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ABSTRACT
Onset detection is a key application in music processing.
Beat detection algorithms and some music transcribers usu-
ally perform onset detection as the starting point of their pro-
cessing. In music transcription of polyphonic signals, onset
detection is very helpful because it aids to place note-event
starting times. In this paper, a new technique to implement
an onset detection system is proposed. In sinusoidal mod-
elling, the energy burst of non-stationary tones are detected
by means of linear prediction in the frequency domain. In
frequency, the tone peak and its nearby samples does not
match with the window transform when the tone is not sta-
tionary at the current frame. This property can bedetected
whith linear prediction in the frequency domain. When per-
ceptually significant tones are detected as unstable in a time
frame, the system alerts about an onset at this frame. The
proposed onset detection system is evaluated over two sound
databases obtaining encouraging results.

Index Terms - Music onset detection, linear predic-
tion,sinusoidal modeling, Hidden Markov Model, perceptual
modeling.

1. INTRODUCTION

Onset detection provides very usefull information to music
signal processing applications. Onset detection is neededas
a previous task for beat detection, in other words, the onset
information is post processed to obtain beat times of piece
[1]. In applications devoted to align automatically the score
(the MIDI file) and the recording, an onset detector can im-
prove the results [2]. Onset detection is usually combined
with a pitch estimator to obtain an automatic alignment.

Onset detection is very helpful for some music tran-
scribers [3] in order to determine the starting times of note-
events. An onset has tipically unstable frequency regions be-
side it, so a pitch analysis near the onset tends to fail. Other-
wise, when onset frames are known, the system labels these
frames as unestable and focus on analyzing stable regions.

Onset detection systems are often based on searching for
frequency changes in the spectrogram or looking for signif-
icant energy increases in the time domain signal. Then, sta-
tistical models are employed in order to obtain the estimated
starting times of musical events [3]. The main problem of
using the time domain signal is that a new frequency can ap-
pear while the dominant ones are active. Because of this,
a frequency-based analysis is generally performed to avoid
onset time loses [4].

In this paper, we propose an onset detection system based
on sinusoidal modeling. For each frame, first peak locations
are detected. Then, linear prediction in frequency for onlya
few samples close to each peak is implemented. The main

idea is to detect energy increases in consecutive frames for
each sinusoid detected by the modeling. Frames are ana-
lyzed by the sinusoidal model with strong overlapping be-
tween them to merge the information of consecutive frames
for each peak location. In this way, a combined time and
frequency domain analysis is performed to label some sinu-
soids as unstable in a range of frames. When there are a
sufficient set of unstable sinusoids in a range frames, an on-
set is detected by our system. This decision is made taking
into account the psychoacoustic significance [5] of unstable
peaks.

The paper is organized as follows: section 2 explains the
theoretical principles used by the system, section 3 is devoted
to detail the processing steps implemented by the system,
and finally, in section 4 and 5 results and conclusions are
addressed.

2. FUNDAMENTALS

Sinusoidal analysis is almost universally implemented by di-
viding time signal in frames and applying a time window be-
fore computing the Fourier transform. This analysis leads to
mismatches when sinusoids are not stationary. One solution
to this problem is switching to short frames when not station-
ary signals are detected [6]. Another solution is to analyze
the time amplitude modulation by means of linear prediction
in frequency domain [7][8].

The information about time envelope is really available
in the frequency domain. When a sinusoid is not stationary,
its peak (in frequency) appears but does not fit with the ac-
tual form of the main lobe for the time window. In fact, the
actual form of the sinusoid main lobe informs us about the
amplitude modulation in time of the sinusoid. In this paper,
the detection of energy burst for sinusoids is obtained from
frequency domain information.

The use of frequency domain information to obtain time
envelope of a signal is common on audio coding applications
[9][10]. In [10], noise coding is adapted to have the same
time envelope as the signal in order to avoid pre-echo effects
due to coding. In Figure 1, the estimated time envelope in a
frame by a 4 order linear predictor in frequency is shown.

Linear prediction in the frequency domain requires the
estimation of the autocorrelation function in frequency. For
a signalx(n), the DFT at thet-th frame is denoted here as
Xt(k). The estimation of the correlation function can be com-
puted as,

r̂XX(l) =
1

F − l −1

F−l−1

∑
k=0

Xt(k)X
∗

t (k+ l) (1)

whereF is the number of samples in frequency.
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Figure 1:4-pole AR-model from a signal. (a)Frame signal, (b)4-
order estimated time envelope

However, this tool can not be applied directly to onset
detection because only onsets that provoke an increment in
the envelope in time of the signal would be detected. In mu-
sic signals, it is common that some onsets do not affect to
the global signal envelope. In these cases, the onsets can be
detected by searching for new energy in some frequency re-
gions [4][11]. We propose here to use linear prediction in the
frequency domain but restricted to the neighborhood of each
detected peak. In this way, time envelope of each sinusoid is
analyzed in order to estimate onsets.

