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ABSTRACT

This! paper proposes the Smooth Gradient Descent (SGD) algo-
rithm for recursively identifying a linear Finite Impulse Response
(FIR) model with a large set of parameters ('long impulse re-
sponse’). The main thesis is that a successful design of such adap-
tive filter must hinge on (i) the choice of a proper loss function, and
(ii) the choice of a proper norm for the impulse response vector.
Theoretical backup for this statement is found in slightly improving
and interpreting the regret bound of the Gradient Descent (GD) al-
gorithm presented in [3]. In practice, if the impulse response vector
is known to be smooth in some apriori defined sense, the proposed
algorithm will converge faster.

1. INTRODUCTION

The study of adaptive filtering or recursive identifying a linear FIR
filters for dealing with (relatively) long impulse response vectors
h, e R? requires the need for efficient adaptive filters [5, 2, 4], pro-
viding a benchmark setup to test new adaptive filters. We study a
class of gradient descent algorithms which are based on a norm of
the solution vector ||h,|| and a proper loss function L : R — R. If
the norm were chosen as the standard Euclidean norm, the stan-
dard Gradient Descent (GD) algorithm were recovered. When in
addition the squared loss function were employed - i.e. L(e) = >
for all e € R - this algorithm reduces to the Least Mean Square
(LMS) algorithm. If the absolute loss were used - i.e. L(e) = |e|
for all e € R - the sign-error algorithm were recovered - see e.g.
[4]. While previous research in deriving efficient adaptive filters has
focused mainly on the design of (adaptive) step-sizes (with proto-
typical case the normalized LMS (NLMS) or the Affine Projections
(AP) methods, see e.g. [4] and references), we focus here instead
on different design decisions. Specifically we use a generic result
described in [3] to motivate the proper choice of a norm where a
corrsponding gradient descent algorithm is based on. It is found
that a general algorithm - the Smooth Gradient Descent (SGD) -
leads to a guaranteed performance when the norm is chosen prop-
erly. This theoretic property is then found to be relevant in practice,
as it allows to incorporate general forms of prior knowledge of the
vector h one aims at. The stepsize in this algorithm is fixed, and is
considered to be given by an oracle.

The motivation for this study comes from investigations of
Acoustic Echo Cancelation (AEC), see e.g. [5, 2, 1] and [9, 8].
Here one is after good estimates of the room echo system. In order
to account for long echoes and complex dynamics, one uses typi-
cally a linear filter with O(1000) timelags. Since (i) it is general
found that such systems are not adequately described by a ratio of
lower order polynomials (as IIR filters), (ii) the available hardware
depreciates more involved calculations, and (iii) the straightforward
parameterization of FIR filters is found to result in more reliable
adaptive filters [2], one often resorts to FIR models with long im-
pulse response vectors - denoted in this context as a Room Impulse
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Response (RIR) vector h € R? for a FIR filter of order d € N where
d = O(N). Here we treat the far-end signal (i), (for example - the
speech of a remote user) as the input to the local (echo) system.
This input is transduced to an acoustic waveform by a loudspeaker,
and this signal - perturbed and filtered by the room echo system
- is picked up by a near-end microphone. This near-end signal is
mixed with speech of a local user - represented as (¢ );, yielding
the “output’ signal (y;);. The main question of adaptive filtering ap-
plied to AEC is then how the RIR can be estimated from observation
of (u); and (y;);. Using this estimate, an algorithm can be imple-
mented canceling out the echoed signals (=uninformative part) from
the signal which is transmitted to other (i.e. non-local) users. Since
the inception in AT&T labs some fifty years ago, much progress has
been made towards the use of different adaptive filters algorithms,
see e.g. [2, 1] for a survey and recent work.

This paper revises some of the main difficulties, and argues how
new insights in adaptive filtering and online estimation may lead to
a constructive solution to the following inherent problems. (i) The
RIRs are long with respect to the timespan the signal can be as-
sumed to be stationary. (ii) The near-end 'noise’ process disturbing
the measurements of the echo cannot really be assumed to be of a
Gaussian nature, nor to be uncorrelated to the echo. (iii) The sys-
tem according to the loudspeaker is not linear in reality, and distur-
bances capturing the nonlinear effects troubles the typical statistical
assumptions one makes on the noise. For these reasons, we aim
at a framework not relying on a (restrictive) stochastic framework,
and ask how one can incorporate prior knowledge in order to make
efficient adaptive filters.

