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ABSTRACT 
 
This paper deals with blind speech separation of convolutive 
mixtures of sources. The separation criterion is based on the 
Oriented Principal Components Analysis (OPCA) method. 
OPCA is a (second order) extension of standard Principal 
Component Analysis (PCA) aiming at maximizing the power 
ratio of a pair of signals. The convolutive mixing is obtained 
by modeling the Head Related Transfer Function (HRTF). 
Experimental results show the efficiency of the proposed 
approach in terms of subjective and objective evaluation, 
when compared to the widely used CFICA (Convolutive Fast-
ICA) algorithm.  
 
Index Terms— Blind source separation (BSS), convolutive 
mixture, speech signals, Oriented Principal Component 
Analysis 

1. INTRODUCTION 

The objective of Blind Source Separation (BSS) is to extract 
the original source signals from their mixtures and possibly to 
estimate the unknown mixing channel using only the 
information of the observed signal with no, or very limited, 
knowledge about the source signals and the mixing channel. 
Methods for this problem can be divided into methods using 
second-order [1] or higher-order statistics [2], the maximum 
likelihood principle [3], the Kullback-Liebler distance [4] 
PCA methods, non-linear PCA [5], and ICA methods [2], [4], 
[6]. Further information on these methods and some 
applications of ICA can be found in [7]. Most approaches to 
BSS assume the sources are statistically independent and thus 
often seek solutions of separation criteria using higher-order 
statistical information [2] or using only second-order 
statistical information in cases where the sources have 
temporal coherency [3], are non-stationary [4], or eventually 
are cyclo-stationary. We must note that second-order methods 
do not actually replace higher-order ones since each approach 
is based on different assumptions. For example, second-order 
methods assume that the sources are temporally coloured 
whereas higher-order methods assume white sources. Another 
difference is that higher-order methods do not apply to 
Gaussian signals but second-order methods do not have any 
such constraint. 

This paper is organized as follows: in Section 2, we present 
the mixing model. In section 3, we present the separation 
model. In Section 4 we briefly describe the implementation of 
the OPCA method that we propose for the separation of 
mixed speech signals. Section 5 presents the experimental 
results and discusses them. Finally, Section 6 concludes and 
gives a perspective of our work. 
 

2. THE MIXING MODEL 
 

At the discrete time index t, a set of M source signals s(t) = 
(s1(t), . . . , sM(t)) is received at an array of N sensors. The 
received signals are denoted x(t) = (x1(t), . . ., xN(t)). In many 
real-world applications the sources are said to be 
convolutively (or dynamically) mixed. The convolutive model 
introduces the following relation between the n’th mixed 
signal and the original source signals. 
The real convolutive mixing process (including delays) can 
be assumed as: 
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The mixed signal is a linear mixture of filtered versions of 
each of the source signals, and amnk represents the 
corresponding mixing filter coefficients. In practice, these 
coefficients may also change in time, but for simplicity the 
mixing model is often assumed stationary. 
In matrix form, the convolutive model can be written as: 
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where Ak is an M × N matrix which contains the k’th filter 
coefficients. 
The convolutive mixing process in eq. (2) can be simplified 
by transforming the mixtures into the frequency domain. The 
linear convolution in the time domain can be written in the 
frequency domain as separate multiplications for each 
frequency: 

).()()( fSfAfX =  (3) 

At each frequency f, A(f) is a complex M ×N matrix, X(f) is 
complex M ×1 vector, and similarly S(f) is a complex N × 1 
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vector. The frequency transformation is typically computed 
using a discrete Fourier transform (DFT) within a time frame 
of size T starting at time t: 
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and correspondingly for S(f, t). Often a windowed discrete 
Fourier transform is used: 
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where the window function )(τw is chosen to minimize band-
overlap. By using the fast Fourier transform (FFT) 
convolutions can be implemented efficiently in the discrete 
Fourier domain. 

