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ABSTRACT
Highly reliable classification of anatomical regions is an im-
portant step in the delineation of the gross tumour volume
(GTV) in computed tomography (CT) images during radio-
therapy planning. In this study pixel-based statistics such as
mean and variance were insufficient for classifying the blad-
der, rectum and a control region. Statistical texture analysis
were used to extract features from gray-tone spatial depen-
dence matrices (GTSDM). The features were de-correlated
and reduced using principal component analysis (PCA), and
the principal components (PC) were classified by a naive
Bayes classifier (NBC). The results suggests that the three
most significant PC of the 56 features from GTSDM with
distances d = 1,2,3,4 give the highest average correct clas-
sification percentage.

1. INTRODUCTION

Accurate delineation of the GTV on CT images is vital in
cancer radiotherapy planning to limit the radiation damage
to normal tissue to maximize the dose to cancerous tissue.
The International Commission on Radiation Units and mea-
surements (ICRU)[1] defines the GTV as “the gross palpable
or visible/demonstrable extent and location of the malignant
growth.” This is based on “purely anatomic-topographic and
biological considerations without regard to technical factors
of treatment.” In the treatment of cancer by radiotherapy,
CT images are used for treatment planning because they of-
fer significant advantages over other imaging modalities such
as magnetic resonance imaging (MRI). Firstly, CT images
show superior consistent geometry, that is, they have less
spatial distortion, consequently the volume obtained from CT
images is more accurate, which is crucial for radiotherapy
planning. Secondly, electron density information can eas-
ily be derived from CT images for accurate dose calculation.
Thirdly, bones appears bright and in the CT images, which is
important for identifying rigid landmarks and verifying set-
up accuracy[20].

However, the soft tissue contrast in CT images is rel-
atively poor compared to MR. Determination of the GTV
in CT images thus demands significant clinical-experience,
and is extremely time-consuming, which leads to numerous
problems. Firstly, significant inter- and intra-clinical vari-
ability of GTV has been reported in literature[21]. Sec-
ondly, because treatment periods are long, many factors such
as patient movement may change the position of the GTV,
resulting in less than optimal treatment. Furthermore, the
widespread introduction of multi-slice CT places significant

pressure on clinicians because the number of images that re-
quire outlining increases significantly. In light of these is-
sues, there is a need for a reliable, objective method to as-
sist clinicians contouring on CT images. Several methods,
such as region growing, thresholding, Markov random field
(MRF) models, classifying etc. have been proposed in the
literature to find the GTV automatically, and Pham et al.[15]
present a review of medical image segmentation methods.

Recently texture analysis methods have been reported as
offering good classification performance, which will be re-
viewed in Section 2. This paper extends the work by Nailon
et al.[14] by investigating different feature reduction and
classification strategies and modifications to the texture anal-
ysis algorithms. Texture analysis is a set of computer im-
age processing methods aimed at extracting the information
required to represent textures as textural features. In this
paper, texture analysis is used to find textural features that
are similar among anatomical regions with similar pathol-
ogy and distinct between different anatomical regions. Fig-
ure 1(a) shows a typical CT image from a bladder cancer
patient. There are three regions of interest (ROI): bladder,
rectum and a control region containing multiple pathology.
For radiotherapy planning, the focus is on the delivery of
as much dose to the tumour as possible while limiting the
dose to surrounding organs. It would therefore be desirable
to classify the GTV automatically with high degree of ac-
curacy and reliability. To this end three distinct ROI from
the bladder, rectum and a control region containing multiple
pathology were investigated.

Two advances to the previous approach have been made.
In the first, 56 features from four co-occurrence matrices
with distance d = 1,2,3,4 were used. In addition, the PCA
was used to de-correlate the obtained features. The j most
significant PC are then classified by NBC. The results show
that the three most significant principal features can offer
high correct rate classification of bladder, rectum and con-
trol region. Secondly the cross-validation experiments are
conducted so that N different images are used as training set
while thre rest images are used as testing set. The average
correct classification percentage are high, which suggests the
method is reliable. This approach has the potential to be used
as part of an algorithm for assisting clinicians delineate the
GTV.

The paper is organized as follows. In Section 2 the
co-occurrence matrices texture analysis method is reviewed.
Section 3-5 describes the methods of GTSDM, PCA and
NBC. Section 6 illustrates the results and discusses the tex-
tures at different scales on CT images: the macro-textures
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and micro-textures, and how they affect the GTSDM. Sec-
tion 7 concludes the paper and discusses the future work.

