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ABSTRACT
Population Monte Carlo (PMC) algorithms iterate on a set of
samples and weights to approximate a stationary target distri-
bution. Their estimation quality and convergence efficiency
rely on many factors including the number of samples and the
choice of importance function. The computational complex-
ity of the PMC algorithm becomes increasingly challenging
as the numbers of the unknowns increases. In this paper, we
propose a marginalized PMC algorithm for high-dimensional
problems, where the state space of the system is partitioned
into several subspaces of lower dimensions and handled by a
set of marginalized PMC estimators. Simulation results show
the accuracy and feasibility of the method as well as its im-
provement with respect to other conventional approaches.

1. INTRODUCTION

The Population Monte Carlo (PMC) algorithm is a topic of
recent interest in the field of Monte Carlo-based signal pro-
cessing. The PMC algorithms approximate a stationary target
distribution by an iterative importance sampling procedure.
An overview of the general PMC algorithm via computation
of the products of non-negative sparse matrices is given in [1].
The algorithm has been developed and applied in the fields
of quantum physics, polymer science, statistical physics, and
statistical sciences.

The PMC algorithms have similarities with Markov Chain
Monte Carlo (MCMC) sampling [1]. Both methods are use-
ful tools for the calculation of multi-dimensional integrals.
The MCMC algorithms draw samples and move them around
the equilibrium distribution in relatively small steps, entailing
that it might take a long time to explore the space [2]. PMC
employs the resampling/reweighting concept, which updates
the weights by learning from previous proposals and target
distributions. The advantage of PMC over MCMC algorithms
is that they are approximetely unbiased at every iteration and
therefore can be stopped at any time. PMC is also more robust
than MCMC on initialization parameters [3].

A PMC scheme was applied to missing data problems
in [4]. Instead of using a constant importance function or
a sequence of importance functions, importance functions
that depend on both the iteration and the sample index were
proposed. Advantages of this PMC scheme were illustrated
for problems with settings of increasing difficulty, where the
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missing data could not be simulated or approximated through
completion devices. A comparison with MCMC for missing
data problems was also presented.

In [5], PMC was used to achieve variance reduction,
which has always been a critical issue of Monte Carlo meth-
ods. A set of importance functions was iteratively optimized
to minimize asymptotic variance. PMC methods were applied
to restoration of ion channels using a fixed dimension model
in [3]. PMC algorithms were also shown to be progressively
adapted to a target distribution with a diminishing Kullbak-
Leibler divergence in [6].

In many real-world problems, a high dimensional state
space makes the PMC implementation very challenging due
to the necessity of large number of samples. In some of
these problems, some of the unknown parameters are condi-
tionally linear given the remaining parameters. Marginalized
PMC (MPMC) was proposed to lower the computational cost
by only generating samples of the nonlinear parameters and
marginalizing the remaining linear parameters [7]. This ap-
proach is based on the well-known Rao-Blackwell theorem.

The computational efficiency of the PMC method can be
further improved by the use of a distributed structure. In this
paper, we propose a novel method referred to as Multiple
PMC (MultiPMC) where the state space of interest is parti-
tioned into several subspaces with lower dimensions and han-
dled by a set of parallel PMC filters. Each PMC filter updates
the weights of the samples and the importance functions, if
necessary, using information from the other PMC filters. A
similar structure used for sequential Monte Carlo methods ap-
plied to the problem of target tracking can be found in [8]. A
related approach to ours was the one from [9], where the in-
tended application was in speaker recognition. A finite mix-
ture of Gaussians was decomposed into subproblems, which
were easier to work with. Then missing data were introduced,
and samples were drawn from posteriors. We note, however,
that drawing directly from posteriors is often infeasable. In
this paper, we employ PMC algorithms to make the genera-
tion of samples easy.

The rest of the paper is organized as follows. A brief
overview of the current state-of-art is presented in Section 2.
The proposed MultiPMC scheme is presented in Section 3 as
well as the Multiple MPMC (MultiMPMC). We demonstrate
the implementation of the MultiPMC and MultiMPMC by ap-
plying it to the problem of frequency estimation of complex
sinusoids in Section 4. We conclude with some final thoughts
in Section 5.
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2. PROBLEM FORMULATION

The problem is to estimate an unknown vector of parameters
x based on the vector of observations y. The general model is

y = h(x)+v, (1)

where the observation y is a dy× 1 vector and the unknown
parameter x is a dx×1 vector with known prior density p0(x).
In most cases, h(⋅) is a nonlinear function of unknown param-
eters. Finally, v is a dy×1 additive noise vector with a known
probability distribution p(v).

