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ABSTRACT
Recent work on dimensionality reduction using Cauchy ran-
dom projections has emerged for applications whereℓ1 dis-
tance preservation is preferred. An original sparse signal
b ∈ R

n is multiplied by a Cauchy random matrixR ∈ R
n×k

(k ≪ n), resulting in a projected vectorc ∈ R
k. Two approa-

ches for fast recover ofb from the Cauchy vectorc are
proposed. The two algorithms are based on a regularized
coordinate-descent Myriad regression using bothℓ0 and con-
vex relaxation as sparsity inducing terms. The key element
is to start, in the first iteration, by finding the optimal esti-
mate value for each coordinate, and selectively updating only
the coordinates with rapid descent in subsequent iterations.
For the particular case of theℓ0 regularized approach, an
approximation function for theℓ0-norm is given due to it is
non-differentiablenorm [1]. Performance comparisons of the
proposed approaches to the original regularized coordinate-
descent method are included.

1. INTRODUCTION

Dimensionality reduction using linear random projections
allows the mapping of a set of high dimensional data points
into a set of points in low dimension such that pairwise
distance properties are nearly preserved. Dimensionality
reduction is useful in applications such as searching
for nearest neighbors, data streaming and clustering, or
classification, where the computational cost can be largely
reduced. Methods using Gaussian random projections [2],
are used to estimate the original pairwiseℓ2 distances in
the high dimensional space using the correspondingℓ2
distances in the dimensionally-reduced set of data points,
and the Johnson-Lindenstrauss (JL) lemma [3] provides
the performance guarantee. In Cauchy random projections,
Indyk [4] and Li et. al [5] have shown results analog to the
Johnson-Lindenstrauss bound, for theℓ1-norm. The interest
in Cauchy random projections arise since theℓ1-norm
is more robust to noise, missing data, and outliers, than
the ℓ2-norm. Recent work has addressed dimensionality
reduction inℓ1 using Cauchy random projections [5, 6].

A linear projection of the sparse signalb ∈ R
n into a

dimensionally-reduced data vectorc∈R
k is attained by mul-

tiplying the original data points inb with a random matrix
R ∈ R

n×k, whose entries are realizations of an independent
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and identically distributed standard Cauchy random variable.
This paper focuses on the recovery of then-dimensional
sparse signal from a reduced set ofk measurements,k ≪ n,
by solving the following problem:

b̂ = argmin
b

‖c−R
T
b‖LL (1)

where LL denotes the Lorentzian norm, defined as
∑k

i=0 log
(

K2 + z2
i

)

;K > 0 for a vector z ∈ R
k. The

Lorentzian error norm is characterized by a re-descendent
function where the influence of a large outlying sample on
the Lorentzian norm increases up to a point, after which it
starts to decrease (redescend) as the error grows. Thus, the
Lorentzian norm is more robust in regression problems than
the ℓ1 and ℓ2 norms and, in fact, it has optimality proper-
ties for Cauchy distributed samples [7]. Exploiting thea
priori knowledge about the sparsity of the signal, a convex
relaxation problem is proposed. The main contribution of
this paper is a proposed approach that efficiently computes
the solution to this optimization problem. Thus, the pro-
posed approach is based on computing an iterative algorithm
that combines the characteristics of the coordinate-descent
method, that decomposes then-dimensional problem into a
sequence of greedy 1-dimensional coordinate updates, and
computing the rate of decrease of the cost function. At the
first iteration, all the coordinates are estimated by using the
Weighted Myriad operator [8], which is optimal for the stan-
dard Cauchy distribution. In the second and subsequent ite-
rations only those entries with non-zero value previously es-
timated in the first iteration and those elements that are de-
creasing most rapidly are re-estimated.
In order to induce sparse signal reconstruction in (1), the
Lorentzian problem is regularized by anℓ0-norm. The se-
lective iterative coordinate-descent algorithm therefore uses
knowledge of the greatest descent rate of the cost func-
tion, significantly improving the convergence speed and run-
time as compared to the standard iterative coordinate-descent
(Standard-ICD) algorithm.