The main problem of this approach is that time resolution
is very poor. Supposing that stationary and non-stationary
sinusoids can appear at the same time frame, the global au-
tocorrelation fuction should not be estimated from all fre-
quency samples to obtain the time envelope of different si-
nusoids. Instead, the autocorrelation function has to be es-
timated in the neighborhood of each peak location in fre-
quency. With this restriction, only a few samples can be uti-
lized to estimate the local autocorrelation function and low
order models can be estimated. The estimated time enve-
lope for only one order linear predictor is shown for a non-
stationary signal.

The localized autocorrelation function in frequency
around the peak locationkp can be estimated as

r̂
kp
XX(l) =

1
2L+1

kp+L

∑
k=kp−L

Xt(k)X
∗

t (k+ l) (2)

whereL is the shift in frequency from the peak to used
for the estimation.

In order to improve the time resolution of the system,
overlapping between frames in time must be performed. Fol-
lowing this principle, the tracking of a burst of energy in time
can be carried out. Figure 2 shows the estimated time enve-
lope for a tone with one order linear predictor in frequency.
Autocorrelation of frequency samples is estimated with only
5 samples around the sinusoidal peak (L = 2).

The information to be used in order to detect the presence
of a onset for each sinusoid is the phase of the coefficient esti-
mated in the one order linear predictor. The phase of the pole
indicates approximately the time center of the onset energy
with respect to the current frame. This information can be
used as an indicator of the energy burst position along con-
secutive frames and is here utilized as the main clue for onset
detection. In Figure 3, the phase evolution in the z-plane of

Figure 2: Frame to frame evolution of the AR-model Left: Time
signal Rigth: 1-pole time envelope

the models obtained in Figure 2 are shown. Using this analy-
sis a good discrimination between onset and offset detection
can be obtained.
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Figure 3:Pole phase evolution along frame to frame evolution

For only one order linear prediction, the coefficient of
the predictor filter is computed from the localized autocorre-
lation function as follows,

c
kp
t = −

r̂
kp
XX(1)

r̂
kp
XX(0)

(3)

As can be seen in equation 3, the phase information is
carried out only for the localized autocorrelation function at

l = 1 (r
kp
XX(1)).

3. SYSTEM DESCRIPTION

This section describes the proposed onset detection system
as a whole. First, the block diagram of the system is pre-
sented. Then, each processing block is detailed explaining
the information that flows between blocks.

3.1 System structure

The system can be modeled by a block structure like the one
shown in Figure 4. The input is the music signal to be pro-
cessed. This signal is directly processed by the sinusoidal
model and the perceptual model. The perceptual model is
used by two processing blocks of the system. Here, we have
used the perceptual model proposed in [5].
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Figure 4:Onset Detection System Block Diagram

3.2 Sinusoidal model with linear prediction

Sinusoidal modeling assumes a signal model that can be ex-
pressed as,

x(n) ≈

Q

∑
q=0

αq(n)cos(2π fqn+ ϕq(n)) (4)

wherex(n) represents the original audio signal,αq(n) are
amplitudes,fq frequencies andϕq(n) phases for each tone.
Each tone has a modulated amplitude, this AM consideration
helps the modeling of transients. In [9] it is demonstrated that
AM is a good improvement for this particular kinds of sig-
nals. The accurate estimation of phasesϕq(n) for each tone is
an important issue if the signal is going to be resynthesized.

Here, sinusoidal modeling is implemented by means of
perceptual matching pursuits [12]. This approach extractsall
perceptually significant sinusoids from a signal frame fol-
lowing the perceptual model proposed in [5]. It must be
stressed that amplitude, frequency and phase of each tone
are here constant along the current frame.

Once all sinusoids in a frame have been detected, the lo-
calized autocorrelation function in frequency is estimated at
each peak location following equation (2). Then, the coeffi-
cient of one order linear predictor is computed by equation
(3). This information is therefore associated to each modeled
tone.

