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ABSTRACT

Although magnetic dipole detection was mainly investigated
in the eighties, new interest for the question has been recently
marked in literature. The aim of this paper is to revisit the
different existing approaches based on the knowledge of the
physics underlying the detection problem, and to give/recall
the mathematical background on which the detection scheme
is based. Thus, assessment of the detection method is possi-
ble, as well as the influence of the physical parameters on
detector performances. Furthermore, the paper proposes to
use a 3D information (measurement of the magnetic induc-
tion anomaly) instead of the common 1D information (use of
a scalar sensor providing the total field modulus), both cases
being encompassed in the same formalism. Finally, the case
where noise is not Gaussian is investigated and a locally op-
timal receiver is studied and tested.

1. INTRODUCTION

In submarine passive detection of magnetic sources, the de-
tector uses the well known fact that the presence of a mag-
netic dipole in the magnetic earth induces a local spatial mag-
netic anomaly. Thus, for a fixed source and a moving sensor
(or the opposite), such a spatial deformation is measured by
the sensor as a non constant signal. Several studies about
the detection of such a signal, called MAD (for magnetic
anomaly detection), have been done in the eighties, generally
using a scalar sensor measuring the magnetic signal modulus
[1, 2]. Surprisingly, although the modeling of the magnetic
anomaly and the principle of its detection are quite old, the
study of the detection of such signal is still under investiga-
tion [3, 4, 5], some of the papers being reconsideration and
adaptation of the ancient studies. The goal of the present
work is to revisit and develop the mathematical grounding
of the detection scheme on which the previous papers are
generally implicitly based. Thanks to the generality of our
approach, it is then possible to extend the previous studies in
the three following directions: (i) generalization in the case
where the sensor measures the three (euclidean) components
of the magnetic anomaly, by giving the theoretical justifica-
tions and showing that the scalar case can be properly in-
cluded in the same formalism; (ii) the performances of the
detection scheme can be analytically expressed in the spe-
cific case where the observation is projected on true signal
bases, allowing the analyze of the specific influence of each
physical detection parameters (iii) in the previous studies, the
noise is assumed Gaussian: after showing how the nonGaus-
sianity affects the performance of the receiver, an alternative
scheme is proposed, based on the well-known locally optimal
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detectors (LOD). These three incremental extensions will be
illustrated and the physical parameters can affect the perfor-
mance or can be “tuned” will be shortly discussed.

2. ORTHOGONAL BASIS-BASED DETECTOR
2.1 The MAD approach

As introduced, we consider in the sequel of the paper a mag-
netic dipole field for the target (or source), represented by
its magnetic moment P. It is well known that the pres-
ence of P in the Earth’s magnetic field Hy induces a lo-
cal anomaly of this Earth’s field, under the form AH =

3(P'OM)OM-|OM|*P . .
= ( I)IOMH5H I'P Wwhere R = ||OM]| is the distance

between the source at position O, and the sensor at the po-
sition M [1, 3, 5]. In the sequel, as usually done, the speed
and the altitude of the sensor are assumed constant, and its
motion is assumed linear. We will also consider the situation
where the signal is sampled at a rate 7 and that the acquisi-
tion is performed during a finite size duration denoted 7'. We
will then denote x the position of the sensor along its direc-
tion of motion, 7y the instant at which the sensor is at its clos-
est position to the source (point called CPA for closest point
of approach), D the smallest distance of the sensor from the

source, and u = % = V(ITW the standardized position where

time ¢ = nT; is an integer multiple of 7y and N points are ac-
quired, T = (N — 1)7;. A rapid analysis of the geometry of
the problem permits then to express the anomaly under the
form

ul

2
AH = i ;
(t) i;,)c (1+u?)52

(1)
where the basis f;(t) = u'/(1+ uz)% is only parametrized by
the two parameters of the CPA, namely D and 7y, and not
by the other physical parameters, and where the 3 x 1 co-
efficients c; depend on the geometrical configuration. In the
sequel, we will assume also that the orientation of the 3D sen-
sor remains the same all along the motion. Thus, coefficients
c; will not depend on time. This assumption is not necessary
in the scalar case where measurement is independent of sen-
sor orientation (modulus measurement). More details can be
found in [1, 3, 5] where in most cases the approach is scalar
but transposable to the 3D context without additional effort,
under the above hypothesis. Note that these assumptions can
be met when the sensor is fixed and the source moving.