3. THE SEPARATION MODEL 

The objective of blind source separation is to find an estimate, 
ŝ(t), which is a model of the original source signals s(t). For 
this, it may not be necessary to identify the mixing filters Ak 

explicitly. Instead, it is often sufficient to estimate separation 
filters W that remove the cross-talk introduced by the mixing 
process (figure 1). 
The goal in source separation is not necessarily to recover 
identical copies of the original sources. Instead, the aim is to 
recover model sources without interferences from other 
sources; each separated signal ŝn(t) should contain signals 
originating from a single source only. Therefore, each model 
source signal can be a filtered version of the original source 
signals, 

,t)(f)A(f)S(f (f,t) = WŜ  (6) 

 

 

 

Figure 1: Source separation system 

The criterion for separation is satisfied if the recovered 
signals are permuted, and possibly scaled and filtered, 
versions of the original signals, 

 P(f)D(f),W(f)A(f) =  (7) 

where P is a permutation matrix and D(f) is a diagonal matrix 
with scaling filters on its diagonal. If one can identify A(f) 
exactly and choose W(f) to be its inverse, then D(f) is an 
identity matrix, and one recovers the sources exactly.  
A survey of frequency-domain BSS is provided in [8]. An 
advantage of blind source separation in the frequency domain 
is that the separation problem can be decomposed into smaller 
problems for each frequency bin in addition to the significant 
gains in computational efficiency [9]. The convolutive 
mixture problem is reduced to “instantaneous” mixtures for 
each frequency. Another problem that arises in the frequency 

domain is the permutation and scaling ambiguity. If the 
convolutive problem is treated for each frequency as a 
separate problem, the source signals in each frequency bin 
may be estimated with an arbitrary permutation and scaling, 

.ˆ ,t)(f)D(f)S(f (f,t) = PS  (8) 

4. OPCA METHOD 

The OPCA algorithm was previously proposed by 
Diamantaras and Papadimitriou [10], specifically for 
separating four multilevel PAM (Pulse Amplitude 
Modulation) signals filtered by an ARMA (Auto-Regressive 
Moving Average) coloring filter. In this work we aim to use 
OPCA to perform a BSS on a convolutive mixture of speech 
signals according to the model illustrated in Figure 2.  
OPCA can be considered as a generalization of PCA. It 
corresponds to the generalized eigenvalue decomposition of a 
pair of covariance matrices in the same way that PCA 
corresponds to the eigenvalue decomposition of a single 
covariance matrix. Oriented PCA (OPCA) describes an 
extension of PCA involving two signals u(k) and v(k). The 
aim is to identify the so-called oriented principal directions 
e1,…,en that maximize the signal-to-signal power ratio 
E(ei

Tu)2/E(ei
Tv)2 under the orthogonality constraint: ei

TRuej=0, 
i≠j. OPCA is a second-order statistics method, which reduces 
to standard PCA if the second signal is spatially white Rv = I. 
The solution of OPCA, as shown in Figure 2, is a generalized 
eigenvalue decomposition of the matrix pencil [Ru,Rv]. 
Subsequently, we shall relate the BSS problem with the 
OPCA analysis of the observed signal x and almost any 
filtered version of it. Note that the 0-lag covariance matrix of 
x(k) is: 
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Now, consider a scalar, linear filter having h=[h0.,…,.hM] 
(referred to as J-Filter in Figure 2) operating on X(f,t): 
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The 0-lag covariance matrix of Y is expressed as: 
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From Eq. (1) it follows that: 
T
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Figure 2: Block diagram of BSS for convolutive mixtures 
using the OPCA method. 

Provided that A is square and invertible we can write: 
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Eq. (15) expresses a Generalized Eigenvalue Decomposition 
problem for the matrix pencil [RY(0), RX(0)]. This is 
equivalent to the OPCA problem for the pair of signals [Y(f,t), 
X(f,t)]. The generalized eigenvalues for this problem are the 
diagonal elements of D. The columns of the matrix A-T are the 
generalized eigenvectors. The eigenvectors are unique up to a 
permutation and scale provided that the eigenvalues are 
distinct (this is true in general). In this case, for any 
generalized eigenmatrix W we have W = A-TP with P being a 
scaled permutation matrix; each row and each column 
contains exactly one non-zero element. Then the sources can 
be estimated as: 

),(),(ˆ tfXWtfS T= , (16) 

which can be written as: 

),(),(),(ˆ 1 tfSPtfASAPtfS TT == − , (17) 

where Ŝ(f,t)=[Ŝ1(f,t), Ŝ2(f,t)]T is the estimated source signal 
vector and W(f) represents an unmixing matrix at frequency 
bin f. The unmixing matrix W(f) is determined so that Ŝ1(f,t) 
and Ŝ2(f,t) become mutually uncorrelated, because the source 
signals S1(f,t) and S2(f,t) are assumed to be zero mean and 
mutually uncorrelated. The estimated sources are equal to the 
true ones except for the (unobservable) arbitrary order and 
scale.  
Then we apply the IFFT of Ŝ(f,t) for recovering the estimated 
signals in time domain. 