2.1. PMC algorithm
The underlying principle of PMC is importance sam-
pling [10], [11]. A commonly used point estimator is the
minimum mean-square estimator (MMSE), which is defined
as

ηx =
∫

xp(x∣y)dx, (2)

where p(x∣y) is the posterior of x. If we can draw samples
from the posterior,

x(m) ∼ p(x∣y), m = 1,2, ...,M, (3)

where M is the total number of independently drawn samples,
then we can compute the integral in equation (2) according to
classical Monte Carlo integration by

η̂x ≃
1
M

M

∑
m=1

x(m). (4)

This estimate will converge to the true value by the strong law
of large numbers.

However, samples usually cannot be drawn directly from
the posterior p(x∣y) in practice. Alternatively, samples can be
generated from another probability distribution q(x), called
importance function, and the estimate is computed as

ηx =
∫

xp(x∣y)dx

=
∫

x
p(x∣y)
q(x)

q(x)dx

≃ 1
M

M

∑
m=1

x(m)p(x(m)∣y)
q(x(m))

.

When q(x) satisfies some conditions, it can be shown that by
the strong law of large numbers, this estimate also converges
to the true mean of the posterior.

The above approximation can also be written as

ηx ≃
M

∑
m=1

w(m)x(m) (5)

where w(m) denotes the weight of sample x(m), i.e.,

w(m)
∝

p(x(m)∣y)
q(x(m))

, (6)

and
M

∑
m=1

w(m) = 1. (7)

PMC employs an iterated and adaptive importance sam-
pling scheme. It also uses resampling as do particle filtering
methods, where samples with small weights are most likely
removed and ones with large weights are replicated. The
method can be summarized as follows. Let j denote the it-
eration number, j = 1,2, ..., and let m represent the index of
the particle, m = 1,2, ...,M.

Step 1. Choose an importance function q(m)
j (x);

Step 2. Draw samples x(m)
j from q(m)

j (x);
Step 3. Compute weights of the samples

w̃(m)
j ∝

p(x(m)
j ∣y)

q(m)
j (x(m)

j )
; (8)

Step 4. Normalize the weights:

w(m)
j =

w̃(m)
j

ΣM
k=1w̃(k)

j

; (9)

Step 5. Resample the samples according to their
weights;

Step 6. If more iterations are needed, set j = j + 1,
and go back to step 1.

2.2. MPMC algorithm
MPMC employs a scheme where PMC is only applied to
the nonlinear parameters, while the linear parameters are ob-
tained by analytical integrations with prior distributions. In
high dimensional problems with some of the unknown param-
eters being conditionally linear given the remaining param-
eters, MPMC needs less particles than PMC, and therefore
achieves an improved computational efficiency [7, 12, 13].

We assume that the model of the data is

y = h(xn)+A(xn)xl +v, (10)

where the observation y is a dy× 1 vector and the unknown
parameter x is a dx× 1 vector. The vector x is composed of
nonlinear parameters xn of dimension dxn and linear parame-
ters xl of dimension dxl , where dx = dxn + dxl , and the prior
density of x is given by p(xn,xl). As in (1), h(⋅) is a nonlinear
function of the parameters xn; A(xn) is a matrix of functions
of the nonlinear parameter xn and has dimension dy×dxl ; and
v is a dy×1 noise vector with a known probability distribution
p(v).

In the MPMC algorithm, at iteration j, one only generates
samples of the nonlinear parameters, x(m)

n, j . The corresponding
weights to these samples are

w(m)
n, j ∝

p(x(m)
n, j ∣y)

q(m)
n, j (x

(m)
n, j )

, (11)
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The numerator p(x(m)
n, j ∣y) is the marginalized posterior of xn,

which has the following property

p(x(m)
n, j ∣y) ∝

∫
p(y∣xl ,x

(m)
n, j )p(xl ,x

(m)
n, j )dxl . (12)

The proposed MPMC algorithm is summarized as fol-
lows. Let j denote the iteration number, j = 1,2, ..., and let m
denote the index of the particle, m = 1,2, ...,M.

