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ABSTRACT

Accept/reject sampling is a well-known method to generate
random samples from arbitrary target probability distribu-
tions. It demands the design of a suitable proposal probabil-
ity density function (pdf) from which candidate samples can
be drawn. The main limitation to the use of RS is the need
to find an adequate upper bound for the ratio of the target
pdf over the proposal pdf from which the samples are gener-
ated. There are no general methods to analytically find this
bound, except when the target pdf is log-concave. In this
paper we introduce a novel procedure using the ratio of uni-
forms method to efficiently perform rejection sampling for
a large class of target densities. The candidate samples are
generated using only two independent uniform random vari-
ables. In order to illustrate the application of the proposed
technique, we provide a numerical example.

1. INTRODUCTION

Bayesian methods have become very popular in signal pro-
cessing and, with them, there has been a surge of interest in
the Monte Carlo techniques that are often necessary for the
implementation of optimal a posteriori estimators [9]. Rejec-
tion sampling (RS) is a “universal” Monte Carlo technique
that can be used to generate samples from any target prob-
ability density function (pdf) that we can evaluate up to a
proportionality constant, by drawing from a possibly simpler
proposal density. The sample is either accepted or rejected
by an adequate test of the ratio of the two pdfs and it can
be proved that accepted samples are actually distributed ac-
cording to the target distribution. The performance of RS
methods depends on the availability of tight bounds for the
ratio of the target and proposal densities and, in general,
the proportion of accepted candidate samples is related to
the similarity of the two densities.

There are no general methods to construct adequate pro-
posal pdf’s, though. One exception is the so-called adaptive
rejection sampling (ARS) method [3] which, given a target
density, provides a procedure to obtain a suitable proposal
function (for which the bound is easy to compute). Unfor-
tunately, this procedure is only valid when the target pdf is
strictly log-concave, which is often not the case in practice.
In [7], an alternative ARS-type algorithm is introduced to
generate samples from posterior probability distributions. It
relies on computing a piecewise-constant approximation of
the likelihood and a proposal density that consists in a mix-
ture of truncated pdf’s. The application of this technique has
two potential shortcomings, though: it requires the ability
to integrate the prior pdf of the random variable of interest
in any finite interval and to (efficiently) draw from truncated
densities (which is not necessarily straightforward).

In this paper, we introduce a novel method to generate
samples from the posterior distribution of a random variable
x given a collection of data y. The procedure is based on
the ratio-of-uniforms (RoU) method, that was developed in
[4, 5, 6, 10] to draw from log-concave pdf’s. Here, we extend

its applicability to a larger class of densities, possibly multi-
modal. Similarly to the work in [7], the algorithm is based on
obtaining a piecewise-constant bound for the likelihood, but
the generation of candidate samples is much simpler (only
two uniform variables are needed) and does not require the
integrability of the prior of x.

The basic problem and background material is stated
in Section 2. Some useful denitions and basic assumptions
are introduced in Section 3. The calculation of bounds is
presented in Section 4. The new algorithm is derived in
Section 5 and in Section 6 we apply it to a simple numerical
example. Finally, Section 7 is devoted to the conclusions.

2. PROBLEM STATEMENT AND
BACKGROUND

2.1 Signal model

Many signal processing problems involve the estimation of an
unobserved signal of interest (SoI), denoted x ∈ R, from a
sequence of related observations y ∈ Rn (vectors are denoted
as lower-case bold-face letters all through the paper). We
consider n scalar observations, y = [y1, . . . , yn]>, which are
obtained through nonlinear transformations of the signal x
contaminated with additive noise. Formally, we write

y1 = g1(x) + ϑ1, . . . , yn = gn(x) + ϑn, (1)

where gi : R → R, i = 1, . . . , n, are nonlinearities and
ϑ = [ϑ1, . . . , ϑn]> is a vector of independent noise variables.
The joint noise pdf1 has the form

p(ϑ1, . . . , ϑn) = k exp

(
−

nX
i=1

V̄i(ϑi)

)
, (2)

where k > 0 is a real constant and V̄i : R→ [0,+∞) are real
functions, subsequently referred to as marginal potentials.