This paper is organized as follows. Section 2 describes the SGD
algorithm and spells out the regret bound. Section 3 itemizes three
different design principles for dealing with long impulse responses,
and Section 4 gives a discussion of the result.

2. SMOOTH GRADIENT DESCENT

Let N € N be a known constant. Let (y1,ys,...,yn) € RY and
(uy,uz,...,uy) € RN be two given timeseries of length N. In some
cases it is useful to consider the exact FIR system of the form
V= ):‘,le ho u;—¢, where d € N denotes the order of the system,

ho = (ho1,...,hoq) € R? are the unknown true parameters of the
model. In the context of this paper, we study the problem of esti-
mating a good approximate model defined as

d
Yi = heus— ¢ + ey, (D
7=1

where h = (hy,...,hy) € R? denote appropriate unknown param-
eters, and where e = (eq,e,...,en )" € RV is its corresponding
(unobserved) timeseries of residuals. The understanding is that e is
small (in some norm), or that the different elements are not causally
predictable (innovation sequence). In many acoustic applications,
the sequence e denotes the actual speech-signal, and hence the in-
formative component. Often, it can be assumed to be an innovation
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sequence, but it is more realistically modeled as a stochastic process
with nontrivial impulse response on its own.

Introduce for all t+ = d + 1...,7 the vector u, =
(g "uy,y...,q7%u)T € R? where g~' denotes the back-shift
operator. This paper considers cases where d is typically very
large, say O(N). We are interested in "good’ predictors, i.e.
in an algorithm yielding a sequence of hypotheses denoted as
hg,hy,...,hy_ such that

1 ¥ T
v=a X Llibiw). @)

is small, here L : R — R™ is a positive, convex loss function
with L(0) = 0, with existing first derivative L’ : R — R defined as
JL
L/(e) _ a(e)
of hypotheses generated by an algorithm. Then we will be inter-

ested in the regret, defined as the cumulative loss the algorithm has
compared to the best fixed alternative, or

for all e € R. Let (hy,...,hy) € R? be a sequence

N N
Ry = ZL(y,fhtTu,) — inf Y L(y,thu,). 3)
d+1 heRY, 241

We will consider two adaptive filters giving an estimate h; of h
when observing the timeseries up to instant # < N: the standard
Gradient Descent (GD) algorithm is given as

ﬁlﬁﬂ = fll—l,[.L +‘U.L/(yl 71"\1;7‘7111{)11[, Vt = d+ 1,. .. ,N, (4)

where (1 is an appropriate constant, and fld’” = 04. The estimates
of this algorithm are denoted as fld#, e ,le,,i (using hat). In the
standard LMS version, one takes the squared loss, or L(e) = > for
alle € R. Let A € R?*4 be an appropriate symmetric, positive defi-

nite matrix. The Smooth GD with weighting matrix A (abbreviated
as SGD) is defined as

lMlt,v = flt—l,v +VL,(yt _BzT_lﬁvAut)uh Vt = d+ ]>'~ '>N7 (5)

where Vv is an appropriate constants, and fld7v = 0y4. The estimates
of this algorithm are denoted as ﬁdy, . ,HN,V (using tilde). Note
that we predict the outcome of the filter at time ¢ based on the hy-
pothesis ﬁ,,l,v as ﬁrTfl_vAul. Note that one may rewrite the al-
gorithm SGD in a slightly different form, or V¢t =d +1,...,N one
has

Brv =Dty + VL (3 — B yu) AT, (6)

with ;v = AT flt,vaI’ t=d,...,N. One now predicts the outcome
of the filter at time ¢ based on the hypothesis p;_1 v as f)tTvau,.
This formulation is equivalent to (5), even if the matrix A is not
invertible: this is seen as the prediction rule AB[,LV or P;y lies
always in the span of A by construction, implying invertibility at the
point of interest. An intuitive way to comprehend this formulation
is to minimize the following instantaneous cost function

.1
Brv =argmin — ||By1 v —pllg + VLo —p W), (D)
p

for given symmetric, positive definite matrix B € R4*¢. The mini-
mizer is then

Bp:v =Bpi_ 1y + VL (v — B/ yu)u, (8)

which is equal to the update step (6) in the SGD algorithm in
case ATB =1, or to (5) when Bp—1v=h_1yand p,_1v =
Aflt,l,v. Observe that this interpretation led [8] to the similar al-
gorithm LMR-NLMS, presenting additional empirical evidence for
such scheme.