From this information, the onset location for each tone
can be estimated using the coefficient phaseϕ(c

kp
t ). This

phase is directly related with time envelope. When there is
no onset, the phase is close to zero, while as shown in Figure
3, the phase follows the onset location along frames. This
phase tends to point out to the middle of the energy burst in
each frame. Taking this property into account, we can esti-
mate the sample where the energy burst is placed respect the
begining of the frame asN−

2Nϕ(c)
2π whereN is the frame

length. However, this estimation of the sample where the on-
set appears is not very accurate using only a one order linear

predictor. Instead, we compute the distance in frames hops
from the current one to the frame where the onset appears.

f r =
(N

2 )− (
ϕ(c

kp
t )N
π )

O
(5)

where f r is the distance in frames hops andO the num-
ber of overlapping samples between frames. These onset dis-
tances are computed for each modeled tone. Also, this infor-
mation can be converted to the absolute frame in which the
onset is produced.

3.3 Time/frequency matrixes

First, sinusoids are ordered in frequency following a loga-
rithmic scale. In order to reduce the information, only the
most perceptually important tone at the frequency range of
each MIDI note is maintained, the remaining tones at this
range are rejected. Following this approach, the sinusoidal
model produces a matrix where the time are frames and the
frequency has a sample for each MIDI note. Using this dis-
cretized model, a stationary sinusoid is generally modeledas
a vector in a MIDI note for some consecutive frames. We ob-
tain the following matrixes: complex amplitudes, perceptual
significances, frequencies and onset locations in frames.

The time/frequency matrix for onset locations in frames
which contains onset information is processed and cleaned.
First, a grouping process is implemented to wipe all redun-
dant information from the matrix and only cells which gives
neccesary information about onset will be mantained. The
cleaning condition is the following: only those consecutive
cells in time with a distance in frames less than one frame
(see equation 5) are maintained.

3.4 Onset signal

Now we have all the information to extract onset times, we
compose an onset signal from the information of onset lo-
cation and perceptual significance matrixes. This signal is
conformed by adding at each frame all the perceptual signif-
icances of those tones that point to the current frame accord-
ing to the onset location matrix. To sum up, the perceptual
significance of all non-stationary sinusoids whose energy in-
creases belong to the current frame are added to estimate this
onset signal.

When a note is played, for example in a piano onset, all
harmonic partials belonging to the note are added at the same
location in the onset signal. This property makes robust the
onset detection for harmonic signals.

3.5 HMM

This onset signal is processed by a Hidden Markov Model to
set activation times[13]. This block is needed because not all
peaks at the onset signal really represent an onset. Some of
them are caused by spurious sequences of poles detected at
the analysis stage. They usually have low perceptual impor-
tances. Only significant peaks at the onset signal activates
the HMM block and marks an onset region. Onset signal is
adapted to represent probabilities that goes into the HMM. it
has two states, on (onset is active) and off(stable region).For
each detected onset period the frame that corresponds to the
maximum of the onset signal is set as the onset time. Figure
5 shows an example of the onset signal and HMM activation
time for an excerpt of piano.
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Figure 5: HMM over energy signal and onset determination. (a)
Audio signal, (b) Onset signal, (c) HMM determination. The onset
time location is represented by a ’x’ marker.

4. EXPERIMENTAL RESULTS

Our system has been tested versus the audio transcrip-
tion software, Sonic, for piano signals from MAPS(MIDI
Aligned Piano Sounds) database[14],[15], and the annotated
onset database proposed by Juan Pablo Bello[16]. It has a va-
riety of music including drums, string instruments, electric
instruments, singing voice, piano and a mix of them. This
is to assess the proposed onset detector performs wll with
a variety of signalsword that this is not only a piano onset
detector, it is applicable to other music signals.

A data set of piano sounds where selected from MAPS
data base, these files where input for both system, Sonic and
the proposed one, in order to compare their results. Sonic
[17][18] was selected because of its level of accuracy and
its relevance at the bibliography. This software is more than
an onset detector, it is a transcription system which gives a
MIDI file as an output. We have extracted the onset informa-
tion from the corresponding MIDI data estimation.

MAPS database contains a lot of types of piano sounds,
some of them are isolated or random notes, which are not
interesting for testing our system, and other ones are real
played compositions. For each test file a MIDI and a text
files are given, both of them contain the onset information. In
MAPS database con be found sounds taken at several record-
ing places. For our testing procedure we have taken a pair
of them, which represents the best and the worst situation:
a concert hall (Table 1) and a church (Table 2). Insted of
syntesized piano excerpts [19], real piano composition from
MAPS database is here used to evaluate the onset detection
system.All files at Bello’s database where processed, this
database was selected in order to have results with other types
of music signals,not only piano music.