Step 1. Choose an importance function q(m)
n, j (xn, j);

Step 2. Draw samples x(m)
n, j from q(m)

n, j (xn, j);

Step 3. Based on x(m)
n, j , use the MMSE criterion to es-

timate the corresponding xl ;
Step 4. Compute weights of the samples

w̃(m)
n, j =

p(x(m)
n, j ∣y)

q(m)
n, j (x

(m)
n, j )

; (13)

Step 5. Normalize the weights

w(m)
n, j =

w̃(m)
n, j

ΣM
k=1w̃(k)

n, j

; (14)

Step 6. Resample the samples according to their
weights;

Step 7. If more iterations are needed, set j = j + 1,
and go back to step 1.

3. MULTIPLE PMC

Besides marginalizing the linear parameters, one can avoid
generation of too many samples for accurate estimation in
high-dimensional problems by partitioning the problem into
subproblems and use “independent” PMC algorithms for each
subproblem [8, 9]. The partitioning often depends on the
problem [14]. By decomposing the original problem, one can
considerably reduce the computational complexity.

3.1. Multiple PMC

We will further assume that the model in equation (1) can be
partitioned into K subproblems as follows:

y =
K

∑
k=1

hk(xk)+v, (15)

where [x1,x2, ...,xK ] forms the unknown vector x in the gen-
eral model described by (1).1

We assign each unknown vector xk a PMC filter
with the target distribution p(xk∣y). The sample genera-
tion/propagation and resampling step of each PMC estimator
can be implemented as the algorithm stated in Section 2.1.
The key question is the weight updating of the samples for

1Equation (15) represents only one particular case where MultiPMC can
be applied.

xk based on the other PMC filters. Theoretically the weight
update w̃(m)

k, j should be carried out by

w̃(m)
k, j =

p(x(m)
k, j ∣x−k,y)

q(m)
k, j (x

(m)
j )

, (16)

where x−k contains the true values of all unknowns except xk.
This form of update requires the knowledge of x−k, which is
not available. Here we propose to implement the updates as

w̃(m)
k, j =

p(x(m)
k, j ∣x̃−k,y)

q(m)
k, j (x

(m)
k, j )

, (17)

where x̃−k are the most recent estimated values of all the un-
knowns except xk

x̃−k = x̃∖ x̃k = [x̃⊤1 , x̃
⊤
2 , ..., x̃

⊤
k−1, x̃

⊤
k+1, ..., x̃

⊤
K ]
⊤,

and

x̃k =
M

∑
m=1

w(m)
k, j x(m)

k, j , (18)

where w(m)
k, j is the normalized weight.

In each iteration, the PMC estimators use the exchanged
estimates to compute their weights in an alternating way. For
good performance of the method, we propose that in each iter-
ation the implementation order of the PMC filters is selected
randomly.

3.2. Multiple MPMC
The distributed structure of multiple estimators can also be
applied to MPMC methods. If we modify (10) for a model of
type (15), we can write

y =
K

∑
k=1

(hk(xk,n)+Ak(xk,n)xk,l)+v, (19)

where [x1,n,x1,l ,x2,n,x2,l , ...,xK,n,xK,l ] form the unknown
vector x in the general model described in (10).

We assign each unknown vector xk,n an MPMC filter, and
use MMSE to estimate the corresponding marginalized lin-
ear unknowns xk,l . The sample generation/propagation and
resampling step of each MPMC filter can be implemented in
the usual way. The proposed weight update is implemented
by

w̃(m)
k,n, j =

p(x(m)
k,n, j∣x̃−k,n,y)

q(m)
k,n, j(x

(m)
k,n, j)

, (20)

where x̃−k,n represents the most recent estimated values of all
nonlinear unknowns except xk,n, i.e.,

x̃−k,n = x̃n ∖ x̃k,n = [x̃⊤1,n, x̃
⊤
2,n, ..., x̃

⊤
k−1,n, x̃

⊤
k+1,n, ..., x̃

⊤
K,n]
⊤,

and

x̃k,n =
M

∑
m=1

w(m)
k,n, jx

(m)
k,n, j. (21)

The implementation order of each MPMC estimator is
randomized at each iteration as before.
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Fig. 1. Estimates for f3 vs iterations using the PMC, Mul-
tiPMC, MPMC, and MultiMPMC algorithms.
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Fig. 2. Estimates vs SNR using MPMC, MultiMPMC and
MUSIC algorithms.