Let us build now the 3 x N matrix AH, by concatenating
the N acquired measurements, F' the 3 x N matrix of the N
points for the 3 basis functions, and C the 3 x 3 matrix of
the coefficients, C' = [c ¢| ¢3]. Thus, the acquisition writes
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equivalently in the compact form AH = C'F.. Since the ba-
sis of the f;(u) is not orthogonal, i.e. FF’ ¢ I, the previous
expression is generally rewritten using an orthonormal ba-
sis, e.g. via a Gram-Schmidt orthonormalization procedure
[6] that obviously does only (potentially) depend on D and
top and not on the physical parameters. Let us denote E the
considered orthonormal basis and S3 the coefficients in this
new base, leading finally to the compact expression of the
anomaly
s3 = SLE 2)
Finally, in the scalar context where the sensor measures
the modulus of the total field (Earth’s field and anomaly), it
is very common to use the assumption that the anomaly is
far smaller than the Earth field, and its angle to this field far
small: the total field modulus is then approximated by the
sum of the Earth’s field modulus and the anomaly projection
onto the direction of the Earth field [1, 3], leading to the mea-

sured signal s} éh653,
S1=S[1E where 81=S3h0 and h():H()/”H()”. (3)

As our approach is general, in the sequel of the paper, we
will use the notation s and S for the 3D context and for the
scalar context as well.

2.2 Optimal and near-optimal detection

In practice, the sensor measurement is affected by noise (e.g.
electronic noise, etc.). Thus, to detect the presence of the
anomaly we are faced to the classical binary decision prob-
lem [7, 8]: from the observation of N samples of an acqui-
sition, we have to decide whether a signal is present in the
observation, versus the observation is noise only,

H() Lr = é
{ler:s—i—é’ “
Signal s is the magnetic anomaly to detect (the Earth’s field is
assumed removed), assumed deterministic, while £ denotes
the matrix-variate observation noise. The probability density
function (pdf) of £, denoted f¢ is assumed known and & is
assumed zero-mean and of covariance matrix proportional to
the identity GzId ® I3 in the dD context (d = 1 or 3), where
o2 represents then the variance of each spatio-temporal com-
ponent of the noise, where I is the k X k identity matrix and
where ® is the Kronecker product of the temporal covariance
and the spatial one (see e.g. [9, th. 2.3.10] for more details
on matrix variates random variables).

When the signal to be detected is known, the optimal
receiver (Neyman-Pearson criterion, Bayes criteria, etc.) is
the well known likelihood ratio test (LRT) A} = f;’: (r—
s)/fe(r) 2 [7, 8], where = means that if Ay, is higher than
the decision threshold 7, hypothesis H; is decided, and Hy
otherwise and where the decision threshold 7 is determined
by the chosen detection criterion [7, 8]. In the particular
case where fg is a matrix-variate Gaussian pdf (here of co-
variance proportional to the identity), the log-likelihood ratio
(LLR) turns out to be the well-know matched filter (MF), that
writes here in the matrix-variate form Ay, = Trace(st’). Re-
mind that this correlator receiver is also the linear receiver
that maximizes the so-called deflection Dy = (E[Al,,] —

E[Als,])/ VAR[Aly, ], regardless the noise statistics [7, 8].

2.2.1 Known (or assumed known) orthonormal basis

The signal to be detected is generally unknown, and thus
the (L)LR or the MF cannot be used. However, in the spe-
cial physical context under study here, the signal subspace is
known, up to the two parameters D and #y: s decomposes in
the basis E via (2).

When the basis is known (i.e. D and ty), which may arise
in a cooperative context, but also in a non-cooperative con-
text provided a localization has been already made while the
signal itself is unknown (e.g. lack of knowledge on the phys-
ical parameters of the source), the classical approach con-
sists then in the so-called generalized likelihood ratio test
approach (GLRT): the unknown parameters S of the signal
s = S'E to be detected are replaced by their maximum like-
lihood estimation (MLE) [7, 8, 10]. In particular, when the
noise £ is Gaussian, one can easily show [1, 10] that the sig-
nal coefficients S that maximize the likelihood f¢(r — S'E)
is the projection of the observation r onto the orthonormal
basis E, ~

S=Er'". 4)
This estimator is also the linear one that minimizes the resid-
ual error E[||r — S'E||?] (least square error approach), regard-
less the noise pdf.

Using the estimated signal in the matched filter, it be-

comes Ap, = Trace(§’ Er'), which is, from (5),
2

Apa = Trace (é@) = Hg’ (6)

where || - || denotes the Froebenius norm. As for the 1D con-
text, it also corresponds to the energy of the projected obser-
vation to the orthonormal basis [1].