2.1 Regret and Satisfaction

The performance of an algorithm is defined in terms of its cumula-
tive loss, defined as LN(h),ﬁN# and Ly y:

Lyy= Zﬁvszrl L{y— BtT—l,vAut)
I:Nﬁu = Zﬁv:d+1 Liy— ﬁtT—l,;Luf) ©)
LN(h) = Zg\]:d+1 L (YI - hTU—t) .

Now let the regret of either algorithm with respect to an hypothesis

be given as
{RN,v (h)=Lyy—Ly(h) (10)

RN,/,L (h) = I/;N“LL - LN(h)-

The regret with respect to the hypothesis le,v or BN# - defined
as RN,v(BNﬁv) and IéN,,l (le’u) respectively - reflects what loss one
suffers since one did not know the ’learned’ solution before seeing
the data. One could interpret terms Ry y(hy,y) and I?N,#(hN#)
as “the pain of learning’. The actual regret is defined as the regret
of either algorithm with respect to the best (unknown) hypothesis
(Cexpert’), or

{I§N,v = l:fN,V —infy,cpe Ly () (an

Ry p = Ly p — infpepa Ly (h).

This paper will investigate how to design a GD algorithm which
minimizes a bound on Ry y, potentially leading to much better prop-

erties than hold for IQN,V. The main result is established following
the proof in [3], using the following two basic results. In order to
deal with general convex loss functions L, we need the following
result.

Proposition 1 Let L : R — R be a continuous, twice differentiable
convex loss function. Then for any y,y € R one has

Ly-5GF-9<Ly-9-Ly-y)<
Ly—9)F-9. 12)

Proof: The first inequality follows from the mean value theorem,
as there exists a ¢ inbetween ¥,y that gives

"y _ 5_5\2
L"(y 62)(y y) (13)

Liy—3)=Ly—9)+Ly—-9)0-5+

and using the fact that L”(e) > 0 since L is convex, or L(y—j) —
Ly—3) =L (y=9)F-y),orLy—9) —Ly—y) <L'(y—H) -
$). Similarly 3¢’ € R such that

L"(y—)5-9)

(14

Liy—=9)=Ly—-y)+Ly-y0F—-9+

or L(y—3%)—L(y—35) > L(y—7)(7 —$), proving the second in-
equality in (12). Furthermore, we have

Proposition 2 Let w,x,W € R? be vectors for d € N, and let A €
R4 pe g positive definite matrix. Then one has for any z € R that

2wl Ax —wT Ax)

_w-wly W (wt)li L2

2
> . ~ I3 as)

where HxHi =xT Ax. Specifically, this holds for the case A =

diag(1,...,1) = Iy € R, reducing |- ||a to the standard Eu-
clidean norm || - .
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This follows by working out the terms.

Proposition 3 Let a,b > 0 be constants, then

a

§+§b=2¢ai.

inf 16
51r>10 (16)

This is seen by choosing & = \/@ , obtained by equating the deriva-
tive to zero. As in [3], the previous 2 propositions can be used to
bound the regret of both GD and SGD. We will spell this result out
for the SGD case, since the GD case can be recovered by taking

A =diag(1,...,1) =1, e R,

Lemma 1 (Regret Bounds) Given a symmetric, strictly positive
definite matrix A € R with inverse A~ € R, Let Ry >

R Y . o .
with v = RaC Un—a’ one obtains predictions with regret for any

h € R? bounded by

inf Ly.y —Ly(h) < |[hl| -1 CiRA- a7

or infv>0ﬁN7v < RAC| Hh*HA 1 with hy, = argminhLN(h).

