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ABSTRACT

Most spectroscopic signals are well described as having ei-
ther a Lorentzian or Gaussian lineshape, and the recent lit-
erature contains a variety of estimation approaches for such
models. However, several experimental works indicate that
such signals can be better described as having the more gen-
eral Voigt lineshape, formed as the combination of the two.
Due to the inherent complexity of this model, there exist few
techniques to form estimates of the parameters of the Voigt
model, with a numerical search of the multidimensional non-
linear least squares (LS) cost function being the typical solu-
tion. In this paper, we propose a parametric relax-based es-
timator that estimates the lineshape parameters recursively,
one spectral line at a time. Numerical simulations using both
simulated and real measurement data illustrate the perfor-
mance gain of the proposed methods.

1. INTRODUCTION

Currently, most spectroscopic signals are described as ei-
ther having a Lorentzian or possibly a Gaussian lineshape,
and much work has been done on finding methods for ef-
ficiently estimating the parameters describing these models
(see, e.g., [1-5]). These models are popular and generally
work well, although several experimental studies indicate
that many forms of spectroscopic signals are better described
as having a Voigt lineshape. The structure and/or form of
the lineshape plays an important role in several applications,
for instance, in the detection of counterfeit medicines, and
there is a strong need to develop reliable techniques for im-
proving the estimates of the parameters detailing the spec-
tral lines. Regrettably, due to the complexity of the Voigt
model, few efficient estimation techniques exist to date, with
numerical search of the least squares (LS) cost function in
either the time or frequency domain being the most typi-
cal solution [6-8]. Such techniques are generally compu-
tationally cumbersome and require an accurate initial value
for the search spaces. In this paper, we propose a paramet-
ric relaxation-based technique for estimating the lineshape
parameters from a (possibly) non-uniformly sampled free in-
duction decay (FID) or, alternatively, a sequence of echo sig-
nals, resulting from, for example, a pulse spin-locking (PSL)
excitation sequence. Such a sequence of echoes are here
termed an echo train (ET) sequence (see, e.g., [9, 10]). In
[11], and later in the extended version presented in [12] (see
also [13]), it has been shown that relaxation-based methods
offer excellent estimation performance even in the presence
of colored noise. By alternatively estimating one component
at a time, this form of approaches can often also be imple-
mented quite efficiently. In the here presented extension of
the methods in [11,12], we exploit both the detailed structure
of the signal as well as initial frequency estimates, formed
using either the regular periodogram, or IAA [14, 15] for the
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case of non-uniformly sampled data, to restrict the dimen-
sionality of the search space. Numerical studies indicate that
the presented method offers parameter estimates with close
to optimal performance, even though the procedure assumes
that the problem decouples, reducing the dimensionality of
the performed search substantially. Evaluating the method
on real measurements of the explosive TNT indicates that
the model improves parameter estimates for this substance
somewhat.

2. DATA MODEL

Spectroscopic signals are most commonly measured as ei-
ther FIDs or ET sequences. In the following, we shall exam-
ine both these forms of signals, extending the models to also
include a Voigt parameter. Incorporating this extension, the
measured FID signal formed from d resonant lines can thus
be modeled as [9]

d
Yag(t) = p Y e PO Ly (1)
k=1

where =1y, ...,ty_1 is the FID sampling time, w(¢) is an ad-
ditive colored noise and p denotes the common scaling due
to the signal to noise ratio (SNR). We note that the under-
lying thermal (Johnson) noise at the RF antenna may often
be well modeled as a white Gaussian noise (WGN) process.
However, the noise is then typically colored by the receiver,
making it more appropriately modeled as the output of an au-
toregressive (AR) filter driven by WGN [16]. Furthermore,
the normalized (complex) amplitudes of the FID, here de-
noted Ky for the kth line, can be assumed to be fairly well
known for a given experimental set-up, although these may
vary in between setups and due to, e.g., the crystalline prop-
erties of the sample. The damping and Voigt constants, f3;
and v, for the kth line are often reasonably well known, but
may vary significantly due to, e.g., sample impurities, and
are therefore better to treat as unknown within some limited
set. Finally, the frequencies, @y (T), typically depends on the
(unknown) temperature of the examined sample, such that
for a given temperature, T, the frequencies are known, typi-
cally following @y (T') = ax + b, T, for some given constants
a; and by [16]. Echo trains on the other hand will contain
further structure, and the noise-free mth echo of an echo train
may be well modeled as [9]

d
ym(t) - P Z Kkeinkm”Clzeiﬁkltftsplf'}’k‘tftsp‘z’ (2)
k=1

where § = /()M and ¢t = 1,...,1y_, is the echo sam-
pling time!, measured with respect to the center of the re-

!For notational convenience, we will here use the same notation for the
FID and the ET sampling times, although these are generally different.
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Figure 1: MSE error for the estimated amplitudes as com-
pared to the corresponding CRB.

focusing pulse, not necessarily being consecutive instances,
but typically starting at #y # O to allow for the dead time
between the pulse and the first measured sample (after the
pulse). Here, f,, and y are known constants. It should be
noted that the normalized (complex) amplitudes for the echo
train, here denoted xj, for the kth component, are different to
Ky, with the former being also dependent on #y),.