2.2.2  Unknown parameters of the basis

In the most realistic noncooperative context, the basis itself
is unknown (D and #y unknown). Thus, to be able to estimate
properly the signature s from the observation, one needs to
estimate the orthonormal basis, i.e. to estimate the unknown
parameters D and #y. Again, a GLRT-like approach consists
in replacing D and #y by the values that maximize the likeli-
hood ratio. Here, it is difficult to extract explicitly the opti-
mal estimators of D and 7y, thus the principle is to implement
directly

AbA = max
4 D1y

~112
|

using an optimization procedure to track D and #y. The most
usual approach consists in considering a bank of receivers
(6), built for several D and #y [1, 3]. Here, a stochastic op-
timization tool has been used, namely a genetic algorithm
[11], in order to both avoid a fixed grid for search space and
a convergence to a possible local maximum. In our tests it
appears that such an approach allowed to achieve the same
performance than that given for large bank of receivers, but
for a smaller computational time cost. Since such an opti-
mization goes beyond the goal of this paper, we will not go
further in such an optimization.

3. LOCALLY OPTIMAL RECEIVER

The Gaussian assumption is very often made and justified
via the central limit theorem (sum of large number of noise

150



sources). However, because of the geologic noise and the
possible presence of various magnetic small sources, an im-
pulsive noise model should be more adequate in such a situ-
ation. When the noise is nonGaussian, the LR does not give
the MF, but the MF-based detector can still be implemented
and when the basis is known, the performance will not be
changed (see further). However, the nonGaussianity can have
an impact when the basis has also to be estimated. Further-
more, the MF is no more optimal and other approaches may
improve the performance.

Evaluating the LR is difficult in the nonGaussian con-
text. But when the signal to be detected is known, a useful
approach consists in approximating the LLR by its first order
Taylor expansion leading to

Ao = —Trace (s

V'f, £ (r) ) ®

fe(r) )’
which is known as locally optimal (LO) receiver [7, §6.7 &
app. 6E], [8, chap. 2], [12, 13] [14, §19.4], [15, §2.3], [16,
chap. 2] where V stands for the gradient operator (i.e. of
Vie(r)
fe(r)
to the observation is known to be the score function [7, 8].
This approach is well-suited in the assumption that the signal
is small compared to the noise level. Note that among the
correlator receivers of the form Trace(sh(r)"), the receiver
that maximizes the deflection is precisely the LO receiver (h
is the score function): among the correlator receivers, the
LO is optimal in the maximum deflection sense, regardless
the noise pdf.

Once again, in a real context, s is generally unknown. As
for the Gaussian case, when the basis is known, in a GLRT
spirit one has to determine the optimal estimation of S, in
the likelihood sense (i.e. the MLE). This is a difficult task
since we are faced to a nonlinear problem. An optimization
approach can provide a high computational cost since the the
maximization has to be performed over 9 variables (in the
3D context). The genetic approach is difficult to tune, and
due to the dimension a bank over the S; ; may be too costly.
Instead, we turn out to the use of the least square estimator
(5), leading to receiver

size d x T here) and where the nonlinearity applied

©))

V[
Ajopa = — Trace (rEtE fé (r)) .

fe(r)

Such an approach is suboptimal, however, recall that it re-
mains the best linear estimator of S in terms of mean square
error.

Finally, in the case of unknown basis, as for (7), the re-
ceiver will be chosen to be the maximum of Ay, over D and
to (e.g. bank of LO-based receivers for several D and #y or
genetic algorithm).

4. PERFORMANCE OF THE DETECTORS

In this section, we give the sketch of the calculus allow-
ing to evaluate the performance of the detectors, when it is
tractable. Having analytical expression is important since it
allows to determine the decision threshold, and further to be
able to determine the influence of the physical parameters or
how to tune them for particular tasks.

4.1 MF-based approach and known basis

From eq. (5), under hypothesis Hy, the estimation of S writes

S=E& +kEs =EE +£S. (10)
When the noise is Gaussian, this matrix is Gaussian of mean
k.S and of covariance 6?(EE") @ I; = 6’13 ® I, (see e.g.
[9, th. 2.3.10]). Evoking the central limit theorem (if N is

large), the Gaussian assumption of S still applied (asymp-
totically) for a nonGaussian noise (of finite variance). Thus,

under hypothesis Hy, the squared norm ||S||2/6?2 has a non-
central chi square distribution with 3d degrees of freedom

2
and with noncentral parameter k.SNR = k.% [17, chap.
29]. Under these conditions, the detection and false alarm
probabilities are:

Pa=1-Fp (&), Pi=1-Fpon(os), (D

where F,» and F» denote the cumulative distribution
X3 234-SNR

function (cdf) of the central and noncentral chi square dis-
tributions with 3d degrees of freedom [17]. The same type
of derivation has been made in [18] in the context of an en-
ergy detector. The expression of cdf of noncentral chi square
distribution is only defined via the integral involving a mod-
ified Bessel function of the first kind, sometimes referred as
incomplete Torontos functions [17, eq. 29.4], [18] or [19,
eq. (100b), p. 182]. However, nowadays these cdf and their
inverse (quantile) are tabulated in many mathematical soft-
wares. Note also that some approximations have also been
derived [18, and ref.].