( )( )tfSIFFTts ,ˆ)(ˆ =  

The J-filter mentioned in Figure 2 is expressed as: 

[ ] [ ]βα ,,1,, 210 == hhhh ,  (18) 

where α and β are parameters to be fixed. These parameters 
are optimized by re-formulating the D matrix of eq. (15) as 
the following [10]:     
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Note that the optimality criterion of the J-filter is related to 
the eigenvalue spread [10]. The maximization criterion used 
to find α and β is given by:  
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where di,j represents the diagonal elements of D. In our 
experiments, the J-filter order of 3 was chosen. The search of 
the optimal filter is transformed into the search for the filter 
that spreads the eigenvalues as much as possible [10]. The 
search is exhaustive and is performed for values of α and β 
varying within a given interval of h (∀ α, β ∈ [hmin, hmax]). In 
the experiments we fixed hmin = -5, hmax = 5, while the 
increasing step was 0.2. 

5. EXPERIMENTS AND RESULTS 

In the following experiments the TIMIT database was used. 
The TIMIT corpus contains broadband recordings of a total of 
6300 sentences, 10 sentences spoken by each of 630 speakers 
from 8 major dialect regions of the United States, each 
reading 10 phonetically rich sentences [11]. Some sentences 
of the TIMIT database were chosen to evaluate our BSS 
methods. We tested OPCA using a filter of order 3, as 
mentioned earlier. The use of more correlation matrices 
increases the information input in the estimation process and 
then improves the separation quality. We consider a two-input, 
two-output convolutive BSS problem, so we mixed in 
convolution two speech signals: s1(n) and s2(n), that 
respectively pronounced by a man and a woman. 
In the experiment a dummy head with two microphones (one 
in each ear) was used instead of the microphone array. This 
kind of recording was used to investigate how effective the 
BSS is during a more natural configuration of the sources. 
This situation takes into account all the changes in an acoustic 
field connected with the head, i.e., the Head Related Transfer 
Function. The HRTF influences both sound pressure level and 
spectra of the source signals reaching the ears. 
We tested our overall framework with a mixing filter 
measured at the ears of a dummy head. We selected impulse 
responses associated with source positions defined by 30 and 
-80-degree angles in relation to the dummy head as we can 
see in figure 3.  
To evaluate our approach in the convolutive case, we 
compared it with the well-known C-FICA and DUET 
techniques. 
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Figure 3: The convolutive (HRTF) model with source 

positions at 30-and 80-degree angles in relation to the dummy 
head 

• The C-FICA algorithm (Convolutive extension of 
Fast-ICA) [7] is a time-domain fast fixed-point 
algorithm that realizes blind source separation of 
convolutive mixtures. It is based on a convolutive 
sphering process (or spatio-temporal sphering) that lets 
the use of the classical Fast-ICA updates extract 
iteratively the innovation processes of the sources in a 
deflation procedure.  

• DUET (Degenerate Unmixing and Estimation 
Technique) is a method that applies when sources are 
W-disjoint orthogonal, that is, when the time-
frequency representations of any two signals in the 
mixtures are disjoint sets. The method uses an online 
algorithm to perform gradient search for the mixing 
parameters and simultaneously construct binary time-
frequency masks that are used to partition one of the 
mixtures to recover the original source signals [12]. 

Through this comparison, we aim to demonstrate the 
effectiveness of the proposed separation technique based on 
the OPCA method. The OPCA method is effective, as can be 
seen in the time domain, where we note that the original 
signals (Figure 5) and estimated signals by OPCA (Figure 7) 
are very close. The OPCA method has the advantage that the 
time processing is less than with the C-FICA algorithm. With 
our experimental setup, the OPCA method takes 45 sec while 
the C-FICA technique takes 55 sec to be performed. These 
results were achieved with a computer whose specifications 
are: Processor: Intel (R) Core(TM) 2 Quad CPU Q9550 @ 
2.83 GHz, RAM: 4 GB, OS: Windows 7 professional 64-bit. 
The method was verified subjectively by listening to the 
original, mixed and separated signals. We obtained a very 
good separation. 
To measure the speech quality, one of the reliable methods is 
the Perceptual Evaluation of Speech Quality (PESQ). This 
method is standardized in ITU-T recommendation P.862 [13]. 
PESQ measurement provides an objective and automated 
method for speech quality assessment. As illustrated in Figure 
4 [14], the measure is performed by using an algorithm 
comparing a reference speech sample to the speech sample 
processed by a system. Theoretically, the results can be 
mapped to relevant mean opinion scores (MOS) based on 
degradation of the sample [15]. The PESQ Algorithm is 
designed to predict subjective opinion scores of a degraded 