2. LITERATURE REVIEW: GTSDM

Famous examples of texture images have been given by
Brodatz[3], however there is no accurate definition on tex-
ture. The purpose of statistical texture analysis is to de-
scribe the characteristics of textured images by features,
which can be used for classification. Haralick et al. pro-
posed a method called gray-tone spatial dependence matrices
(GTSDM), or co-occurrence matrices, to classify different
textures[7]. This method characterizes texture by exploring
the statistical properties of the spatial dependency of a pixel
with its neighbours. Features from the GTSDM are reported
to have high texture classification performance in compara-
tive studies of different texture analysis methods[17, 19, 2].
Moreover, the GTSDM are also reported successful in classi-
fying sonar [8] and radar[4, 18, 11, 5] images. The GTSDM
method is the most heavily studied texture classification ap-
proach.

In medical image processing, Hamilton et al. [6] used
features from the GTSDM approach to identify focal areas
of colorectal dysplasia from a background of histologically
normal tissue and reported an accuracy of 86% for the train-
ing data set and 83% for the large histological scene split
into smaller component images. Koss et al. [12] applied the
GTSDM method to an abdominal CT image to segment 7
different organs, and reported a successful percentage of 79
- 100%. Nailon et al. studied CT images of genitourinary
cancer [14], and report features from GTSDM showed the
best performance in classifying bladder and rectum regions.
Philips et al. [16] form and examine 3-D liver CT images and
reported a variation in accuracy from 84.663% to 89.459%
by changing the directions of the GTSDM.

3. GTSDM CALCULATION AND FEATURE
EXTRACTION

The texture analysis using GTSDM is used to characterize
different ROI. According to [7], the co-occurrence ci j is de-
fined as a function of gray-levels i, j of two pixels with dis-
tance d from each other in direction θ = 0◦,45◦,90◦,135◦. In
this study it is found that there are no significant difference
between GTSDM with different θ , so the four GTSDM with
different θ were averaged for statistical consistency. In order
to characterize the GTSDM, 14 statistical features defined
in [7] were extracted from GTSDM with distance d. It is
also found that different d offered additional information for
classification, so in this experiment d = 1,2,3,4 were used,
and totally 56 features were extracted. In the following para-
graphs, the features will be denoted as xm(k), m is the total
number of features for one ROI,.

4. FEATURE REDUCTION USING PCA

One problem with the statistical features defined in [7] is
they may be correlated with each other. While auto-feature
selection algorithms are proposed in the literatures[14], the
de-correlation problem has not received much attention. In
this study PCA is used to map the features into a linear sub-
space with minimum correlation in second-order sense. For
the features xm with covariance matrix Σ, the the kth princi-
pal component (PC) is given by zk = α ′

kxm, where αk is the

eigenvector corresponding to the kth largest eigenvalue of Σ,
and the variance of the PC zk is the kth largest eigenvalue λk
of Σ[10]. It can thus be inferred that PCA can maximally re-
tain variation present in the dataset while reducing the num-
ber of features. In this study, the features were first normal-
ized to the interval [0,1] to avoid pick up features large in
number to be PC. The PC of xm is denoted as zm, and the
kth most significant PC is zm(k).

5. NAIVE BAYES CLASSIFICATION

NBC is based on a simple assumption that the features are
conditionally independent given the target classes Ci[13, 9]:

P(zm(1),zm(2)...zm(n)|Ci) =
n

∏
j=1

P(zm( j)|Ci) (1)

The PCA can maximally de-correlate the features to meet
the conditional independent assumption of NBC. In exist-
ing literature, Yu et al.[22] reported good performance us-
ing PCA-NBC jointly to classify aerial images. In this study,
the PCA-NBC method is employed to evaluate the classifi-
cation performance of statistical textural features from dif-
ferent ROI. In order to do this, the posterior probability
P(Ci|zm(1),zm(2)...zm(n)) is required. This can be calculated
as follows:

p(Ci|zm(1),zm(2)...zm(n)) ∝ p(Ci)p(zm(1),zm(2)...zm(n)|Ci)

∝ p(Ci)
n

∏
j=1

p(zm( j)|Ci)

∝
n

∏
j=1

p(Ci|zm( j))/p(Ci) (2)

If for j = 1...n, zm( j) ∈Ci is assumed to have a Gaussian
distribution, the distributions in (2) can be inferred from a
training set. New data can then be classified by maximum a
posteriori (MAP) criterion.

6. RESULTS AND DISCUSSIONS

In this study 59 CT images acquired on 8 bladder cancer pa-
tients in different days during the treatment were examined.
Images were scaled so that all pixels have positive gray lev-
els. The centers of ROI in each image were given by ex-
perienced clinician, and for each ROI a 20-by-20-pixel area
is examined. The means and variances of different ROI are
shown in Figure 1(b). It can be seen that the means and vari-
ances of the three ROI have significant overlap, thus they
cannot yield satisfactory classification result.

