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ABSTRACT

We consider two aspects of linear MMSE signal estimation in wire-
less sensor networks, i.e. sensor subset selection and link failure
response. Both aspects are of great importance in low-delay signal
estimation with high sampling frequency, where the estimator must
be quickly updated in case of a link failure, and where sensor sub-
set selection allows for a significant energy saving. Both problems
are related since they require knowledge of the new optimal esti-
mator when sensors are removed or added. We derive formulas to
efficiently compute the optimal fall-back estimator in case of a link
failure. Furthermore, we derive formulas to efficiently monitor the
utility of each sensor signal that is currently used in the estimation,
and the utility of extra sensor signals that are not yet used. Simula-
tion results demonstrate that a significant amount of energy can be
saved at the cost of a slight decrease in estimation performance.

1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number of
sensor nodes that are (usually randomly) deployed in an environ-
ment, and where each node has a wireless link to exchange data with
neighbouring nodes [1]. The sensor nodes cooperate to perform a
certain task such as signal estimation, detection, localization, etc.
For this task, the data of the different sensors can be centralized in
a so-called fusion center, or it can be partially or fully distributed
over the different nodes in the network.

In this paper, we consider the case where a WSN is used for
adaptive linear minimum mean squared error (MMSE) signal esti-
mation, where the goal is to recover an unknown signal from noisy
sensor observations. By using a WSN, a large area can be covered,
yielding a significant amount of spatial information. This additional
spatial information may result in an improved estimation perfor-
mance compared to beamforming systems with small local arrays.
However, WSN’s often suffer from link failures, e.g. due to power
shortage or interference in the wireless communication. For real-
time signal estimation, the network must be able to swiftly adapt
to these link failures to maintain sufficient estimation quality. In
this paper, we provide an efficient procedure to compute the opti-
mal fall-back estimators in case of a link failure, by exploiting the
knowledge of the inverse sensor signal correlation matrix as used
before the link failure. Due to the low complexity of the procedure,
sensor nodes are able to react very quickly to link failures, even for
high data rate applications such as in acoustic WSN’s for speech
enhancement [2,3].
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As the sensors in a WSN are usually battery-powered, energy
efficiency is of great importance. To prolong the life-time of the net-
work, it is therefore important to only use those sensors that yield
a significant contribution to the signal estimation process, while
putting other sensors to sleep. This is the well known sensor sub-
set selection problem. The sensor subset selection problem is also
important in bandwidth constrained WSN’s where each node can
only transmit a subset of its available sensor signals. This is for
instance the case in wireless binaural hearing aids with multiple
microphones, where each hearing aid can only transmit a single mi-
crophone signal through the wireless link [3-5]. Notice that a quick
link failure response is also an important aspect in this application.

Solving the sensor subset selection problem is generally com-
putationally expensive due to its combinatorial nature. If the sensor
signal statistics are known in advance, e.g. after an initial training
phase, the sensor selection can be solved off line with unlimited
power. However, in adaptive untrained WSN'’s the problem has to
be solved during operation of the estimation algorithm. In this case,
due to the limited power of a WSN, the sensor subset selection must
be performed in an efficient way, generally yielding a suboptimal
solution. We provide efficient closed-form formulas to compute the
contribution of each sensor signal to the mean squared error (MSE)
cost, i.e. the utility of each sensor signal, which can then be used
in an adaptive greedy fashion to sequentially add or remove sensors
in the estimation procedure. Simulation results demonstrate that a
significant amount of energy can be saved in this way, at the cost of
a slight decrease in estimation performance.

The paper is organized as follows. In section 2, we briefly re-
view the linear MMSE (LMSSE) signal estimation procedure, and
address some of the aspects in adaptive LMMSE estimation. In sec-
tion 3, we derive a formula to efficiently compute the optimal fall-
back estimator in case of a link failure. In section 4, we describe
an efficient procedure to monitor the utility of the sensor signals
used in the current estimator, and to compute the potential utility
of sensor signals not currently used. Simulation results are given in
section 5. Conclusions are drawn in section 6.