Proof: As in [3], one has for any h € R? that

2L (y, — fltT,LVAut> —2L (yl — hTu,>

<ar/ (y, - BtTflgvAu,) (hTA*TAu, - ﬁ,{lvau,)
2

! HA’lh Bl IHA’lh i
_V t—1,v A v t,v A

- 2
v (v =Bl Al (8)

from the previous
vl <yt fﬁtTfl’vAu,).
both sides of the inequality, one sees that most difference terms
|A~'h —hy y||a cancel out (the ’telescoping property’) and one
has for any h € R? that

two propositions, and having z =

When taking the sum ’Zf’: dy1 over

- 1 N N 2
2Lyy—2Ly(m) <~ b3+ ¥ vL (3 —BL Au)
t=d+1

1
<5 b3 + (N —d)CIRA V. (19)

HhHA*I

Now the upperbound is minimized by taking v = RaCi/N—d (as in
/N=
proposition 3), or
ian:NAV— inf LN(h) < \/(N—d) CIRAHhHA*U (20)
v>0 heR4

yielding the upperbund of (17).

3. PRACTICAL ILLUSTRATION OF SGD

This section aims to illustrate that the above derivation gives us an
often very practical and useful result. In case studies where data is
not abundant, poorly exciting, or is subject to significant noise, it is
often useful to exploit prior information about the desired model in
order to control the variance of the estimates as good as possible.
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Figure 1: Histogram of a real speech-signal. Note the fat tails, sug-
gesting the use of a robust loss function for modeling in acoustic
applications.

3.1 On the Choice of the Loss Function L

While typically, one chooses the squared error loss function L(e) =
¢? for all e € R, it is often worthwhile to consider other appropri-
ate loss functions. A strength of the above results is they hold for
arbitrary (i) convex, with (ii) bounded first derivative (by Cj, see
Lemma 1). The bound then suggest that the performance of an al-
gorithm improves (or the regret decays) when C; is smaller.

Another motivation to make a choice for another loss function
L than the squared loss is as follows. In the AEC examples we will
be interested in, the residual terms e will reflect the near-end speech
signal. Assuming that this signal is white and Gaussian effectively
ignores the structure of typical acoustic signals. While coloring of
the signal e has been treated in the context of double-talk robustness
in [8], the non-Gaussian nature of e suggests the use of another loss
function. Specifically, in speech signals, one typically has fat-tailed
distributions (see Figure 1) modeling the occurrence of articulations
or non-smooth signals, so typical for meaningful speech.

As such, a more robust loss function is motivated, and we will
do so by considering the Huber loss function, proposed in the lit-
erature of robust statistics, dealing effectively with such fat-tailed
data or significantly contaminated signals. The fact that this loss is
not often used in practice may be dedicated to the need for com-
putationally intensive methods in batch settings (since there is no
closed-form solution resembling the normal equations, the problem

2 of finding minimum huber loss can be done by solving a convex
A Quadratic Program, see e.g. [6]). The implementation of this loss

in a Gradient Descent (GD) algorithm (4) is however straightfor-
ward. Huber’s convex, continuous and differentiable loss function
is defined for any parameter 6 > 0 as

12

55 € le] <&
Ls(e)=4{ 20 1)

le|—3 || > 8.

Its derivative exists for all ¢, and becomes

1 S
Lye)={3¢ < 2
5(¢) {sign(e) le| > 5. @2

and C; = 1 in this case. This loss function basically has the advan-
tage of having a bounded term C; in the bound of Lemma 1. Note
that in this case, the second derivative does not exist everywhere,
and this technical issue might be resolved using a twice differen-
tiable proxy L} instead.
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3.2 On the Choice of the Complexity Term || - || o1
3.2.1 Transforming u,

At first, let us consider the case that the inputs {u,}, C R?
have a covariance matrix which is (nearly) rank-deficient, or R =
ﬁ):ﬁ\': a4 uu! has condition-number x(R) = % — oo,
This is often the case in acoustic applications, due to the tonality
of voiced speech and the high RIR orders often required [9]. Then
it is advantageous to transform the inputs to a sequence which has
covariance matrix with condition number nearly one. Suppose we
have such a transformation given by T € R?*4_ hence one has for
allt=d+1,...,N that

o, = Tu,, (23)

The SGD algorithm then becomes
Bzﬁu :ﬁt—l,u+,UL/(yz*flthTllt)TUz, (24)

Vit =d+1,...,N. Now one may multiply both sides by T7 and
replace TTh,A’ by Py, and this gives in turn

Pry =Pty +HL (v — B} ju)T Ty, (25)

and so it follows that convergence properties are characterized by
|hi][a-1 =hI(TTT)"h, or A=TTT.