Three measures have been implemented;Precision(P),
expression (6), which takes false positive detections intoac-
count,Recall(R) expression (7), which takes false negatives
fails into account and theF-measure(F) which is a summary
of them.

Concert Hall Recordings
Sonic Proposed

FILE P R F P R F
alb se3 0.99 0.72 0.83 0.99 0.94 0.97

bach 846 0.92 0.82 0.87 0.93 1 0.97
bach 847 0.94 1 0.97 0.99 0.99 0.99
bk xmas5 0.86 0.67 0.75 0.85 0.94 0.89
chp op31 0.91 0.87 0.89 1 0.83 0.90
chpn op25 0.96 0.78 0.86 0.95 0.97 0.96
chpn op66 0.85 0.71 0.77 0.85 0.81 0.83
MEAN 0.92 0.79 0.85 0.94 0.92 0.93

Table 1: Experimental results: Concert Hall

Church Recordings
Sonic Proposed

FILE P R F P R F
alb se3 0.95 0.71 0.81 0.98 0.83 0.90
alb se4 0.92 0.71 0.80 0.93 0.83 0.87
alb se7 0.98 0.81 0.89 0.96 0.85 0.90

appass1 0.75 0.44 0.55 0.97 0.69 0.80
bach 850 0.78 0.90 0.84 0.90 0.99 0.94
bk xmas1 0.96 0.71 0.82 1 0.88 0.94
bor ps6 0.97 0.60 0.74 0.98 0.88 0.92
MEAN 0.90 0.68 0.77 0.96 0.84 0.90

Table 2: Experimental results: Church

P =
cd

cd+ f p
(6)

R =
cd

cd+ f n
(7)

F =
2PR
P+R

(8)

Wherecdare correct detected onsets,fp are false positive
samples andfn are false negative ones.

At the first evaluation, results for the proposed method
are always greater than Sonic ones. In average (see Tables 1

Bello Database
FILE P R F FILE P R F
arab60s 0,96 0,94 0,95 Jaillet66 0,70 0,73 0,72

dido 0,83 0,80 0,82 Jaillet67 0,83 0,94 0,88
fiona 0,81 0,55 0,65 Jaillet70 1 0,93 0,97

Jaillet15 1 1 1 Jaillet73 0,71 0,83 0,77
Jaillet17 1 0,78 0,88 Jaillet74 1 1 1
Jaillet21 0,61 0,59 0,6 Jaillet75 1 0,50 0,67
Jaillet27 1 0,90 0,93 jaxx 0,48 0,53 0,51
Jaillet29 1 0,71 0,83 metheny 0,92 0,73 0,81
Jaillet34 1 0,93 0,96 PianoDB 0,4 1 0,57
Jaillet64 0,78 0,44 0,56 tabla 0,91 0,83 0,87
Jaillet65 0,91 0,71 0,80 violin 0,85 0,81 0,83

wilco 0,75 0,74 0,74 MEAN 0,83 0,76 0,78

Table 3: Experimental results: Bello Database
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and 2) it is 10% better than Sonic. F-score is the compared
measure because it takes precision and recall measurements
and it is the one used at MIREX for the onset detection com-
petition. Our score is penalized by false negatives samples
showing a high precision rate. The same occurs with Sonic,
but in this case the difference betweenPrecisionandRecall
is higher.

The second evaluation (see Table 3) shows that the sys-
tem has good results for other types of music. Results has a
lower rate than the first ones because piano signal has very
suitable characteristics for this task. However, this evaluation
could be compared versus others algorithms at MIREX 2010
in the ”Audio Onset Detection” task where it is participating
but results are not avaiable at the time of writing this paper.
This is a sign that the system is robust and gives good results
for a variety of music types.

5. CONCLUSIONS AND FUTURE WORK

As it is shown in results, our system is really precise and
robust with piano signals. Then it can be a helpful block
for music signal processing system. Our system gives as an
output stable periods of the signal for any analysis. In this
way, a lot of problems because of transients are avoided. We
have show experiments with piano signals and all other mu-
sic types, the system has good results with harmonic instru-
ments, drums and speech too. Piano signal results are better
as expected, but all result are in good range of accurancy to
consider this system as a previous stage to help other kind of
signal processing.

In future works, we will substitute linear prediction by
the time/frequency reassignment methods[20]. Poor resolu-
tion in time is obtained by using only one order linear pre-
dictor, we think that this resolution can be improved with
reassignment techniques.
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