We also assume that every V̄i(ϑi) is a convex function
with a minimum at ϑ = µi. Without loss of generality, we
set µi = 0, i = 1, ..., n, in the sequel. Note that, we can
always consider V̄i(ϑi + µi) and modify the corresponding
observation as ȳi = yi − µi to obtain a system equivalent to
Eq. (1).

The scalar observations are conditionally independent
given the SoI x, hence the likelihood function p(y|x) can
be written in terms of the marginal potentials as

p(y|x) ∝ exp

(
−

nX
i=1

V̄i(yi − gi(x))

)
, (3)

1We use p(·) to denote the pdf of a random variate, i.e., p(x)
denotes the pdf of x and p(y) is the pdf of y, possibly different.
The conditional pdf of x given the observation of y is written as
p(x|y).
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We also assume a prior pdf for the SoI x of the form

p(x) ∝ exp{−V̄n+1(gn+1(x))}, (4)

where V̄n+1(ϑn+1) is a convex function with a minimum at
µn+1 = 0 and gn+1(x) is a nonlinear function. Taking Eqs.
(3) and (4) together, the posterior pdf of the SoI takes the
form

p(x|y) ∝ p(y|x)p(x) =

= k exp

(
−

nX
i=1

V̄i(yi − gi(x))− V̄n+1(gn+1(x))

)
.

(5)

The aim of this paper is to design an efficient RS method
to generate independent and identically distributed (i.i.d.)
samples from pdf’s of the form of Eq. (5).

In order, to rewrite the posterior density p(x|y) in a more
compact manner, we define the generalized observation vec-
tor ỹ , [y1, . . . , yn, 0]> and the generalized nonlinearity vec-

tor g̃(x) , [g1(x), . . . , gn(x),−gn+1(x)]>. Then, Eq. (5)
induces a system potential V (x; ỹ, g̃) : R→ R, defined as

V (x; ỹ, g̃) ,
n+1X
i=1

V̄i(yi − gi(x)). (6)

Note that, in order to apply RS, one often needs to find
an upper bound for the posterior p(x|y), which is equivalent
to find a lower bound for the system potential V (x; ỹ, g̃).

2.2 Ratio of uniforms

The RoU method [2, 4] is a sampling technique that relies
on the following theorem.

Theorem: Let p(x) ≥ 0 be a pdf known only up to a
proportionality constant. If (u, v) is a sample drawn from
the uniform distribution on the set

A =
n

(v, u) : 0 ≤ u ≤
p
p(v/u)

o
, (7)

then x = v
u

is a sample form p(x).
Proof: See [2, Theorem 7.1].
Therefore, if we are able to draw uniformly from A, then

we can also draw from the pdf p(x). The cases of practi-
cal interest are that in which the region A is bounded and
A is bounded if and only if, both

p
p(x) and x

p
p(x) are

bounded.
Figure 1 (left) depicts a bounded set A. Note that, for

every angle α ∈ (0, π) rad, we can draw a straight line that
passes through the origin (0, 0) and contains points (vi, ui) ∈
A such that x = vi

ui
= tan(α), i.e., every point (vi, ui) in the

straight line with angle α yields the same value of x.
From the definition of A, ui ≤ p(x) and vi = uix ≤

x
p
p(x), hence, if we choose the point (v2, u2) that lies on

the boundary of A, u2 =
p
p(x) and v2 = x

p
p(x), and we

can embedded the set A in the rectangular region

R =
n

(v′, u′) : 0 ≤ u′ ≤ sup
x

p
p(x),

inf
x
x
p
p(x) ≤ v′ ≤ sup

x
x
p
p(x)

o
,

(8)

as drawn in Fig. 1 (middle).
Once R is constructed, it is straightforward to draw uni-

formly from A by RS: simply draw uniformly from R and
then check whether the candidate point belongs to A.

2.3 Goal

In [5, 6], the RoU technique has been applied to obtain an
alternative implementation of the adaptive RS algorithm for
log-concave pdf’s.

We aim at using the RoU method to draw i.i.d. samples
from the posterior pdf p(x|y), not necessarily log-concave, by
a RS procedure. If A is bounded, the advantage w.r.t. con-
ventional rejection samplers is that we only need to simulate
two uniform random variables, which is straightforward.