 
Figure 4: Block diagram of the PESQ measure computation  

speech sample. PESQ returns a score from 0.5 to 4.5, with 
higher scores indicating better quality. For our experiments 
we used the code provided by Loizou in [14]. This technique 
is generally used to evaluate speech enhancement systems. 
Usually, the reference signal refers to an original (clean) 
signal and the degraded signal refers to the same utterance 
pronounced by the same speaker as in the original signal but 
submitted to diverse adverse conditions. In the PESQ 
algorithm, the reference and degraded signals are level-
equalized to a standard listening level thanks to the 
preprocessing stage. The gain of the two signals is not known 
a priori and may vary considerably. In the original PESQ 
algorithm, the gains of the reference, degraded and corrected 
signals are computed based on the root mean square values of 
band-passed-filtered (350-3250 Hz) speech. The full 
frequency band is kept in our scaled version of normalized 
signals. The filter with a response similar to that of a 
telephone handset, existing in the original PESQ algorithm, is 
also removed. The PESQ method is used throughout all our 
experiments to evaluate the OPCA estimated speech. It has 
the advantage to be independent of listeners and number of 
listeners. 
For PESQ evaluation, OPCA was the best one in comparison 
with C-FICA and DUET approach, which we can see in Table 
1. We note the very good improvement in PESQ of OPCA 
method compared to mixed signals. 
Table1: Comparison of PESQ for the C-FICA, DUET, OPCA 
methods and convolved mixed signals without any processing 

PESQ PESQ (female 
speech)  

PESQ (male 
speech) 

Mixed Signals  0.78 1.2 
C-FICA 1.686 1.734 
DUET 0.417 1.002 
OPCA 3.599 3.696 

In frequency domain algorithms, the challenge is to solve the 
permutation ambiguity, i.e., to make the permutation matrix 
P(f) independent of frequency. Especially when the number 
of sources and sensors is large, recovering consistent 
permutations is a severe problem. With N model sources 
there are N! possible permutations in each frequency bin [8]. 
Many frequency domain algorithms provide ad hoc solutions, 
which solve the permutation ambiguity only partially, thus 
requiring a combination of different methods. The problem is 
not very severe in our case, because we work with two 
sources. 

1556



 
Figure 5: (a): Original signals: Male sentence: “This brings us to the 

question of accreditation of art schools in general”, (b): female 
sentence: “She had your dark suit in greasy wash water all year”. 

 
Figure 6: Signals mixed by convolution. 

 
Figure 7: Estimated signals by the OPCA method. 

6. CONCLUSION 

We have presented a blind speech separation technique of 
convolution mixtures using an oriented principal component 
analysis method. All earlier approaches have consistently 
used two steps: one pre-processing (sphering) step followed 
by a second-order analysis method such as PCA .The OPCA 
approach has the advantage that no pre-processing step is 
required as sphering is implicitly incorporated in the signal-
to-signal ratio criterion which is optimized by OPCA [10]. 
The proposed separation technique of mixed observations into 
source estimates is effective, as shown in the time domain. 
Subjective evaluation is performed through listening to the 
estimated signals before and after mixing and after separation 
was used. The results are very satisfactory; we obtained a 
very good separation. We tested the method with other speech 
signals from the TIMIT, Noizeus and AURORA databases. 
We experimented also with other types of mixtures (e.g. like 
anechoic) and the results were similar. These results confirm 
the efficiency of the OPCA method that we previously used 
for the first time, in the separation of speech signals in an 
instantaneous mixing case [16]. For future work, we will use 
mixtures of more than two sources, and also we are 
continuing our research efforts by implementing a 
combination of OPCA and different methods, for resolving 
the problem of permutation ambiguity and applying it in a 
mobile communication framework. 
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