2. REVIEW OF LINEAR MMSE SIGNAL ESTIMATION

In this section, we briefly review linear MMSE signal estimation,
which is often used in signal enhancement [2-9]. We consider an
ideal WSN with M sensors. Without loss of generality, we assume
that all sensor signals are centralized in a fusion center. However,
the results in this paper can be equally applied to the distributed
case where each sensor node solves a local LMMSE problem, as
in [2-4,8-11]. Sensor k collects observations of a cornplex1 valued
signal yi[r], where ¢t € N is the discrete time index. For the sake
of an easy exposition, we will mostly omit the time index in the
sequel. We assume that all sensor signals and the desired signal, are
stationary and ergodic. In practice, the stationarity and ergodicity
assumption can be relaxed to short-term stationarity and ergodicity,
in which case the theory should be applied to finite signal segments

" Throughout this paper, all signals are assumed to be complex valued to
permit frequency-domain descriptions, e.g. when using a short-time Fourier
transform (STFT).
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that are assumed to be stationary and ergodic. We define y as the
M-channel signal gathered at the fusion center in which all signals
i, Vk e {1,...,M}, are stacked.

The goal is to estimate a complex valued desired signal d from
the sensor signal observations y. We consider the general case
where d is not an observed signal, i.e. it is assumed to be unknown,
as it is the case in signal enhancement (e.g. in speech enhancement,
d is the speech component in a noisy reference microphone sig-
nal). We consider LMMSE signal estimation, i.e. a linear estimator
d = wH'y that minimizes the MSE cost function

J(w) =E{ld —wy |} (1)
i.e.
W = argminJ(w) 2)

where E{.} denotes the expected value operator and where the su-
perscript H denotes the conjugate transpose operator?. It is noted
that the above estimation procedure does not use multi-tap estima-
tion, i.e. it does not explicitly exploit temporal correlation. How-
ever, this can be easily included by expanding y with delayed copies
of itself. Expression (1) can also be viewed as a frequency domain
description, such that it defines an estimator for a specific frequency
bin. When (2) is solved for each individual frequency bin, this is
equivalent to multi-tap estimation. In its multi-tap form, the so-
lution of (2) is often referred to as a multi-channel Wiener filter
(MWF) [6,7].

Assuming that the correlation matrix Ry, = E{yy"} has full
rank3, the unique solution of (2) is [12]:

W =

Ry 3)

with ry; = E{yd*}, where d* denotes the complex conjugate of d.
The MMSE corresponding to this optimal estimator is

J(W) =Py —rliR; vy @)
=Py —rihW &)

with P; = |d|>. Based on the assumption that the signals are er-
godic, Ry, can be adaptively estimated from the sensor signal ob-
servations by time averaging. Since d is assumed to be unknown,
the estimation of the correlation vector ry, has to be done indirectly,
based on application-specific strategies, e.g. by exploiting the on-
off behavior of the target signal (as often done in speech enhance-
ment [2,3,6]), by periodic broadcasts of known training sequences,
or by incorporating prior knowledge on the signal statistics in case
of partially static scenarios [10]. In the sequel, we assume that both
R,y and ry are known, or that both can be estimated adaptively.
Notice that the inverse of R,y is required for the computation
of (3), rather than the matrix Ry, itself. When M is large, comput-
ing this matrix inverse is however computationally expensive, i.e.
O(M?), and should be avoided in adaptive applications with high
data rates. Let R,,[t] denote the estimate of R, at time 7. In-
stead of updating R,y [¢] for each new sample yr], and recomputing

the full matrix inversion Ry_y1 [t] = (Ryy[1]) ! the previous matrix
R)Tyl [r—1] is directly updated. For example, Ry is often estimated
by means of a forgetting factor 0 < A < 1, i.e.

Ryy[t] = ARy [r— 1]+ (1= )y [rly (] . 6)

%In the sequel, we use the superscript T to denote the normal transpose,
i.e. without conjugation.