We will show that it is possible to obtain the embedding
rectangular region R by constructing a piecewise-constant
approximation of

p
p(x|y) and x

p
p(x|y).

3. ASSUMPTIONS AND DEFINITIONS

Let D ⊆ R denote the support of the vector function g̃(x),
i.e., g̃ : D ⊆ R → Rn+1. We assume that there exists a
partition of D consisting of intervals B1 = (b−1 , b

+
1 ),..., Bq =

(b−q , b
+
q ) such that D = ∪q

j=1[Bj ] (where [Bj ] = [b−j , b
+
j ] is

the closure of Bj), Bi ∩ Bj = ∅, ∀i 6= j, and ∀x ∈ Bj every
function gi(x), i = 1, ..., n+ 1, is

a) invertible and,
b) either convex or concave.

Assumptions a) and b) together mean that ∀i ∈ {1, .., n+

1} and ∀x ∈ Bj , the first derivative dgi
dx

is either strictly

positive or strictly negative and the second derivative d2gi
dx2

is either non-negative or non-positive.
We also introduce the set of simple estimates

X , {x′ ∈ R : gi(x
′) = yi, i = 1, ..., n+ 1}. (9)

and the set of support points S , {s1, . . . , sm}, where sk ∈ D
∀k and s1 < s2 < .... < sm. We assume that S contains, at
least:

• Every b−j > −∞ and b+j < +∞, j = 1, ..., q. As a

consequence, given any finite interval Ik = [sk, sk+1],
k = 1, ...,m−1, every gi(x) is invertible and either convex
or concave in Ik.

• Every simple estimate, i.e., X ⊆ S.
• The point 0, i.e., ∃k′ such that sk′ = 0 ∈ S.

Besides the intervals I1 = [s1, s2],..., Im−1 = [sm−1, sm] con-
structed with the points in S, we also define the semi-open
intervals I0 = (−∞, s1] and Im = [sm,+∞).

4. COMPUTATION OF BOUNDS

In order to obtain the rectangular region R that enables
us to draw uniformly from A and, therefore, from the tar-
get density p(x|y), we need to find bounds for the functionsp
p(x|y) and x

p
p(x|y).

Specifically, since p(x|y) ≥ 0, we only need the upper

bounds L(1) ≥
p
p(x|y), L(2) ≥ x

p
p(x|y) and L(3) ≥

−x
p
p(x|y) (note that−L(3) is a lower bound for x

p
p(x|y)).

We associate a potential V (i) for each function of inter-
est. Specifically, since p(x|y) ∝ exp{−V (x; ỹ, g̃)} we readily
obtain that p

p(x|y) ∝ exp{−V (1)(x; ỹ, g̃)},

x
p
p(x|y) ∝ exp{−V (2)(x; ỹ, g̃)},

−x
p
p(x|y) ∝ exp{−V (3)(x; ỹ, g̃)},

where V (1)(x; ỹ, g̃) = 1
2
V (x; ỹ, g̃) and V (2)(x; ỹ, g̃) =

1
2
V (x; ỹ, g̃)−log(x) and V (3)(x; ỹ, g̃) = 1

2
V (x; ỹ, g̃)−log(−x)

(x < 0), respectively.
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Figure 1: Left: A bounded region A and the straight line v = xu corresponding to the sample x = tan(α). Every point
in the intersection of the line v = xu and the set A yields the same sample x. The point on the boundary (v2, u2) has

coordinates v2 = x
p
p(x) and u2 =

p
p(x). Middle: If the two functions

p
p(x) and x

p
p(x) are bounded, the set A is

bounded and embedded in the rectangle R. Right: The solid line shows the system potential V (x; ỹ, g̃), the dashed line
depicts the modified potential V (x; ỹ, rk) and the dotted line illustrates the two linear functions tangent to the modified
potential at sk and sk+1. The lower bound γk is obtained as the intersection of the two tangent lines.