2. SPARSE SIGNAL RECONSTRUCTION:
PROBLEM FORMULATION

Given the projected vectorc∈R
k, we seek the reconstruction

of the original sparse data signalb∈R
n. A common criterion

widely used in the compressive sensing literature is to recon-
struct the sparse signal by minimizing the norm of a residual
error subject to the constraint that the signal is sparse [9]. In
the context of Cauchy projections, a suitable formulation of
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this approach is

b̂ = argmin
b

‖c−R
T
b‖LL + τ‖b‖ℓ0

(2)

where‖.‖ℓ0
denotes theℓ0 quasi-norm that outputs the num-

ber of nonzero components in its argument, and whereτ is a
regularization parameter that balances the two different goals
of minimizing the norm of the residual errors while yielding,
at the same time, a sparse solution onb.
The proposed reconstruction approach is as follows. Each
element of the vectorc can be written asci = ∑n

j=1 ri, jb j, for
i = 1,2, · · · ,k, whereri, j are standard i.i.d. Cauchy random
variables. Assuming the value ofri,ℓ is known, or can be re-
generated, the elements can be scaled into the observations

ci

ri,ℓ
= bℓ +

∑n
j=1, j 6=ℓ ri, jb j

ri,ℓ
, i = 1, · · · ,k. (3)

The above can be thought of as a classical (deterministic)
location parameter estimation problem in one dimension,
where we assume that theℓ-th entry of the sparse vectorb
(i.e. bℓ) is the one to be estimated while keeping the other
fixed. Furthermore, we assume that the other entries are
known or have been previously estimated. Thus, given the
observationsZi,ℓ ,

ci
ri,ℓ

each obeying the Cauchy distribution

with a common location parameterbℓ but varying scaling fac-

tor γi,ℓ =
∑n

i=1,i 6=ℓ |bi|

|ri,ℓ|
, the maximum likelihood estimate ofbℓ

is the Myriad operator [8]:

b̂ℓ = argmin
bℓ

Q(bℓ)
△
= argmin

bℓ

k

∑
i=1

log

[

1 +
1

γ2
i,ℓ

(Zi,ℓ −bℓ)
2

]

= MYRIAD






1,

1
(

γi,ℓ

)2 ◦Zi,ℓ






; i = 1...k , ℓ = 1...n, (4)

where the dispersion parameterγi,ℓ is estimated by using the
non-linear bias-corrected geometric mean estimator [5]. The
regularization term in (2) considers two cases:bℓ = 0 and
bℓ 6= 0 as follows

Q(bℓ) =

{

Q(0) if bℓ = 0
Q(bℓ)+ τ if bℓ 6= 0, (5)

and the solution to theℓ0-RegularizedLL minimization pro-
blem in (2) is given by

b̂ℓ =

{

argminbℓ
Q(bℓ) if Q(0) > Q(bℓ)+ τ

0 otherwise.
(6)

The iterative algorithm for theℓ0-regularized approach is as
follows. At the first iteration, the reconstruction algorithm
follows a coordinate descent solution where we hold constant
all but one of the entries of the sparse vectorb, we then esti-
mate the entry that is allowed to vary, and then we move on
to estimate the entry in the next coordinate. The estimated
coordinate is kept if its magnitude is larger than the initial

threshold valueτ = τ0,ℓ, otherwise it is considered as a non-
significant entry and, hence, it is set to zero. It will be seen
shortly how to select this threshold value since this parame-
ter strongly influences the accuracy of the reconstruction and
may increase the computational complexity of the algorithm.
If the entry is kept, its contribution is removed from the ob-
servation vector. At the second iteration only some entries
are allowed to be re-estimated. In particular, the non-zero
estimate values after the first iteration and entries havingthe
greatest rate of decrease of the cost function are selected.In
order to choose such coordinates that fulfill this criteria,we
compute the gradient of the objective function. As the ob-
jective function is non-differentiable [1], we approximate the
ℓ0-norm by the following norm

‖b‖ =
n

∑
i=1

|b|
λ + |b|

. (7)

As λ → 0, a better approximation of‖b‖ℓ0
is obtained. This

is shown in Fig. 1 .
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Figure 1:ℓ0-approximation norm for differentλ . Solid line: λ =
0.01. Dashed-dotted line:λ = 0.1. Dotted line:λ = 1.

The descent direction used here is thus:

gbℓ
= −

n

∑
i=1

(Zi,ℓ −bℓ)

γ2
i,ℓ +(Zi,ℓ−bℓ)

2 −
n

∑
i=1

sgn(bℓ)λ
(λ + |b|)2 (8)

wheresgn(bℓ) is the sign of the corresponding coordinate
bℓ. Using the gradient of the objective function, we select
only those coordinates that produce rapid descent. We then
choose those entries with the greatest negative gradient of
the cost function. Coordinates that do not satisfy the two
conditions are considered as not significant and, hence, are
pulled to zero. It is important to select the parameterλ in the
ℓ0-approximation since it influences the negative gradient.
If λ is too large, some components that must be selected
to be re-estimated may be seen as not significant enough.
However ifλ is too small, most of the coordinates will have
a high rate of descent, therefore, most of the entries will be
seen as significant and, will be selected to be re-estimated in
the next iteration.
In the subsequent iterations, selected coordinates that
are significant enough are re-estimated by the Weighted
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Myriad operator. This process continues until a stopping
criterion is reached. It is worth mentioning that a stopping
criterion based on the energy of the residual vector, given
by E = ||c − Rb̂||2, could be used to end iterations much
like in greedy based algorithms. This, however, may
restrict the solution to a subset of signals whose underlying
contamination noise has finite second order moments. Also,
this stopping criterion does not guarantee that the algorithm
will reach a global minimum in the optimization problem.
Thus, the iterative algorithm is ended as soon as the residual
energy reach a given threshold (i.e.E < Eth).

