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ABSTRACT

A new statistical-based tracking method is proposed for the
detection of blood vessels in retinal images. Our algorithm
adopts a statistic sample scheme to estimate the candidate
edge points of local blood vessel. This sampling scheme
combines local grey level profile and the vessel geometric
properties, which improves the accuracy and robustness of
the tracking process. Edge points of blood vessels are de-
tected iteratively based on a Bayesian approach with the
Maximum a posteriori (MAP) Probability criterion. Eval-
uation of our algorithm is presented on both synthetic and
real retinal images.

1. INTRODUCTION

The early diagnosis of several pathologies, and indicators for
the presence of a wide range of diseases, such as arterial hy-
pertension, arteriosclerosis or diabetic retinopathy could be
achieved by analyzing vascular structures. For many clini-
cal investigations, vessel segmentation is becoming a prereq-
uisite for the analysis of vessel parameters such as tortuos-
ity and variation of the vessel width along the vessel. An
extensive research has been devoted to vessel extraction in
medical images using different types of approaches. A ma-
jor review of these methods can be found in [1]. Most of the
work on retinal image segmentation can be categorized into
three approaches: those based on line or edge detectors with
boundary tracing [2], [3], those based on matched filters,
either 1-D profile matching with vessel tracking and local
thresholding [4-7] or 2-D matched filters [8—10], and those
supervised methods which require manually labeled images
for training [11], [12]. A vessel tracking method based on
Bayesian theory was proposed in [13], [14], which was in an
initial stage of development. It needed some improvements
like modelling the blood vessel more accurately and handling
different configurations of the vessel.

In this paper, we present an improved tracking algorithm
based on our previous work. We use a photometric correc-
tion before tracking, which improves the robustness against
noise. A semi-ellipse search window is used during the track-
ing process. Sectional grey level profile of the blood vessel
is approximated more appropriately as a Gaussian model.

2. METHOD DESCRIPTION

Retinal images such as retinal angiograms often suffer from
shading, which may cause measurement error. A photomet-
ric correction is used to remove shading before tracking. We
estimate the shading through an iterative polynomial inter-
polation procedure [15]. An example of retinal image, cor-
responding shading and corrected image are shown in Fig.1.
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(a) Retinal image (b) Extracted background (c) Corrected image

Figure 1: Example of an retinal angiogram.

The proposed tracking method is applied after photomet-
ric correction. Tracking process starts from an initial point,
which is determined manually by the user. Edge points are
detected iteratively using local statistical parameters calcu-
lated on grey levels and information obtained in previous iter-
ations. At each iteration, a statistical sample is used to get the
information of local grey levels. A branch detection scheme
is performed at each iteration to find if there is a bifurcation
at current detecting area. All the branches found are treated
as new blood vessels to be detected later. The tracking pro-
cess stops when all the blood vessels are detected.

2.1 Extraction of the statistical sample

In this study, vessel’s structures are categorized into three
types: normal, bifurcation and crossing. Normal case is re-
garded as the situation in which only a single vessel exists in
current research region. The case of bifurcation means that
one single vessel is divided into two branches. A crossing
case is described when one vessel overlaps another. The pro-
posed algorithm can detect different structures and the track-
ing process varies accordingly.

At a given step, new edge points are assumed to be lo-
cated on a semi-ellipse (see Fig.2) which is defined to be cen-
tered on local center point and heading towards current vessel
direction. This semi-ellipse can be regarded as a search win-
dow restricting the range of possible locations of new edge
points. At iteration k, we select N, points which are num-
bered from 1 to Nj on semi-ellipse Cy as illustrated in Fig.2

(a). Oy and Dy are local center point and vessel direction
respectively. A configuration ) is defined by a set of edge
point candidates. Only two points are needed to define a nor-
mal configuration. They are assumed to be the m" and n'"
points on C; (1 < m < n < Ni) and correspond to two dia-
metrically opposite vessel edge points. For this normal con-
figuration, M; (i € [1,N]), the i point on Cy, is assumed to
belong to the blood vessel if i € [m,n] or to the background
ifi € [1,m[ U ]n,NgJ.

For a bifurcation configuration, four interface points are
needed to describe the edge points of two branches. Six in-
terface points are needed for the crossing configuration. Two
of them are considered as the next edge points of the same
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vessel, while the other four points are considered as the edge
points of another vessel which is over or under the current
one. These types of configurations are illustrated in Fig.2.

(b) Bifurcation

(a) Normal

(c) Crossing

Figure 2: Three types of configurations: B means background and
V means blood vessel

In order to deal with the complicated features of retinal
blood vessel, the semi-ellipse should be self-adapting. For
example, when vessel’s diameter increases, the semi-ellipse
would be enlarged in order to cover the potential position of
new edge point. Minor axis of the ellipse which is parallel to
local vessel’s direction could denote the look-ahead distance.
To make the algorithm more robust to curve changes, minor
axis is proposed to be adaptive to the vessel’s curvature.

