseandCcol under H1 with D = 2 sources and under H0.

As mentioned in Section 3.1, anα-level test compares
the observed value of a test statistic with a threshold which
has been found using the (1−α)-quantile of the distribution
under H0. For criteriaCmag andCphase, this level is found to
depend onσ2 directly. Also taking into account the influence
of ∆θ , we conclude that a reliable detection is possible above
a certain minimum SNR and above a certain minimum∆θ ,
which both depend on the specified application.

We remark, that practical threshold setting requires the
knowledge ofσ2, which can be estimated e.g. based on
neighboring range-Doppler cells. Furthermore, the threshold
should be set such that the probability of a missed detection
is minimized, while accepting a higher false alarm rate, since
this can be corrected with a proper source number detection
and will only result in an increased computational cost. For
the real data application example, we will also consider a
combination ofCmagandCphase, which may be advantageous
in the practical case of an imperfect array calibration.

4. APPLICATION TO REAL DATA

In this paper, we provide a qualitative study of the suggested
criteria with real data. A general assessment employing a
number of different scenarios is left for future work.
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The real data has been recorded using a radar array pro-
totype for mid-range automotive application. The receiver
ULA consists of M = 4 printed patch arrays, spaced by
d = 0.59λ . A global array calibration is applied, as described
in [5]. In an experiment, the array is mounted on a car which
is approaching two corner reflectors at the same range. The
measurement setup is shown in Figure 4.

Radar
array

∆y1

∆y2

Corner
reflector

...

R(n)
θ2(n)

θ1(n)

Figure 4: Experimental setup: the radar array is mounted on
a car which is approaching two corner reflectors.

Using a geometric relation, the true angles can be calcu-
lated as

θi(n) = sin−1
(

∆yi

R(n)

)

for i = 1,2

with distances∆y1 = −1.3, ∆y2 = 2.1, andR(n) being the
range at cycle indexn, all measured in meter. After inspec-
tion of results, a mounting error of approximately−2◦ has
been corrected. For DOA estimation, we additionally use
snapshots from neighboring range and Doppler cells. Spatial
smoothing and forward-backward averaging is used to decor-
relate and produce effectively more snapshots by exploiting
the array structure [9]. We apply the sphericity test at level
α = 0.1 for source detection, followed by subspace-based
root-MUSIC DOA estimation [1]. Experimental results of
standard source detection and DOA estimation are shown in
Figure 5.
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Figure 5: Real data DOA estimation using root-MUSIC, the
source number has been obtained using the sphericity test.

Note that for cyclesn < 60, due to random fluctuations
often only one target reflection is dominant and therefore
only a single source is detected. In addition to the two-corner
scenario there is an equivalent measurement set where the car
is approaching a single corner reflector. Since for the single-
corner scenario, both source number detection and DOA es-
timation are relatively accurate, a plot similar to Figure 5is
omitted here.

CriteriaCmag, CphaseandCcol have been evaluated at cy-
cles where the sphericity test results in a correct source num-
ber estimate, which was found to coincide with a meaning-
ful result (this choice is reasonable because we only aim at
achieving the same performance as standard source num-
ber detection, but using cheaper computations). The result
is shown in Figure 6. We observe that the populations are
relatively well separated, especially for the magnitude and
collinearity criterion. A suitable threshold can be found,fol-
lowing the discussion in Section 3.3.
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Figure 6: Real data scatter plots of criteriaCmag, Cphaseand
Ccol for a single target and two targets present.

Another possibility is the combination ofCmag and
Cphase. In Figure 7, we show a scatter plot of the two cri-
teria for single target and two targets present. We observe
that the two populations are well separated and a combina-
tion of criteriaCmag andCphaseis a potential candidate for
a multi-target scenario detection. Note that the indicated
threshold (dashed line) has been obtained using linear dis-
criminant analysis.

5. CONCLUSION

In a practical radar-array system, computational cost can be
saved because high-resolution DOA estimation is not always
necessary. In particular, the computationally efficient BF
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Figure 7: Real data scatter plot of criteriaCmag andCphase
for a single target and two targets present, the threshold is
obtained via linear discriminant analysis.

is sufficient for DOA estimation if only a single source is
present. We have developed and analyzed computationally
simple criteria for detecting a multi-target scenario. The
suggested criteria can be applied with single snapshot only,
which is a consequence of the applied classic pulsed radar
pre-processing. We have shown a successful application of
the presented criteria to experimental data from an automo-
tive radar-array application.
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