Figure 2 shows an illustrative example depicting how the
nonzero values of the sparse vector are detected and esti-
mated iteratively by the proposed algorithm. In this example
a 9-sparse, 300-dimensional signal is generated. The entries
of the projection matrix are random realizations of a stan-
dard Cauchy distributed variable. Note that it takes four ite-
rations for the proposed algorithm to detect and estimate all
the nonzero values of the sparse signal. Note also that the va-
lues are detecting in order of descending magnitude values.
In the first iteration the larger nonzero values are estimated
and its contribution is removed from the observation vector
for the next iteration, therefore, those entries with smallam-
plitude are detected in the subsequent iterations.

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

1 1.5 2 2.5 3 3.5 4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Iterations

x 
−

 n
on

ze
ro

 v
al

ue
s

(a) (b)

Figure 2: (a) Test 9-sparse signal. (b) Nonzero entries of sparse
vector as the iterative algorithm progresses. Dotted lines: true va-
lues. Solid lines: estimated values.

2.1 Convex relaxation using Lorentzian norm

A second approach to induce sparsity in (1) is to approximate
theℓ0-norm by a norm that is mathematically more tractable.
Our approach to convex relaxation exploits the logarithm
form of the Lorentzian cost function to define the following
norm relaxation function

b̂ℓLL
= argmin

bℓ

k

∑
i=1

log

[

1+
1

γ2
i,ℓ

(Zi,ℓ −bℓ)
2

]

+ log

[

1+
1

γ2
0,ℓ

(Z0,ℓ−bℓ)
2

]

= MYRIAD

{

1;
1

γ2
0,ℓ

◦Z0,ℓ, · · · ,
1

γ2
k,ℓ

◦Zk,ℓ

}

;ℓ = 1...n

(9)

where we letZ0,ℓ = 0 and whereγ0,ℓ is the weight associated
to the zero-valued sample. This additional zero-valued sam-
ple fed into the estimate will induce sparsity, provided that

the corresponding weightγ0,ℓ is sufficiently small.
To implement both iterative reconstruction algorithms, itis
critical to properly estimate the regularization parameter τ in
the first approach and weight of the zero-valued sampleγ0,ℓ

in the second approach, as these parameters govern the spar-
sity of the solution. Consider first the design of the regula-
rization weightγ0,ℓ in (9). Note that high values of the regula-
rization weightγ0,ℓ implies less influence of the zero-valued
sample on the estimation ofbℓ leading to a weighted My-
riad driven by the observation vectorZi,ℓ and the weightsγi,ℓ.
From the mode-property of the weighted Myriad [8, 7], the
regularization weightγ0,ℓ is small enough when

γ2
0,ℓ ≤ min{Z2

i,ℓ + γ2
i,ℓ}|

k
i=1. (10)

The design ofτ in (6) is determined similarly. Sinceγ0,ℓ is
the regularization parameter affectingZ0,ℓ = 0 inside a loga-
rithm term in (9), and sinceτ affectsZ0,ℓ = 0 directly, it fol-
lows that

τ = τ0,ℓ ≥ log(
1

γ2
0,ℓ

). (11)

Furthermore, after the first iteration, our algorithm gradually
reduces the value of the regularization parameter with each
iteration by definingτ = τ0,ℓρ

p, where p refers to the
iteration number, and 0< ρ < 1 is a tuning parameter that
controls the decreasing speed ofτ. This decreasing behavior
of the regularization parameter allows us to quickly detect,
at the first iterations, those entries that have large magnitude
values. As the iteration counter increases, the regularization
parameter decreases more slowly allowing us to detect those
entries with small magnitude values since the strongest
entries are removed from the observation vector. According
to empirical results, the tuning parameterρ is fixed to 0.9
for a suitable regularization.