For 14 features from GTSDM with distance d = 1, Fig-
ure 2(a) illustrates the amplitude of the eigenvalues of Σ14.
It can be seen that there are five significant degrees of free-
dom in principal features, but according to Figure 2(b), the
two most significant PC, z14(1) and z14(2), still cannot give a
satisfactory classification result, since the distances between
PC of different ROI are not large enough. Then 56 features
from GTSDM with d = 1,2,3and4 were used for PCA, Fig-
ure 3(a) illustrates the amplitude of the eigenvalues of Σ56, it
is shown that the degrees of freedom increase, and the ampli-
tude of variance in each PC subspace also increases. More-
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over, Figure 3(b) gives a visualization of z56(2) and z56(3). it
can be seen intuitively that the three ROI can be distinguished
by the two PC.

The classification performance of different number of
PC from GTSDM with d = 1,2,3,4 were examined by using
NBC. First, j most significant PC, i.e. z56(1)...z56( j) were
used for classification. Then the PC set with j variables and
59 records was randomly divided into the training group
containing N records and the testing group with the rest
records. By assuming all PC are conditionally independent
and Gaussianly distributed, the prior probability p(Ci)
and the conditional distribution p(Ci|z56(k)),k = 1, ... j
can be determined from the training set, and pos-
terior probability p(Cbladder|z56(1),z56(2)...z56( j)),
p(Crectum|z56(1),z56(2)...z56( j)) and
p(Ccontrol |z56(1),z56(2)...z56( j)) can thus be calculated
for each testing record. Decisions can be made by MAP
criterion. For each j-N setup, 500 cross validation ex-
periments were conducted to evaluate the classification
performance by using different training sets. The average
correct classification rate are shown in Table 1. Significant
classification performance can be achieved by using PC of
statistical features from GTSDM with d = 1,2,3,4. This
further substantiates the assertion that the texture of different
ROI contains important information for high-accuracy
classification.

Table 1: Correct Classification Rate (%) using the j most sig-
nificant PC and N Training Images

N j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
3 77 83 88 86 83 82
6 82 92 95 95 93 93
9 83 93 96 95 94 94
12 83 93 96 95 94 94
15 83 92 95 94 94 93
18 82 91 93 92 92 92

The highest classification rate occurred when j = 3, N =
9. By increasing the number of PC used for classification
from 1 to 3, the correct percentage also increased. How-
ever, when more than 3 PC were used, the correct percent-
age dropped. According to the Bayesian probability rule,
more variables should always increase the classification per-
formance, but in most machine learning cases, it is impossi-
ble to know the underlying distribution of the variables, the
assumed distribution will be invalid if too many irrelevant
variables are used. For PCA, classification power will drop
from zm(1) to zm(n) as the variances within the principal sub-
space decreases, therefore it is crucial to find the threshold
j so that zm(1), ...zm( j) offer the best classification perfor-
mance.

7. CONCLUSIONS AND FUTURE WORK

In this study the importance of GTV auto classification has
been addressed. One difficulty encountered is that the con-
trast of the soft tissue in CT images is poor, and the means
and variances are insufficient for characterization of different
ROI for classification. Texture analysis was used to classify
different anatomical ROI on CT images. For 59 CT images
from bladder cancer patients, high correct percentage classi-

fication is achieved by using NBC to classify three most sig-
nificant PC of 56 features from GTSDM with d = 1,2,3,4.
As the GTSDM with different d describe spatial structure of
the texture, the result proves that there is significant informa-
tion in the texture of ROI for classification. In future work,
the proposed method will be applied to the whole CT image
to try to identify the ROI by features.

The proposed method follows the track of feature extrac-
tion - feature reduction process. However, the fact that only
three PC were used suggests the GTSDM method requires
more computational power than necessary. As PC represent
the underlying latent variables, it is more promising to find
the underlying latent variables directly to reduce the compu-
tational complexity. One possible approach is to define new
features to characterize the GTSDM specially for ROI clas-
sification. This will also be examined in future work.
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Figure 1: Left (a): A typical CT Image for Radiotherapy Planning containing three Regions of Interest (ROI): 1. Bladder, 2.
Rectum and 3. a control region. Right (b): The Means and Variances (log) of the Three ROI from 59 radiotherapy planning
CT images. Significant overlap can be observed, so Different ROI cannot be distinguished by Means and Variances.
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Figure 2: Left (a): The Eigenvalues of the Covariance Matrix Σ14 features from GTSDM with d = 1, Representing the
Variance in each principal subspace. Five Significant Degree-of-Freedom can be observed. Right (b): Visualizing PC 1
against PC 2: ROI still cannot be distinguished intuitively.
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Figure 3: Left (a): The Eigenvalues of the Covariance Matrix Σ56 from GTSDM with d = 1,2,3,4, Representing the Variances
in each principal subspace. Six Significant Degree-of-Freedom can be observed, Comparing with Figure 2(a), the Amplitude
of Variance in Each PC subspace increases significantly. Right (b): Visualizing PC 2 against PC 3: ROI can be distinguished
intuitively. Further Classification Performances using Different Number of PC are Described in Table 1.
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