In Neyman-Pearson strategy, that consists in fixing a false
alarm probability, the optimal decision threshold can be ana-
lytically written. This is very important from an operational
point of view. In the same vein, the direct expression of the
probability detection versus the false alarm probability, i.e.
the receiver operational characteristic (ROC) can be explic-
itly expressed from (11). From [17, eq. (29.25a)], one has
the fact that the performance increases with the SNR, as ob-
viously expected.

It is remarkable to note that the above developments and
analytical expressions permit also (at least numerically) to
determine the effect of the physical parameters on the per-
formance. Indeed, the performance are obviously dependent
on the SNR, that depends itself of the physical parameters
through S (see [1, 3, 5]). As an example, quantifying the
loss of performance induced by the decrease of the magnetic
moment (and thus of the SNR) is possible. A contrario, it
is possible to tune the physical parameters allowing a desired
degree of performance, so that the maximal distance D of de-
tection, or the minimal detectable magnetic momentum (e.g.
to be non-detectable). Indeed, fixing a desired level of per-
formance will determine what the SNR has to be, via (11),
and thus will fix the physical quantities involved in it (i.e.
in S). The quantification of the influence of each parameter
is then practically very pertinent to evaluate expected MAD
system (or fixed detector) performances.

Note that if the basis is assumed known and fixed, but
is erroneous, it is possible to bound the loss of performance.

Let us denote E this orthonormal erroneous basis. The esti-
mation reads now S = E +kEs = EE + kEE’S and with
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the same way of making as with the correct basis, one ob-

tains performance (11), simply replacing the SNR by SNR =
~ 2 I

IES'I” and yielding from [6], SNR < SNR, with equality only

o2
if s is in the span of E, namely E is an orthogonal transfor-
mation (rotation) of E, i.e. both parameters D and 7, are the
right ones.

Reminding that the performance degrades with a de-
creasing SNR, the performance obviously decreases when
parameters D and % are erroneous. Furthermore, [17, eq.
(29.25a)] permits to have a bound of the loss of performance,
Py—Py < WR‘T;/STRF (F (1= R)).

X3d-1

4.2 LO-based detectors — estimated basis

Contrary to the previous MF-based situation with known (or
erroneous) basis, determining the analytical performance of
the LO-based receiver is a difficult task. This is mainly due
to the score function (nonlinear transformation of the data).
The study of the analytical performance is still under inves-
tigation. As in the previous case, we turn out to use Monte-
Carlo (MC) simulations to numerically assess the LO-based
detector.

When the basis itself is unknown and thus estimated we
will not yet achieve to analytically write the performance
even in the case where a bank of receivers for several D and
to are considered instead of using an optimization algorithm.
Indeed, the maximum operation leads to the study of order
statistics of receivers, that are not independent. Such a task
is not easy [20]. Thus, we turned out to make Monte-Carlo
(MC) simulations to assess the approach in this context, both
for the MF-based and the LO-based detectors. Furthermore,
at this step the noise statistics will influence the performance.
Indeed, contrary to the case where the basis is known, for im-
pulsive noise, the search for a basis may lead to confusing a
“spike” of noise with a magnetic signature, provoking an in-
crease of the false alarm probability.

5. DETECTION IN ACTION

The signature and a snapshot of its noisy observation used
for the following simulations are illustrated figure 1 in arbi-
trary units. Two kinds of corrupting noise are considered:
the usual Gaussian one, and a Laplacian noise (or doubly
exponential). In both cases, the noise is assumed (spatio-
temporaly) white in the strict sense and the physical parame-
ters here are so that the value of SNR = ||S||?/c? is SNR =9
dB.

Figure 2 depicts the comparative performance for the de-
tectors presented in the previous sections in the 3D context,
for a Gaussian noise (left figure) and for a Laplacian noise
(right figure). Concerning the estimation of the basis, we
have considered here a genetic algorithm to achieve the max-
imum of (6) or of (9), with a population of 30 and at most
100 generations.