The optimal transformation T in this respect is such that
vz IV . Towu! T, = T.RTT =1, Anoptimal inverse trans-
formation T, ! can hence be computed by a Cholesky decomposi-
tion as R = T, 7T, !. Computing the inverse of the uppertrian-
gular matrix T, ! (assuming it exists) gives the optimal transfor-
mation T, € R?*4 (indeed we have that for this T, the equality
T.RTT = I, holds). Moreover, we have that T T, = R™!, that
is, if the inverse to R exists.

Finally, it is important to note that in case we choose a time-
dependent A, as %Rfl in timesteps t =k+1,...,N - where R; =
ﬁ Z;c:dﬂ uku,{ forallt =d+1,...,N- one recovers the classical
Recursive Least Squares (RLS) algorithm.

3.2.2 Inverse Covariance of hy

Now, the choice of a matrix A may be guided by considerations on
the typical vector h, € R one aims at. This subsubsection adopts
a probabilistic setup in the following non-standard sense. Consider
that the vector h, may be assumed to be a sample from a random
process itself. Rather than having a fixed true impulse response, we
have the case that impulse responses associated with all (possible)
acoustic room and speaker-microphone setups follow a fixed but
unknown distribution law. The ’target’ h appropriate to the present
task is seen as an (independent) sample of this probability distri-
bution. This interpretation also led [8] to the construction of new
algorithms. Now a convenient way to proceed is to assume that this
probability law can be well approximated as a Gaussian process, 1.e.

h~. 4 (04,Rn), (26)

with positive (semi-)definite covariance matrix Ry, = Rﬂ defined
as Ry s = E (h/hy). Note that we take 0, as the mean impulse
response, meaning effectively that when averaging out all possible
impulse responses for different setups, one gets 0, (it does not really
say that we ’expect’ the impulse response to be zero). Then the
likelihood of h under the given model becomes

% exp (JhTR;lh) , 27
(27)7 det(Ry,) 2

and as such h’ R 'h = ||h||5 1 for A = Ry, € R is inversely
proportional to how well h fits this model. The assumption of the

L(h) =

parameter h being a random variable justifies the term 'Bayesian’
for this model, with (26) representing a Gaussian prior.

The use of this model in practice goes as follows. Suppose we
have identified RIRs {h;}_, C RY for n different acoustic setups
of interest, using FIR models of constant order d. From those one
may estimate the covariance matrix Ry assuming the expected im-
pulse response is zero. Now the above reasoning makes it advantage
to apply the SGD algorithm in a new acoustic situation similar to the
ones used for constructing Ry, ,,. As such, we implicitly model the
prior knowledge (up to second order) as Ry, , = %ZZZI hkh,{ with
n different RIRs collected during previous experiments.

3.2.3 Smooth h,

The previous reasoning can also be applied without the Bayesian
setup. To see this, consider the case that the vector h obeys the
recursion

hy=dh;_;+z, Vk=1,....d, (28)
for parameter a € R with |a| < 1, h ) = 0 and for appropriate terms
{zk}zzl. In this case the RIR vector h € RY is modeled as a first
order AR process itself. Small terms {z; }; and a ~ 1 effectively

mean that coefficients of h associated to nearby timelags are not
too different. The matrix H takes the form

1 a a (—a)d~!
0 1 a (—a)d?
H, = eRYY. (29)
1 a
0 O 1

Then h = H,z where z = (z,...,z)” € R?. If one beliefs that h,
can be described by this H, and a vector z which has small norm,
then the efficacy result (Lemma 1) claims that the SGD algorithm
using the norm ||h|| o1 with A defined as A = (HIH,)~! gives
better estimates than a standard application of the GD (GD) algo-
rithm. For example, in case of the AR(1) model (28) with parameter
a, the following matrix A would be advocated

1 a O
a 1 a
0 a 1
A= ) e RYx4, (30)
1 a
a 1

If the model AR(1) model does fit the desired h,, then one has
that the norm ||h, || o -1 ~ ||h.]|2, Hence the SGD wil give the same
performance as the standard GD. Note that this can be generalized
to other models capturing the prior knowledge of the h vector of
interest.