At iteration k, as shown in Fig.3, the major axis a; of

semi-ellipse Cy, is perpendicular to Dy while its minor axis by
is parallel to it. Let 6 stands for the angle between current
T e ang

and previous directions: 6 = (Dy_1,Dy). 6 provides the
information of local vessel’s curvature. Parameter a; and by
can be obtained as:

{ak = ady,
b = B(7 — ) dx

where o, B are constant factors, dj is local vessel’s diame-
ter. In this study, a was set to be 2 which is the best value
based on simulated results. f3 is assigned as 1/7 so that the
magnitude of the step distance is not more than the vessel’s
diameter.

ey

Figure 3: Dynamic search window

2.2 Tracking process

In practice, two initial edge points U; and V; are chosen man-
ually diametrically opposed on the interested blood vessel.

Initial tracking direction D; is manually set along local di-
rection of blood vessel. Meanwhile, three areas are selected
surrounding the initial point: one inside and two outside the
blood vessel. The selected areas are used to calculate the ini-
tial statistical parameters of local noise. A source-list stores
all the initial information obtained by the user at the initial-
ization or by the algorithm when new branches are identified.

The tracking process of a vessel launches from loading
initial data from the source-list. During the tracking process,
local blood vessel at iteration k can be described by three pa-

rameters: edge points Uy, Vi, center point Oy, direction Dy
(see Fig.3). A semi-ellipse C; is centered on O; and head-

ing towards Dy. We consider all the possible configurations
obtained on C;. Based on the Maximum a posterior (MAP)
criterion within the frame of Bayesian theory, the best esti-
mate of the blood vessel is obtained by the configuration j§
which has the maximum probability. If § is a normal config-
uration, the two points on Cy, used to define j§ are regarded as
next edge points Uy, 1, Vi1 respectively. Next center point
Oy is considered as the middle point of [UkH,VkH]. New

direction Im heads towards Oy Oy . This tracking process
of current vessel stops when the vessel ends or a bifurca-
tion or crossing configuration is found. When new diameter
dii1s diy1 = |Ui1Vis1|, is too small, that is less than one
pixel in this study, it means the end of the blood vessel is
detected. When a bifurcation or crossing configuration is de-
tected, new branches will be stored in the source-list as new
blood vessels which are ordered by diameters and processed
later.

As source-list is empty, all the possible blood vessels are
detected, and the whole process ends.

2.3 Bayesian method for vessel segmentation

During the tracking process, new vessel edge points are ob-
tained based on the probabilities of different configurations.
With Bayesian rules, the probability of a configuration at it-
eration k is described as:

P(Yilx) - P(x)

2
P(Y) @

P(x|Ye) =

X is the configuration and Y, = {ygk),s =1,2... Ny} is the
discrete grey level profile relative to the N points on semi-
ellipse Ci. P(Y;) does not depend on the configuration and
will be disregarded. The best configuration is obtained as:

% = argmax{P(Yc[x) - P(%)} ()
2.3.1 Likelihood function

In this study, conditional probability model is assumed to de-
scribe the variability of a pixel value on a semi-ellipse C be-
longing either to the background or to the blood vessel. The
background is assumed to have a constant intensity with zero
mean additive Gaussian white noise. The grey level profile
of the cross section of a blood vessel is approximated as a
Gaussian shaped curve with the same Gaussian noise as the
background (see Fig.4).

At iteration k, considering the case of a normal configu-
ration ), two corresponding edge points M,, and M,, are the
m™ and n'* points on Cy. If y; is the grey level of M;, the i""
point on Cy, conditional probability has the general form:

1 (vi — 1i)?

P(yilx) = exp(— 4
bl = e AT @
where o is the standard deviation of the additive Gaussian
noise, which can be obtained from local background. When
i € [1,m[ U ]n,N¢], M; is a point on the background and g; is
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equal to U, the mean intensity of local background. When
i € [m,n], M; is a point inside the vessel. U; can be math-

2
ematically expressed as: U; = K exp(leéz) + Wp. [ is the

distance between M; and the middle poinf of [M,,,M,]. o;
defines the spread of the sectional intensity profile. In this
study, o; = %|MmM,,|. Parameter K = 1, — U, Uy, is the max-
imum grey level inside the blood vessel in current detection
area.