Note that it is equivalent to maximize the functionsp
p(x|y), x

p
p(x|y), −x

p
p(x|y) with respect to (w.r.t.)

x and to minimize the corresponding potentials V (j), j =
1, 2, 3, also w.r.t. x. As a consequence, we may focus on the
calculation of lower bounds γ(j) ≤ V (j)(x; ỹ, g̃), related to

the upper bounds as L(j) = exp{−γ(j)}, j = 1, 2, 3. This
problem is far from trivial, though. Even for very simple
marginal potentials, V̄i, i = 1, . . . , n, the potential functions,
V (j), j = 1, 2, 3, can be highly multimodal w.r.t. x [8].

4.1 Lower bound for the system potential

We now briefly review a basic algorithm for the calcula-
tion of upper bounds for posterior pdf’s [8]. Our goal is
to obtain an analytical method for the computation of a
scalar γk ∈ R such that γk ≤ inf

x∈Ik

V (x; ỹ, g̃) in an interval

x ∈ Ik = [sk−1, sk], where sk−1, sk ∈ S (and sk−1 < sk).
The observations ỹ are arbitrary but fixed and the nonlin-
earities g̃ are assumed known.

In [8], it is described how to build, within each set
Ik, k = 0, ...,m, adequate linear functions {ri,k}n+1

i=1

in order to replace the nonlinearities {gi}n+1
i=1 . Given

g̃(x) = [g1(x), . . . ,−gn+1(x)], we construct a vector rk(x) =
[r1,k(x), . . . , rn+1,k(x)]> in a way that ensures

V (x; ỹ, rk) ≤ V (x; ỹ, g̃), ∀x ∈ Ik, (10)

and, as a consequence,

γk = inf
x∈Ik

V (x; ỹ, rk) ≤ inf
x∈Ik

V (x; ỹ, g̃). (11)

Therefore, it is possible to find a lower bound γk in Ik for
the system potential V (x; ỹ, g̃) by minimizing the modified
potential V (x; ỹ, rk) within Ik.

It is often possible to obtain γk in closed-form. How-
ever, if the minimization of V (x; ỹ, rk) remains intractable,
we can exploit the fact that the modified system potential
V (x; ỹ, rk) is convex ∀x ∈ Ik. Indeed, since the marginal
potentials V̄i are convex and the functions ri,k(x) are lin-
ear, with i = 1, ..., n + 1, it turns out that V (x; ỹ, rk) =Pn+1

i=0 V̄i(yi−ri,k(x)) is also convex in Ik. In fact, each term

in the sum is convex, since

d2V̄i

dx2
=
dV̄i

dϑ

d2ri,k

dx2
+

„
dri,k

dx

«2
d2V̄i

dϑ2

= 0 +

„
dri,k

dx

«2
d2V̄i

dϑ2
≥ 0,

(12)

where we have used that
d2ri,k

dx2 = 0 (since ri,k is linear) and

the convexity of the marginal potentials V̄i(ϑ), i = 1, . . . , n+
1.

The convexity of V (x; ỹ, rk) implies that we can find a
lower bound in Ik for the system potential V (x; ỹ, g̃) at the
intersection of the tangents to V (x; ỹ, rk) at the limit points
of Ik, i.e, sk−1 and sk. Figure 1 (right) depicts this pro-
cedure to obtain a lower bound in an interval Ik for a sys-
tem potential V (x; ỹ, g̃) (solid line) using the intersection
of two tangent lines (dotted line) to the modified potential
V (x; ỹ, rk) (dashed line).

A global lower bound for the system potential can be
found as

γ = min
k∈{0,...,m}

γk (13)

Note that the quality of the bound depends of the number of
support points. Hence, we can improve it by increasing the
number of points in S. Since in [8] we prove that all the sta-
tionary points (maxima and minima) of the posterior pdf are
contained in the interval J = [minX ,maxX ], though, the
technique provides improved bounds only if we add support
points inside the interval J .