Suppose we believe the desired vector h, € R? is not too
small in a Sobolev norm. The second order Sobolev norm of
a twice differentiable function f : R — R is defined as || f:||? =

([ IDf«(x)[*dx), where D denotes the differential operator. The
equivalent of this norm on a vector h, is then hIAsh* where

e R9xd 31

The study falls in the realm of (smoothing) Spline theory, see e.g.
[10]. This reasoning can be generalized as follows. Suppose h. can
be adequately described as

h.x = ¢/ 0 +2z, (32)
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Figure 2: An example of an experiment where N = 1000 and d =
100, a matrix A with | A||» = 1 is chosen such that 10h] A~'h, <
h*Th*. Panel (a) and (b) shows the evolution of the misadjustment
and the regret of GD (blue dashed line), SGD (green dashed-dotted
line).

where (i) g € R is a (possibly infinite dimensional) vector sum-
marizing characteristics of hy g, (ii) 8 € R™ is a vector of un-
knowns and (iii) z; is as before. For notational convenience, let
D = (¢1,...97)7 € R Now let the norm of a vector h, be
defined as

1
Hh*|\k:ienf§9Te+ngz st ho=®0+z,  (33)
Z

with y a fixed parameter. Then the representer theorem (see e.g.
[10] and citations, or [7]) implies that this norm can be written as

1 -1
Il =n? (K4 320) (34)

with the kernel matrix defined as K = ®®” € R?*4_ 1t is found that
we never have to construct explicitly the vectors ¢, but a definition
of a positive definitive kernel function K (i, j) between two timelags
1 <, j <d is enough for our needs. The matrix K € R*4 i then
defined as K;; = K(i, j) for all 1 <i,j <d. In general, this ker-
nel expresses how well two different lags are related. A common
choice could be the case K(i, j) o exp(—(i — j)?). Again, we can

hence apply the SGD algorithm (6) using matrix A = (K + )l,ld).

Not that in this way we nowhere need to invert the kernel matrix,
which was the computational bottleneck in many existing kernel
techniques (see e.g. [7]).

4. EXAMPLE

We finish the paper with two examples illustrating the use of the
above algorithm. The first example is constructed as follows.
Consider the task of identification of the linear parameters of a
linear model of order d = 100, obeying y; = x;/hy + ¢;, where
x¢ ~ A (04,13), hg ~ A (04,R) (with R as in (31)), and ¢; ~
A(0,1073).  Suppose 1000 independent samples are given and
fed to the GD algorithm and SGD algorithm using the squared er-
ror loss. Here SGD is implemented using the matrix A = R such
that ||hgl|> > 10||h|\i,,. An appropriate stepsize here is given by
1 =0.1and v =0.01, determined by using a cross-validation argu-
ment. Figure 2 gives how the misadjustment ||h; — hg||> (panel a)
and the regret (panel b) behaves when r = 1,...,100. The surpris-
ing bit is that even using O(100) samples, SGD will perform well
while standard GD (LMS) is clearly suboptimal. The second exam-
ple (Figure 3) is based on an actual AEC experiment. Here we use
an adaptive filter of 4 = 1001, and a far-end and near-end signal of
length N = 4000. Besides the measured signals, we have the ’true’
RIR determined by an identification experiment. Both GD and SGD
implement Huber’s loss with § = 0.001. The SGD is implemented
as the empirical covariance matrix given as A = é ):2:] hy; h,{ using
5 independent experimentally defined impulse responses measured
under similar conditions.

%
J
|

50 1000 150 2000 2500 3000 3600 4000 S0 1000 150 2000 2500 3000 3500 4000
t t

Figure 3: An example of an AEC experiment with d = 1001 and
N =4000. Panel (a) and (b) shows the evolution of the misadjust-
ment and the regret of GD (blue dashed line), SGD (green dashed-
dotted line).

5. DISCUSSION

Since we are dealing with RIR vectors having (relatively) many
(say O(1000)) coefficients, it is crucial to exploit every bit of prior
knowledge ones has. In this paper, SGD is proposed to deal with
this, and its performance is found to be captured by a norm ||h,||
of the target RIR h,. The choice for a specific norm is up to the
user, but if ||h,| happens to be small in that norm, good perfor-
mances can be guaranteed for SGD. A second important outcome
of the analysis is that one could do better than LMS when adopting a
suitable loss function. For example, in AEC, disturbance terms are
typically non-Gaussian, and the choice for the robust Huber loss
function is suggested.
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