3. THE VOIGT RELAX ALGORITHM

As the data sequences detailed by either (1) or (2) are of-
ten non-uniformly sampled due to the gaps resulting from
the pulsing and the following dead time(s), initial estimates
of the line frequencies should then be formed using a tech-
nique robust to such signals. Furthermore, given that spec-
troscopic sequences are often corrupted by (substantial) ra-
dio frequency interference (RFI) and other spurious signals,
as well as being measured in the presence of colored noise,
we recommend forming initial frequency estimates using
either the periodogram, for regularly sampled data, or the
non-parametric IAA algorithm [14, 15], for more arbitrary
sampling patterns. Using either method, we form initial
estimates of the unknown line frequencies, and then pro-
ceed to form the relax estimate over the parameters S, ¥
and 1, if relevant, for these frequencies. Let ys denote
the (column) vector formed from the available measurement
samples; for the FID measurements, obtained from, e.g., a
stochastic NQR (sNQR) experiment [10], N = N, whereas
for an ET measurement the total number of available sam-
ples is N = NM, where M denotes the number of available
echoes (see, e.g., [9])). Moreover, let

d .
yu=p Y Ay +ey 3)
k=1

denote the vectorized model corresponding to either (1) or
(2), where oy denotes the assumed amplitudes &j or ki, and
6 contain the unknown parameters detailing the model, i.e.,
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Figure 2: MSE error for the estimated 8; and f, plotted as
compared to the corresponding CRB.

for (1) and (2), respectively. The (column) vector A(ei,)k is
formed as the vectorized form from the kth spectral line from
either (1) or (2) corresponding to y, and ey is formed sim-
ilar to yg5. Thus for (1) and (2), Ag?k is given by A}; i
equation (4) and A%,‘k in equation (6), respectively, listed at
the top of the next page. The non-linear least squares (NLS)
estimate of 6 can be found as

2

SING
Yy —P Z akAeyk
=1

(6

Onps = arg rnein

for i = 1 or 2, where ||-|| denotes the Euclidean norm. As
is well known, the Gy estimate will only coincide with
the maximum likelihood estimate when the additive noise
ey is a zero-mean white Gaussian process, although, un-
der quite weak assumptions, the estimates will achieve the
same asymptotical performance even for the colored noise
case [17]. Reminiscent to [11, 12], we proceed to form the
relax-based estimate of 6 by minimizing the cost function in
(6) in a recursive fashion, one component at a time. Let

d .
Vi =Yv—P Y, Ay +ey ©)
k=1k0
where .
=B % m] . (®)

for k = 1,k # /¢, are assumed to be known from prior estima-
tion steps. Then, the NLS estimate of 6, can be found as

A

6,

5102
s —pcl|
_ PN TINING 10

argmglx 0.0 YN /( 0,0 e,z) (10)

where (-)* denotes the conjugate transpose. It is worth not-
ing that the maximization in (10) can be efficiently performed
using numerical optimization techniques, such as, for in-
stance, a Levenberg-Marquardt or a Gauss-Newton method
(see, e.g., [18, 19]). The relaxation-based estimate of 0 is
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Figure 3: MSE error for the estimated y; and 9» as compared
to the corresponding CRB.

thus formed as follows (see also [11, 12] for further details
on the recursive steps):

Step 0. Form initial estimates of the unknown frequencies
using the periodogram or the IAA algorithm in case of non-
uniformly sampled data.

Step 1. Assume d = 1, and compute 6, from ¥ using (10).
Step 2. Assume d = 2. Compute yy , with (7) using 6, and
then estimate 6, using (10) with Y- Then, form yy ; using

éz and reestimate él. Substeps 1 and 2 are then iterated until
practical convergence is achieved.

Step 3. Proceed by growing the assumed d to d = 3,4,...,
until the desired number of spectral lines. For each value
of d, ék, for k =1,...,d, is estimated recursively using the
approach in steps 1 and 2, with each step extended to recur-
sively estimate all the d lines.

The above mentioned practical convergence is typically set
as when the relative change of the cost function between two
consecutive iteration is below some predetermined cut-off
point, for instance, when the change is less than € = 1078.
We note that as a minimization is performed at each step,
the algorithm is bound to converge to a local minimum un-
der mild conditions (although, the achieved minimum might,
of course, possibly not be the global one). It should also be
stressed that due to the recursive nature of the algorithm, the
computational complexity is proportional to d> for large d,
and can thus be computationally demanding for signals con-
taining a large number of spectral lines. For our considered
applications, d is typically small, with generally d < 5.
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Figure 4: MSE error for the estimated frequencies as com-
pared to the corresponding CRB.