3This assumption is mostly satisfied in practice because of a noise com-
ponent at every sensor that is independent of other sensor signals, e.g. ther-
mal noise. If not, pseudo-inverses should be used.

In this case, R)Tyl [r] can be recursively updated by means of the
matrix inversion lemma, a.k.a. the Woodbury identity [12], yielding

Ry =1y [y [ R [t —1]
% + Ay AR [t — 1y (]

1
Ry = Ry [r—1]- @)

which has a computational complexity of O(M?). It is noted that,
when (7) is used to update Ry’y1 [t], the correlation matrix Ry [f]
itself does not need to be kept in memory.

3. LINK FAILURE RESPONSE

Now assume a link failure with sensor k during operation of the es-
timation process. This means that the fusion center now only has
access to the (M — 1)-channel signal y_j, which is defined as the
vector y with y; removed. In this case, the optimal LMMSE solu-
tion is |

W =Ry Ty ®)
where Ry, = E{y,kyflk} and ryy_ = E{y_;d"}. Hence, when
the wireless link of sensor k breaks down, estimator W (3) becomes
suboptimal, and should be replaced by (8). However, computing

(8) requires knowledge of R;ylk, which is not directly available.
If R,y were kept in memory, it is possible to invert its submatrix

Ryy,k to obtain R;},Lk. However, this has a large computational
cost when M is large, i.e. O (M3).

In the sequel, we derive an efficient formula to compute W_
without knowledge of Ry, and without explicitly computing ma-
trix inversions. As explained in section 2, we only assume that the
previous estimate of R)Tyl is known. For the sake of an easy exposi-
tion, but without loss of generality, we assume that k = M, i.e. the
last element of y is removed. We consider a block partitioning of
the inverse correlation matrix

1 Ay | by

where Ay is an (M — 1) x (M — 1) matrix, bys is an (M — 1)-
dimensional vector, and Q) is a real-valued scalar. We define a
similar partitioning of the corresponding (and also assumed known)
optimal LMMSE estimator W (3) before the link failure with sensor

.| cyu
W_{WM} (10)

where cj; denotes the subvector containing the first (M — 1) ele-
ments of W, and where W), defines the scaling that is applied to the
sensor signal M in the estimation process. Similar to (9), we define
the following block partitioning of the correlation matrix

Ryvm | tm } )

R, =
24 I: Ty Py
where ryy is an (M — 1)-dimensional vector, and where Py is a real-
valued scalar, corresponding to the power of the signal yys. By using
the matrix inversion lemma, one can verify that the inverse of this
block matrix is:

-1 R;)LM + (XMVMVA];II ‘ —OyVM 12
Ry - A 12
—O0MVy ‘ (0974
with
v =R yru (13)
1
oy = ——5—. 14
M P — v (14)
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By comparing (9) and (12), we find that

Ry ) = Ay —5-bubf (15)

and therefore the optimal fall-back estimator is
. 1 H
W_pm = AM - 7beM rydfM . (16)
Om

By plugging (9) and (10) into (3) we obtain

cm = AuTyg—y + Ry, abum a7
Wi = birya—y + OmRy,a (18)

where R, 4 denotes the last element of the correlation vector ry,.
When comparing (16) with (17)-(18), we find with some straight-
forward algebraic manipulation that the optimal fall-back estimator
can be readily computed as

VAV,MZCMf‘gf%bM. (19)

Since all variables in (19) are directly available, this allows a very
efficient computation, i.e. O(M).

Remark: The above formulas can also be used in the case where
an additional sensor signal becomes available. That is, formulas
(12)-(14) can be used to efficiently compute the new inverse correla-
tion matrix Ry}1 when sensor M is added in the estimation process.
‘We will return to this in section 4.2.