4.2 Lower Bounds for V (1), V (2) and V (3)

It is straightforward to see that we can use the procedure
described above to find a global lower bound γ(1) for the
potential V (1)(x; ỹ, g̃) = 1

2
V (x; ỹ, g̃), associated to the func-

tion
p
p(x|y), since V (1) is a scaled version of the system

potential V .
The procedure of Section 4.1 can also be applied to find

upper bounds for x
p
p(x|y), with x > 0, and −x

p
p(x|y)

with x < 0. Indeed, recalling that the associated poten-
tials are V (2)(x; ỹ, g̃) = 1

2
V (x; ỹ, g̃) − log(x), x > 0, and

V (3)(x; ỹ, g̃) = 1
2
V (x; ỹ, g̃) − log(−x), x < 0, it is straight-
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Figure 2: Left: The region A corresponding to the target pdf p(x|y) in the example, and the two rectangular regions that
includeA, obtained using 20 support points in J = [minX ,maxX ]. Middle: The posterior density p(x|y) ∝ exp{−V (x; ỹ, g̃)}
and the normalized histogram of N = 10,000 samples obtained using RS over the area A. Right: The curve of acceptance
rates (averaged over 10,000 simulations) as a function of the number m of support points chosen randomly in the interval
J = [minX = −4.01,maxX = 3.16].

forward to realize that the corresponding modified potentials

V (2)(x; ỹ, rk)) ,
1

2
V (x; ỹ, rk)− log(x),

V (3)(x; ỹ, rk)) ,
1

2
V (x; ỹ, rk)− log(−x),

(14)

are convex in Ik, since the functions − log(x) (x > 0) and
− log(−x) (x < 0), are also convex. Therefore, it is always

possible to compute lower bounds γ(2) ≤ V (2)(x; ỹ, g̃) and

γ(3) ≤ V (3)(x; ỹ, g̃).

The corresponding upper bounds are L(j) = exp{−γ(j)},
j = 1, 2, 3.

5. ALGORITHM

The basic RS algorithm to draw from p(x|y) can be summa-
rized in the following steps:

1. Compute the bounds L(i), i = 1, 2, 3 as shown in Sections
4.1 and 4.2.

2. Draw a point [v′, u′]> ∼ UR uniformly from the rect-

angular region R = [−L(3), L(2)] × [0, L(1)] ⊇ A. This

is easily achieved by sampling v′ ∼ U(−L(3), L(2)) and

u′ ∼ U(0, L(1)), where U(a, b) denotes the uniform distri-
bution in the interval [a, b].

3. If u′ ≤
q
p( v′

u′ |y), then accept the sample x′ = v′

u′ .

4. If u′ >
q
p( v′

u′ |y), then reject the sample x′ = v′

u′ .

A simple way to improve the acceptance rate of the rejec-
tion sampler is to compute two different bounds for

p
p(x|y),

namely L
(1)
p ≥

p
p(x|y), ∀x > 0 (positive), and L

(1)
n ≥p

p(x|y), ∀x < 0 (negative). As a result, we define the
rectangular regions

R1 = [−L(3), 0]× [0, L(1)
n ],

R2 = [0, L(2)]× [0, L(1)
p ].

(15)

The union set contains the bounded region A, i.e., A ⊆
R1 ∪ R2, hence we can perform RS by drawing candidate
samples from R1∪R2. Note that, for a uniform distribution,
the probability of Rk is proportional to its measure |Rk|,
where |R1| = |L(2) − L(3)| · |L(1)

n | and |R1| = |L(2) − L(3)| ·
|L(1)

p |. Specifically, the probability of Rk is

wk ,
|Rk|

|R1|+ |R2|
with k = 1, 2. (16)

The modified RS algorithm can be summarized as follows:

1. Compute the bounds L
(1)
n , L

(1)
p , L(2) and L(3).

2. Draw an index k ∈ {1, 2} from the probability distribu-
tion P{k = 1} = w1, P{k = 2} = w2.

3. Draw a point (v′, u′) uniformly from the region Rk.

4. If u′ ≤
q
p( v′

u′ |y), then accept the sample x′ = v′

u′ .

5. If u′ >
q
p( v′

u′ |y), then reject the sample x′ = v′

u′ .