4. NUMERICAL EXAMPLES

In this section, we examine the performance of the pro-
posed estimator using both simulated and real measure-
ment data. Initially, we examine simulated FID data
mimicking a generic sSNQR measurement of a pharma-
ceutical substance of interest, assuming d = 2, with N =
200, o(T) = {0.3,0.45}, B = {2.056,4.567} x 1074, y =
{2.008,3.002} x 1073, and & = {0.75, 1 }.The measurements
are formed using (1), where e(¢) is modeled as a zero-mean
circularly symmetric white Gaussian noise process with vari-
ance o2. Figures 1-4 show the mean-squared error (MSE)
as compared to the corresponding Cramér-Rao lower bound
(CRB), as derived in the Appendix. These simulations were
obtained using 100 Monte Carlo simulations. As can be seen
from the figures, the relax estimator achieves performance
being close to efficient. However, it should also be noted that
given the parameter values of typical samples of interest, the
estimation variance might well be on the order of the actual
value of interest, or indeed significantly larger than these val-
ues. Figures 5 and 6 illustrate this problem by plotting the
root relative CRB (RRCRB), defined as 100 times the square
root of the CRB divided by the true parameter value, for the
B1 parameter as a function of y; = —{4.5,19.7,34.8} x 107>,
and for y; for B; = —{4.95,2.47,0.0505} x 104, respec-
tively. As seen from the figure, the variance of the 3 es-
timate is strongly affected by the size of the y parameter,
whereas the variance of the Y estimate is seemingly unaf-
fected by changes in the damping parameter. = However,
from Figure 5, it is clear that the more detailed Voigt mod-
eling will not offer any improvement of the 3 estimates for
substances with a combination of too low 8 and ¥ values,
and it is recommended that the RRCRB is evaluated for any
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Figure 5: The RRCRB of the f3; parameter in the numerical
example, where B is varied for three different values of y;.

[ Lineno. | I | 2 [ 3 [ 4 |
a(T)/2w | 0.201 [ 0.074 | 0.022 | -0.146
Bex1073 | 0.00 | 11.52 | 0.68 | 3.38
Yex 1073 | 023 | 0.00 | 0.00 | 0.00
Mex1073 | 0.18 | 026 | 022 | 022

|| 0.16 | 1.00 | 0.54 | 061

Table 1: Estimated parameters detailing the four dominant
TNT lines in the dataset examined in [16].

examined substance to determine the SNR and data length
required to make the model useful. We proceed to examine
real ET measurements from the explosive TNT. Using the
NQR data examined in [16], with N = 256, M = 31, we ap-
ply the relax algorithm now instead formed using (6). The
resulting parameter estimates are given in Table 1, where it
can be seen that only one of the four spectral lines have a
noticeable value for y. Interestingly, the -value for this line
is negligible, indicating that this spectral line has a Gaussian,
and not a Lorentzian or Voigt, lineshape. The found values
decrease the sum of the squared residuals with 0.34% com-
pared with the model used in [16], indicating that, as can be
expected from the values in Table 1, the more detailed model
allow for only a minor improvement of the signal model for
TNT. Table 2 presents the RRCRB for the estimated param-
eters, showing that, for instance, the standard deviation of ¥,
is about 9% of the estimated parameter value, indicating that
this parameter can be fairly well determined. On the other
hand, one may note that 33 seems not to be possible to esti-
mate accurately, as can also be expected from the small value
of this parameter.
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Figure 6: The RRCRB of the y; parameter in the numerical
example, where 7; is varied for three different values of f3;.

[Lineno. [ T [ 2 [ 3 [ 4 |

B — [ 4.14 | 68.7 | 143
% 921 | — | — | —
Nk 526 | 0.86 | 0.92 | 0.95

Table 2: The RRCRB for the estimated parameters detailing
the four dominant TNT lines.

A. THE CRB FOR THE VOIGT MODELS

The CRB for the Voigt model in (1) omitting the temperature
dependencies of the line frequencies was presented in [20].
Here, we extend on this derivation to incorporate also the
temperature dependencies, as well as derive the CRB for the
ET model in (2). Fort =1g,...,ty_1,m=0,...,M —1, let
() =
&'(1)

Using the same notation as in [20, 21], one thus obtain the
CRB as

~ ~ H 71
Vo =2 <2Re [%XQN <88X6N> D , (13)

d .
xy =Py =p Y Ay, (14)

e_ﬁkt_ykt2+iwk(T)t (11)

e~ emit g/ie_ﬁk‘t_tsp‘_)/klt_tsz)lz (12)

where

which leads to (15) and (16), as given at the top of the next
page, for (1) and (2), respectively.
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