4. SENSOR SUBSET SELECTION

Assume that we have an optimal M-channel LMMSE estimator W.
The goal is now to efficiently monitor the utility of each sensor sig-
nal, i.e. we wish to identify how much the MSE cost (1) increases
when a specific sensor is removed from the signal estimation pro-
cedure (sensor deletion), or how much the MSE cost decreases if a
specific additional sensor would be included in the estimator (sen-
sor addition). We will refer to this MSE cost decrease or increase
as the ‘utility” of the sensor signal. To allow monitoring this utility,
we want to be able to compute it in an efficient way, i.e. without ex-
plicit matrix inversions and without actually computing the optimal
estimator for all possible scenarios. In the case of sensor deletion,
we will show that the utility of each sensor can be monitored at a
computational cost which is negligible compared to the estimator
update based on (7). In the case of sensor addition, the cost of mon-
itoring the potential utility of N extra sensors is more significant,
i.e. N times the cost of (7).

4.1 Sensor deletion

For sensor deletion, the goal is to monitor the contribution of each
sensor to the current MSE cost. The utility of sensor k is defined as

Up =J(W_g) —J(W) . (20)

The goal is to efficiently compute Uy, Vk € {1,...,M}. From (5),
and with the notations? introduced in section 3, we find that

H 4 H .
Uy = YW Tya— WM - 21

By using (19), and by using the partitioning of W as defined in (10),
we can rewrite (21) as

« Wu
Uy =R, Wy + Q—Mr;‘:i_ ubm - (22)

4Again, we assume that k = M, without loss of generality.

From (18), we find that
vl by = War — OQuR;, 4 - (23)
By substituting (23) in (22), we find that
1
T om

To monitor the utility of all the sensors simultaneously, i.e. the
vector u = [U; ... Up|7, it is thus sufficient to monitor the squared
components of the current estimator W, normalized with the diago-
nal elements of the inverted correlation matrix R;;!, i.e.

Uy [Wa)? . (24)

yy
with |
A= .@{R;y } (26)

where the operator 2{X} sets all off-diagonal elements of X to
zero, and where the element-wise operator |x|? replaces all ele-
ments in the vector x with their squared absolute value. Expression
(25) is computationally efficient, i.e. O(M). Therefore, the com-
plexity of monitoring the utility of each sensor is negligible com-
pared to the estimator update based on (7). When the utility of a
certain sensor drops below a certain threshold, this sensor can be
put to sleep, and the new optimal LMMSE estimator can then be
readily computed as in expression (19). The reduced inverse cor-
relation matrix can be readily computed with (15), which is then
required for future estimator updates with (7).

4.2 Sensor addition

Assume that we have an optimal MMSE estimator W that linearly
combines M sensor signals, and that a set of N additional sensor
signals is available. Which one of these sensor signals would bring
the greatest benefit to the estimator?

To use the results from section 3, we assume that the current
estimator is the (M — 1)-channel estimator W_js. The utility of
adding sensor M to the estimation process, i.e. the decrease in MSE
cost, is again given by (20). However, expression (25) cannot be
used in this case, since W), is not known. Indeed, this time only
R;)E 18 kept in memory, instead of Ry_y1 . This makes the problem

of sensor addition substantially different from sensor deletion.
By using (4), we can rewrite (20) as

Um = iRy ey — vl MR;}L wTyd—M - 27
By using expression (12), we find that

—1 -1
rdeyy Tyg = rﬁsz <Ry —mt aMVMVAI-/I1> Tyd—m (28)
*ZOCM%{I';{;_MVM} —+ (xM|Rde ‘2
where Z{X} denotes the real part of X. By substituting (28) in
(27), we find that the utility of sensor M can be computed as

Um = o vty pvar —Ryyal - (29)

The computational complexity is O(M?), which is the same order of
magnitude as the computation of the estimator update based on (7).
Notice that, as opposed to the sensor deletion case, we now do need
the cross correlation between the currently used sensor signals, and
the added sensor signal yy, (used in the computation of vy, as given

in (13)). This cannot be circumvented because the current optimal

estimator only uses Ry_}L - Which indeed does not incorporate any

statistics of ypy.
Let us now consider the general case where N extra sensor sig-
nals become available. Define y. as the stacked vector of the M
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sensor signals that are currently used in the estimation process, and
define y,. as the stacked N-channel signal that contains the N ex-
tra sensor signals that can be added to the estimation process. We
redefine Ry as