6. EXAMPLE

We illustrate the application of the proposed RS scheme by
way of a simple numerical example. Consider the problem of
drawing from the posterior distribution of x ∈ R given the
observations

y1 = log[(x+ 2)2] + ϑ1, y2 = log[(x− 0.1)2] + ϑ2 (17)

where g1(x) = log[(x + 2)2], g2(x) = log[(x − 0.1)2] and
the noise variables ϑ1 and ϑ2 are independent and identi-
cally Gaussian distributed, ϑi ∼ N(ϑi; 0, 1/2), i = 1, 2, i.e,
p(ϑi) ∝ exp{−V̄i(ϑi)}, where V̄i(ϑi) = ϑ2

i .
We also assume a prior density of the form

p(x) ∝ exp

(
− (x2 − 10)2

100

)
(18)

that we interpret as V̄ (ϑ3) =
ϑ2
3

100
and g3(x) = x2 − 10.

Therefore, the generalized observation vector and the gener-
alized vector of nonlinearities are defined as ỹ = [y1, y2, 0]>

and g̃(x) = [g1(x), g2(x),−g3(x)]>, respectively, and the
posterior pdf of x given y can be written as p(x|y) ∝
exp{−V (x; ỹ; g̃)}, where the generalized system potential

V (x; ỹ; g̃) = (y1 − log[(x+ 2)2])2+

(y2 − log[(x− 0.1)2])2 +
1

100
(x2 − 10)2,

(19)

is, in general, non-convex.
The set of simple estimates is

X ={
p

exp(y1)− 2,−
p

exp(y1)− 2,p
exp(y2) + 0.1,−

p
exp(y2) + 0.1,

√
10,−

√
10},

(20)
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which setting, e.g., y1 = 1.4 and y2 = 1, yields X =
{0.01,−4.01, 1.74,−1.54, 3.16,−3.16}.

We can divide the domain R in q = 3 intervals B1 =
(−∞,−1], B2 = [−1, 1] and B3 = [1,+∞] where the nonlin-
earities have first and second derivatives with constant sign.
Hence, the set of support points S have to include at least
the values −1, 0, 1 and the set of the simple estimates X ,
i.e., S = X ∪{−1, 0, 1} sorted in ascending order. Therefore,
we have at least m = 9 support points.

Figure 2 (left) depicts the bounded set A corresponding
to the target pdf p(x|y) and the two rectangular regions R1

and R2 such that A ⊆ R1 ∪ R2, obtained using m = 20
support points in J = [minX ,maxX ]. With this setup, we
apply the modified RS algorithm of Section 5 to generate
10,000 i.i.d. samples from p(x|y). The resulting histogram,
and the true function p(x|y) are depicted in Figure 2 (mid-
dle).

Finally, Figure 2 (right) shows the acceptance rate2

of the modified RS algorithm as a function of the num-
ber of support points, m, chosen randomly in the interval
J = [minX = −4.01,maxX = 3.16]. With m = 9, the
acceptance rate is ≈ 21%, while m = 50 yields an accep-
tance rate of ≈ 27%. The dashed line represents the high-
est achievable acceptance rate for this example (27.6%). It
is clear that a trade off between computational complexity
(that grows linearly with the number of support points) and
performance can be sought.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a novel rejection sampling method to draw
from the (possibly multimodal) posterior pdf of a signal of
interest x given a vector of nonlinear observations y with
arbitrary dimension. The proposed algorithm relies on the
ratio-of-uniforms technique and, therefore, it only requires
the generation of two independent uniform random variables
from finite intervals in order to generate candidate sample
of x (which may, in general, have on infinite domain).

The new technique can be used inside more elaborate
Monte Carlo methods, such as MCMC algorithms and par-
ticle filters. Moreover, the proposed modified rejection sam-
pler described in Section 5 can be readily extended to an
adaptive version by covering the bounded set A with k dis-
joint rectangular regions R1, ..., Rk (in Section 5, we have
restricted ourselves to the simplest case k = 2). In this way,
an acceptance rate close to 100% is attainable.

Another way in which the proposed method can be ex-
tended involves the approximation of the target density by
vertical bars [1].

2The acceptance rate is the proportion of generated candidate
samples which are actually accepted.

These bars can be converted into triangles [4] T1, ..., Tk

(that cover the bounded set A) in the u − v reference axes
and there are simple methods to draw uniformly from these
triangular regions. With this approach, we can easily obtain
acceptance rates close to 100% when the target density has a
finite support, but there are difficulties, in general, to apply it
when this support is unbounded (specifically to approximate
the tails of the target pdf).
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