Assuming all these conditional probabilities indepen-
dent, the likelihood function P(Y;|y) is described as:

Nk ]
PYlx) =T]PGilx) = ———ex
i=1

1N
Vamop P 5gz X 01— k) O

For the case of bifurcation or crossing, the likelihood func-
tion has a similar form.
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Figure 4: The cross section of a blood vessel

2.3.2 A priori probability

The a priori probability of a configuration y is expressed on
the basis of Gibbs formulation [16], [17]:

P(x) = S exp(~2U(x)) ©

where Z is a normalization parameter and A is a weighting
factor called regularization term. U()) is the energy associ-
ated with the configuration . The aim of using Gibbs for-
mulation is to link a configuration with an energy function
which penalizes high energetic configurations.

In our study, blood vessels are assumed to be locally lin-
ear. At a given step, local vessel edges can be estimated as
two straight lines. So the configuration whose candidate edge
points are aligned on current edge line is promoted. At itera-
tion k (k <5), define L and L, as the straight lines through
edge points Uy and Vj, respectively and along local direction

5;1. When k > 5, L and L, are the least square straight lines
obtained based on five previous detected points (see Fig.5).
M,, and M, are two edge point candidates of . d; and
d> denote the distance between L; and M,,, and between L,
and M,, respectively. Then energy U()) can be defined as:
U(y) = d?+d3. A priori probability has the expression:

1
P(x) = 7 exp(=A(di +d3)) ™

Finally, according to Eq.3, the configuration which has the
maximum value of P(¥|x) - P(x) will be chosen. New edge
points will be obtained based on this configuration.

Figure 5: Least square lines

3. EXPERIMENTS AND PERFORMANCE
EVALUATION

The performance of our algorithm is evaluated on both syn-
thetic and retinal images. Synthetic image is obtained from
a noise-free simulated vascular image, which will be used as
the true image later. It represents six kinds of vessel segments
with different geometries to model different vessel features
in retinal images (diameter between 3 and 10 pixels, average
grey level 116). Sectional grey levels of these vessel seg-
ments are assumed to follow Gaussian distribution [18]. We
add white noise on the simulated vascular image to evalu-
ate our algorithm. We use a quality parameter, Segmentation
Matching Factor (SMF) [13], to characterize the algorithm
performance.

Card(Agim(NAseg)

SMF =
Card(AgimUAseq)

®)

where Agy, and Ay, are the sets of pixels belonging to
the simulated and the segmented arterial tree respectively.
Card(A) is the number of elements in set A. SMF equals 1 in
the case of a perfect segmentation, O if segmentation fails.
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Figure 6: Result on simulated images: (a) and (b) are noisy image
(SNR = 3dB) and its resulting image after segmentation and recon-
struction (SMF = 0.83); (c) and (d) are noisy image (SNR = 10dB)
and its resulting image (SMF = 0.91)

Firstly, the influence of noise upon quality parameter
SMF was tested. We find that the best SMF was obtained
when weighting factor A was 0.01 for all the cases. Fig.6
gives the test result of proposed algorithm on simulated im-
ages. For different given Gaussian noise (SNR from 1dB to
15dB, A = 0.01), SMF values of different algorithms were
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computed. Fig.7 shows the results on simulated images, us-
ing our method, Chaudhuri’s method [8], and Adel’s method
[13]. As it can be noticed, our method gives better results.
Efficiency of our method was all the higher when SNR was
higher. The SMF value can reach 0.9 when SNR is higher
than 12. It falls to 0.8 when SNR is lower than 3.
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Figure 7: SMF at different SNR’s values with A = 0.01

On the other hand, we applied our algorithm on retinal
images. Fig.8 shows that our algorithm works well and de-
tects different configurations in retinal images. Fig.9 shows
the results of our method compared with what was obtained
in our previous work [13].

(b) bifurcation

(a) normal (c) crossing

Figure 8: Detection of different types of configurations

More tests on retinal images have been done on the pub-
licly available DRIVE database [12]. The database consists
of 40 images taken from a screening programme for diabetic
retinopathy in the Netherlands. The images have been hand-
segmented by three observers: one computer science student,
one clinical expert and one image processing expert. We
tested our method on 20 images and used the manual seg-
mentation as the “ground truth”. For that purpose, subim-
ages were extracted and ROC curves were calculated. The
maximum TPR (true positive rate) obtained was 0.82 when
corresponding FPR (false positive rate) was 0.01. The FPR
did not exceed 0.1 for all experiments.

4. CONCLUSION

In this paper, a statistical based tracking method was devel-
oped. Vessel edge points are detected based on a Bayesian
method using local grey levels statistics and continuity prop-
erties of blood vessels. From the experiments and evaluation,

(b) Adel’s method [13]

(c) Proposed method

Figure 9: Result on a retinal image

we can see that many improvements have been obtained from
our previous work [13], including handling different vessel
configurations and improving the robustness against noise.
In a near future, a deeper evaluation on retinal images is
planed to be carried on to make this method widely usable
for vessel tracking algorithm.
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