(30)

where Rycyc = E{yCYLI‘-I}’ Rycye = E{yCYéLI}’ and Ryeye =
E{y.yH}. We assume that R; ;[ is kept in memory, since this was
used in the computation of the current optimal estimator. We also
assume that Ry ), is available, i.e. the cross correlation between the
currently used sensor signals and the extra sensor signals, which
can be estimated through time averaging. Finally, we assume that
the power of each additional sensor signal is known, i.e. the diago-
nal elements of Ry,y, .

Similar to (29), we can compute the vector u = [U; ...Uy]7,
which gives the utility of each additional sensor signal:

u:Z)_l\VTr;Cdfryuﬂ2 @31
where
~1
V=R, Ry, (32)
== 7{Ry,.} - 7{R}, V} (33)

and where ry s = E{y.d"} and r, 4 = E{y.d"}. The computa-
tional complexity of (32) is the dominant part, which makes the
total computational complexity O(MZN ).

Let Uy = max;ery, vy Ui, which means that sensor k will be
selected as providing the most useful additional sensor signal. To
incorporate sensor signal y, in the estimation procedure, the in-

. . -1 : -1 _
verse correlation matrix Rycyc should be replaced with Rycyc =

E{[yly] r [yHyi] 1=, which can be computed similarly to (12),
ie.

—1 1 H 1
-1 _ Rycy(- + Sk Vka ‘ — Tkvk (34)
Yeyetk T _IyH 1
5 Vi 5

where v; denotes the k-th column of V, and where S; denotes the
k-th diagonal element of 3. This has computational complexity
O(MZ), which is the same as the complexity of an estimator update
according to (7). The new optimal LMMSE estimator can then be
computed as

P e | Ty.d
Wi = Rypchrk |: Rivkd :| (35)

where Ry, 4 denotes the k-th entry in ry, 4.

4.3 Greedy sensor subset selection

The formulas (25) and (31) can be readily used in a greedy approach
to efficiently determine a subset of sensor signals that yields a good
estimator. This can be done in two different ways (with generally
different end results). In the case of sensor addition, one starts by
selecting the single sensor signal which results in the best single-
channel estimator, and then in each cycle the sensor with highest
utility is added to the estimation process (forward mode). In the
case of sensor deletion, one starts by computing the optimal estima-
tor using all sensor signals, and then in each cycle the sensor with
lowest utility is deleted (backward mode). An adaptive greedy sen-
sor subset selection (AGSSS) algorithm is described in more detail
in the next section.

6 v v

] :

[
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%2 4 o0 1 _z 3 4 5 & 7

Scenario

Figure 1: The simulated scenario, containing M = 60 sensors (o)
with one reference sensor (¢), 6 noise sources (/) and one moving
target source ([J).

5. SIMULATIONS

In this section, we present simulation results of an adaptive LMMSE
signal estimation algorithm with adaptive greedy sensor subset se-
lection. The scenario is depicted in Fig. 1. This is a toy scenario,
and we do not attempt to model any practical setting or application.
All signals are sampled with a sampling rate of 8kHz. The target
source (J) moves at a speed of 0.5 m/s over the path indicated by
the straight lines, and stops for 5 seconds at each corner. The target
source signal is white and has a Gaussian distribution. There are six
localized white Gaussian noise sources (5/) present, each with 25%
of the power of the target source®. The WSN contains M = 60 ran-
domly placed sensors (o), with one reference sensor (¢). The goal is
to estimate the target source signal as it is sensed by this reference
sensor (denoted by d). In addition to the spatially correlated noise,
independent white Gaussian sensor noise, with 5% of the power
of the target source, is added to each sensor signal. The individ-
ual signals originating from the target sources and the noise sources
that are collected by a specific sensor are attenuated in power and
summed. The attenuation factor of the signal power is %, where
r denotes the distance between the source and the sensor. We as-
sume that there is no time delay in the transmission path between
the sources and the sensors®. The estimation performance will be
assessed based on the instantaneous signal-to-error ratio, computed
over L = 1000 samples:

_ Tier 114l
SER|[t] = 10log, ( NPT —d[k])2> . 36)

The inverse correlation matrix R.‘Tyl is updated according to (7)
with a forgetting factor A = 0.9995. The correlation vector ry, is
updated with the same forgetting factor. We use the clean desired
signal d in the estimation of r,,, to isolate estimation errors. No-
tice that in practice, application-specific techniques are required to
estimate this vector if d is not directly available’ (see e.g. [2,3]).
During the first 3 seconds, the estimation algorithm estimates the
required statistics of all sensor signals, and computes the optimal
M-channel LMMSE estimator W (3). After 3 seconds, an adaptive

SThis is an arbitrary choice that yields practical SNR’s at the sensors.

6Since there are no time delays, the spatial information is purely en-
ergy based in this case. Therefore, the fusion center cannot perform any
beamforming towards specific locations by exploiting different delay paths
between sources and sensors.

7In some applications, the signal d is directly available at certain mo-
ments in time. For example, in communications applications, known train-
ing sequences can be used to estimate ry,; during periodic training intervals.
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Figure 2: SER vs. time (above), and the corresponding total power consumed in the WSN (below).

greedy sensor subset selestion (AGSSS) algorithm starts running si-
multaneously with the adaptive LMMSE estimation process.

In the AGSSS, the utility of each currently used sensor sig-
nal is tracked using (25). If a sensor’s utility drops below 1%
of the MSE cost of the current estimator (computed with (5)),
the sensor is put to sleep, and the inverse correlation matrix and
the estimator are updated according to (15) and (19), respectively.
Notice that this corresponds to a decrease in SER of maximum
101og;(1.01) = 0.043dB for each sensor that is removed. The sen-
sors that are put to sleep transmit their sensor signal only 25% of
the time, reducing their power consumption with 75 %. The reason
why sleeping sensors still transmit data, is to estimate the required
statistics to compute their utility, based on (31). Once their utility
exceeds 5% of the MSE cost of the current estimator, they are added
again to the estimation process. This corresponds to an increase in
SER of at least —10log;((0.95) = 0.22dB for each sensor that is
added. The inverse correlation matrix and the estimator are updated
according to (34) and (35), respectively.

The instantaneous SER of the resulting time-varying estimator
is shown in Fig. 2, together with a plot of the total power consump-
tion summed over all sensors. The active sensors have a power con-
sumption of 1, and sleeping sensors have a power consumption of
0.25 (these numbers are unitless since they are not based on actual
physical power consumption). The SER and power consumption of
the optimal estimator that uses all M = 60 sensors is also added as
a reference, which we will refer to as the full estimator. We observe
that, due to the sensor subset selection, the SER slightly drops com-
pared to the full estimator (on average, this is a decrease of 0.56
dB). However, due to the power saving of the sleeping sensors, the
total average power consumption is only 41 % of the total power
consumption of the full estimator. The average number of active
sensors is 13.

6. CONCLUSIONS

In this paper, we have considered two aspects in linear MMSE sig-
nal estimation in wireless sensor networks, i.e. sensor subset se-
lection and link failure response. We have first derived an efficient
formula to compute the optimal fall-back estimator when the wire-
less link of one of the sensors fails. High efficiency is achieved by
exploiting the knowledge of the inverse correlation matrix as used
before the link failure. We have then derived an efficient formula
to monitor the utility of each sensor signal in the current estima-
tion process, which can be used for sensor deletion. We have also
derived a formula to efficiently compute the potential utility of sen-
sors that are not yet used in the estimation process, which can then
be used for sensor addition. Both formulas can be used to perform
an adaptive greedy sensor subset selection procedure. Simulation

results of this greedy procedure in an adaptive LMMSE estimation
algorithm demonstrate that a significant amount of energy can be
saved, at the cost of a slight decrease in estimation performance.
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