4. SIMULATIONS

In this section, we consider the problem of estimating the fre-
quencies of complex sinusoids. The model of the observa-
tions is given by

yt =
K

∑
k=1

Akei(2π fkt+φk)+ vt , t = 1,2, ...,dy, (22)

where i =
√
−1, 0 < f1 < f2 < ... < fK < 1; Ak and φk are the

amplitude and phase, respectively, of the k-th frequency com-
ponent; and vt is white complex Gaussian noise. The param-
eters to be estimated are x = [A1,φ1, f1, ...,AK ,φK , fK ], and
therefore the space of unknowns has dimension 3K.

The complex noise was drawn from the distribution

vt ∼ C N (0,σ2
v ),

or more specifically,

real(vt)∼N (0, σ2
v

2 ), and imag(vt)∼N (0, σ2
v

2 ),

and the value of the variance was defined by using the signal-
to-noise ratio (SNR)

SNR =
A2

k
σv2 ,

where SNR was measured in dB, Ak was the amplitude of the
signal, and σ2

v was the noise power.
The model described by (22) can be rewritten as

yt = ∑
K
k=1 Ãkei2π fkt + vt , t = 1,2, ...,dy,

where fk are the nonlinear parameters, and Ãk =Akeiφk are the
linear parameters.

We had dy = 25 observations with K = 3 sinusoids gener-
ated according to the model. Observations were generated
using three frequencies f1 = 0.2, f2 = 0.5 and f3 = 0.52,
with amplitudes A1 = 1, A2 = 1 and A3 = 1, and phases
φ1 = 0, φ2 = 0 and φ3 = π/4. PMC, MultiPMC, MPMC and
MultiMPMC were applied to estimate the parameters in this
9-dimensional problem. For the prior of Ãk in MPMC and
MultiMPMC we used

Ãk ∼ C N (0,5).

The initial importance functions for the frequencies had
preselected means at the estimates obtained by the Yule-
Walker method [15], and a predetermined variance vec-
tor [16] given by v = σ0

2× [12,0.12,0.012,0.0012,0.00012]⊤

with σ0
2 = 0.12. At the initial step, for the frequencies, a vari-

ance from the available five variances was assigned randomly
to each particle with probability of 1

5 . After each iteration,
the weights of available variances for each parameter were
updated separately according to the performance of the sam-
ples. Updated importance functions had means located at the
previous samples after resampling, and had variance coming
from the predetermined variance vector with updated weights.
In order to keep every variance valid after each iteration, re-
scaling was employed to ensure that the minimum weight for
each available variance was 0.05.

1590



The performances of the methods for estimation of the
parameters of the third sinusoid are shown in Figure 1. The
performances of the algorithms to this problem were quan-
tified based on the MSE of the parameters to be estimated,
given by

MSE =
1
R

R

∑
r=1

(x̂r− x)2, (23)

where r represented the r-th run of the algorithm, x̂r denoted
the estimates obtained in the r-th run, and x was the true
value of the parameter. All the points on the plot were av-
eraged over R = 500 runs for iteration number of 1 to 20 with
SNR = 5 dB. In each run, an amount of M = 600 samples
were generated from an initial importance function for PMC
and MPMC, and Mk = 200 for each filter, which sums up to
M = 600 total samples, when implementing the MultiPMC
and MultiMPMC algorithms. It can be concluded from the
plots that MultiPMC and MultiMPMC perform accurately
and converge much faster.

The performances of the proposed methods in terms of
the MSE of the estimated frequencies for various values of
SNR are shown in Figure 2. All the points on the plot are
averaged over R = 500 runs with sample size of M = 600
and iteration number of J = 20. The methods are also com-
pared with the MUltiple SIgnal Classification (MUSIC) al-
gorithm, which estimates the pseudospectrum of the observa-
tions using Schmidt’s eigenspace analysis method [17]. The
conventional MUSIC algorithm performs similarly with the
proposed methods at low SNRs, but does not improve with
SNR as do the PMC methods. The poor performance of MU-
SIC was caused by the small difference between f2 and f3.
The proposed methods perform well, and their MSEs con-
verge to the Crámer-Rao lower bound (CRBL) as the SNR
increases.

5. CONCLUSION

In this paper, we propose new PMC algorithms for high-
dimensional nonlinear problems. The algorithms have dis-
tributed structures, and we refer to them as MultiPMC and
MultiMPMC. With the approach, a high-dimensional prob-
lem is partitioned into several subproblems with lower dimen-
sions and handled by a set of PMC or MPMC filters. Simula-
tion results have shown the accuracy of the estimates and the
feasibility of the methods.
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