The iterative algorithm for the convex relaxation approachis
as follows. The first iteration is a rough estimate of the signal
obtained through the Weighted Myriad operator. The resul-
tant residual signal obtained by subtracting the contribution
of the estimate of the non-zero value entries is used in the es-
timation of the sparse vector in subsequent iterations. At the
second iteration, we update only the coordinates that fulfill
two conditions. The first condition is to select those entries
with a non-zero value after the first iteration. The second
condition is to select the coordinates with the greatest rate of
descent. The descent direction used here is

gbℓ
= −

n

∑
i=0

(Zi,ℓ−bℓ)

γ2
i,ℓ +(Zi,ℓ−bℓ)

2 . (12)

Coordinates not satisfying the two conditions are pulled to
zero. Thus, it is expected that subsequent signal estimatesbe
closer to the true values and the convergence speed increases
since only those entries considered relevant are allowed tobe
re-estimated. This process continues until the residual energy
stopping criterion,E < Eth, is reached. The regularized iter-
ative coordinate descent Weighted Myriad algorithm using
convex relaxation for sparse signal reconstruction is shown
in Table 1.
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Table 1: Iterative coordinate descent reconstruction algo-
rithm using convex relaxation regularization.

Input and Sparse signalb
Initialize Measurement MatrixR
Parameters Observation Vectorc

Number of IterationsP
Residual EnergyEth

DispersionΓ(0)
ℓ

=
{

γ(0)
1,ℓ

,γ(0)
2,ℓ

, ...,γ(0)
n,ℓ

}

ResidualZ(0)
i,ℓ

=
{

ci
riℓ

; i = 1, ...,k
}

, Z0,ℓ = 0

τ0,ℓ = min{Z2
i,ℓ + γ2

i,ℓ}|
k
i=0

Initial Estimated Signal̂b(0) = 0
Iteration For ℓ = 1,2, ...,n compute:
Step A

b̂ℓ = Myriad

{

1; 1

(γi,ℓ)
2 ◦

ci−∑n
j=1; j 6=ℓ ri j b̂ j

riℓ

}

|ki=0

g
b̂ℓ

= −∑n
i=0

(Zi,ℓ−bℓ)

γ2
i,ℓ+(Zi,ℓ−bℓ)

2 .

Selectm components with the greatestg
b̂ℓ

.

Step B For ℓ = 1,2, ...,m compute:

τ(p) = τ0,ℓρ p

γ(p)
i,ℓ

= cosk
( π

2k

)

∏k
i=1 |Z

(p)
i,ℓ

− b̂(p)
ℓ

|(1/k)

b̂(p+1) = Myriad

(

1, 1
(

γ (p)
i,ℓ

)2 ◦Z(p)
i,ℓ

)

Step C If E(p) = ||c−Rb̂(p)||2 < Eth, end;
else go to Step A.

Output Recovered sparse signalb̂
(p)

3. COMPUTER SIMULATIONS AND
PERFORMANCE COMPARISONS

In this Section the performance of the two fast iterative
coordinate-descent (Fast-ICD) approaches are evaluated in
the recovery of a sparse signalb from both a reduced
set of noise free and noise contaminated projections. We
compare first the Fast-ICD using the approximateℓ0-norm
regularization with the standard iterative coordinate-descent
(Standard-ICD) algorithm proposed in [6]. We then present
simulations for the convex relaxation using the Lorentzian
norm and compare those results with those obtained by the
Standard-ICD algorithm, also proposed in [6]. In particular,
we present results of execution times and number of ite-
rations. Execution times are measured on a 2.3GHz AMD
Opteron processor.

3.1 Sparse signal reconstruction performance using
approximate ℓ0-norm regularization

The reconstruction capability of the Fast algorithm proposed
to solve the approximateℓ0-norm regularization problem is
tested in the recovery of a 6-sparse signal of 300-samples.
The original signal is generated by randomly placing the
location of the non-zero entries by a uniform random
distribution and with amplitudes in the interval (−1,1).
Furthermore, the projection matrixR is generated with i.i.d.
draws of a standard Cauchy distributionC(0,1). We are
interested in finding the running times and the number of
iterations needed to reconstruct the original signal from
a given number of projectionsk without noise. An exact

reconstruction is assumed when the algorithm reach an
energy of the residual signal less thanEth ≤ 1 × 10−2.
Empirical results have led us to set the tuning parameter
ρ = 0.9 for a suitable regularization and,λ = 1 for the
approximation of theℓ0-norm. Those parameters are used
for all the simulations presented next. Results are obtained
by generating 100 independent realizations and averaging
number of iterations and running times for eachk.