These figures and the previous analysis permit to derive
the following conclusions.

e For the MF-based detector, when the basis is known, the
Monte-Carlo simulations confirm the theoretical results,
and validate the robustness of the performance versus the
statistics of the noise. Furthermore, although not really
developed here, it is possible to finely analyze the in-

0 0

-1 -1

0 20 40 60 0 20 40 60

Figure 1: A snapshot of the first component of a noisy magnetic
signature, where the noise is Gaussian (top) and Laplacian (bottom)
respectively. The noiseless signal is depicted in dashed line.

1

0.8

0.6

< o
A / - MF-based, th. A —s MF-based, th.
@ ,
o0alf ¢ _& MF-based, BA 0alf _& MF-based, BA
4] )
, o, MP-based, B& —o LO-based, BA
i -8- MF-based, BA
0.2f 02

-o- LO-based, BA

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Py fa Py fa
Figure 2: ROC curves for the 3D MF-based and LO-based detec-
tors (6)-(9), for Gaussian (left) and Laplacian (right) noise. In both
figures, the basis is known (solid line) or estimated via its parame-
ters (dashed line); the stars represents the theoretical result (namely
(11)), the squares correspond to MC of the MF-based receivers, and
the circles to LO-based receivers (5000 snapshots have been used).

fluence of each physical parameters, as previously men-
tioned.

e For the MF-based context and when the basis is un-
known, the maximization will induce an increase of false
alarm probability, and thus a loss of performance, as il-
lustrated in the figure. In the Laplacian context, the loss
of performance is more pronounced as intuitively ex-
plained in the previous section: spikes of noise can be in-
terpreted as magnetic signatures, increasing then the false
alarm probability.

e As expected, in the Laplacian case, the LOD approach
provides better performance than the MF-based ap-
proach, both in the known basis and unknown basis cases.
The improvement seems more pronounced in the case of
unknown basis: this can be interpreted as the fact that the
score (i.e. LO) function tends to smooth the spiky nature
of the noise; thus the degradation due to the estimation
is less pronounced than in the MF-based case. Although
not illustrated, the improvement is generic (at least for
all the cases among the generalized Gaussian noise we
have tested). However, this remains to be shown analyt-
ically and the approach remains to be refined especially
concerning the estimation of S.

Another illustration of the improvement induced by the
LO approach in the Laplacian context is given by figure 3 that
depicts Py as a function of the source-sensor (normalized)
distance D, when P, is fixed (here at 10%). As an example
for high probability of detection, a gain between 5 and 10%
in terms of distance of detection is obtained (and more for
smaller probability of detection).

6. DISCUSSION

In this paper, the MAD detection has been extrapolated to the
case of 3D sensors, that may be used in a detection context
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and that seems more and more accurate nowadays. While
the (quite old) detection scheme is based on Gaussian noise,
we have shown here how the “classical” locally optimum de-
tector can be derived in the MAD framework. Due to the
central limit theorem, the performances of the MF-based de-
tectors are robust in the potential case of nonGaussian noise,
as explained and briefly illustrated. When the noise is non-
Gaussian, the LOD exhibits better performance, as illustrated
in the Laplacian case. Since, in a detection context, even
a slight improvement for the performance may be of great
interest, the real noise statistics have to be carefully investi-
gated and taken into account. This noise modeling represents
a pertinent axis for new researches and developments for de-
tection.

In the case of the MF-based detector using known basis,
the performances have been analytically expressed. This re-
sult is of great interest for the following reasons. First, it
allows to determine the decision threshold once the decision
criterion is chosen (e.g. false alarm probability fixed). It also
makes it possible to clearly analyze the effect of each phys-
ical parameter on performance. On the opposite, analytical
expression allows the tuning of some parameters (e.g. deter-
mining the maximum distance of the sensor) to meet a given
degree of performance. To generalize this possibility to the
other cases presented in the paper, the analytical theoretical
performances are also under investigation when the basis pa-
rameters are estimated, as well as in the two LO-based re-
ceivers. For example, concerning the MF-based receiver, the
aim is to derive the statistics of the estimates of D and #,
since conditionally to these parameters the performances of
the MF-based receiver are known.

For further work, effort must be focused on the basis pa-
rameter estimation (Bayes-based scheme, comparative stud-
ies on optimization algorithms (see e.g. [21, chap. 8]), es-
timations/detection bounds, etc.) because estimation error
may strongly affect performances. Replacing the LS esti-
mation in the nonGaussian context, by taking into account
here again the statistics of the noise, remains also to be done,
although it will induce an additional computational cost. Fi-
nally, assessing the robustness versus the different assump-
tions (linear and constant speed motion, no rotation of the
sensor along the motion, etc) has to be taken into considera-
tion.
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