Results in Table 2 indicate that both algorithms faithfully
recovered the signal, since the stopping criterion is reached.
Both algorithms require slightly the same number of ite-
rations. More importantly, the execution time used by the
Fast-ICD algorithm is highly reduced in comparison to
the execution time for the Standard-ICD algorithm. This
is because only those coordinates with the greatest rate
of descent are update on each iteration in the fast-ICD
algorithm while in the standard-ICD, all the coordinates
have to be updated on each iteration. For example, when
k = 50, the execution time used by Standard-ICD algorithm
is up to 8 times the execution time for Fast-ICD and for
k = 100 the execution time used by Standard-ICD algorithm
is 5 times the execution time for Fast-ICD.

In order to test the robustness to noise of the proposed
approaches, the projected signal is now contaminated with
noise. Furthermore, assume that the projections are noisy as
describedc = R

T
b+ ξ , whereξ is the noise vector obey-

ing a Gaussian distributionN(0,σ2). Simulations for differ-
ent noise variancesσ2 are shown. Since Cauchy projections
have infinite-variance, the input SNR becomes less meaning-
ful and thus we use the Geometric Signal-to-Noise Ratio (G-
SNR) defined as [12]:

G-SNR=
1

2Cg

(

S0c

S0g

)2

(13)

whereS0c
is the geometric power of the projected Cauchy

distributed signal,S0g
is the geometric power of the additive

Gaussian noise andCg = eCe ≈ 1.78 is the exponential
of the Euler constant. For each G-SNR 100 independent
realizations are generated and timing measures are averaged.

Table 3 shows the running times achieved by the proposed
Fast-ICD approach and those achieved by the Standard-ICD
algorithm for different G-SNR. The proposed approach fina-
lizes up to 17 times faster than the original Standard-ICD
algorithm, for most G-SNR.

Table 2: Comparison of number of average iterations and
execution times (in seconds) for the Fast-ICD and Standard-
ICD algorithms using approximateℓ0-norm regularization.

k No. iterations Time (sec.)
Fast-ICD Standard-ICD Fast-ICD Standard-ICD

20 65.90 67.20 7.49 104.91
50 12.23 10.91 2.25 18.54
100 3.82 2.88 1.79 8.70
150 2.59 2.71 2.12 11.95
200 3.16 2.73 3.07 16.82
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Table 3: Comparison of execution times (in seconds) for the
Fast-ICD and Standard-ICD algorithms using approximate
ℓ0-norm regularization for different noise levels.

G-SNR (dB) Fast-ICD (sec) Standard-ICD (sec)
5 2.17 38.66
10 2.26 38.00
15 2.37 37.21
20 2.37 34.5
25 2.37 31.11
30 2.37 29.09

3.2 Sparse signal reconstruction performance using con-
vex relaxation

To test the reconstruction capability of the Fast-ICD ap-
proach solving the convex relaxation Lorentzian minimiza-
tion problem, we use the sparse signal and the residual
energy described in Section 3.1. We are interested in fin-
ding the running times and the number of iterations needed
to reach the residual energy as a function of the number of
projectionsk. If the algorithm does not reach the given resid-
ual energy, it is truncated when it reach 50 iterations. Re-
sults in Table 4 show that both the proposed Fast-ICD and
the Standard-ICD does not reach the required residual energy
for low number of projections. As we increasek the pro-
posed Fast-ICD requires less number of iterations than the
Standard-ICD, resulting in a slightly higher speed of con-
vergence. In addition, not only a gain in the number of ite-
rations is obtained, but the execution time is reduced by up to
11 times the execution time for the Standard-ICD algorithm
(whenk = 150).
We also tested the algorithm when the projected data vector
is contaminated with Gaussian noise as described in Section
3.1. Examination of the execution times in Table 5 suggest
a large saving in computation time when the Fast-ICD ap-
proach is used in comparison to the original Standard-ICD
algorithm. For most G-SNR, the proposed approach fina-
lizes about 7 times faster than the original Standard-ICD al-
gorithm.
Table 4: Comparison of number of average iterations and
execution times (in seconds) for the Fast-ICD and Standard-
ICD algorithms using convex relaxation regularization.

k No.Iterations Time (sec.)
Fast-ICD Standard-ICD Fast-ICD Standard-ICD

20 50 50 2.01 24.66
50 50 50 5.21 45.96
100 49.28 49.94 11.12 97.04
150 33.42 42.05 13.15 145.06
200 14.44 19.14 13.27 111.76

Table 5: Comparison of execution times (in seconds) for the
Fast-ICD and Standard-ICD algorithms using convex rela-
xation regularization for different levels of noise.

G-SNR (dB) Fast-ICD (sec) ICD (sec)
4.9 8.59 61.60
8.9 8.66 61.60
15.9 8.68 61.62
23.9 8.80 61.74
28.9 8.90 61.80
33.9 9.06 61.85

4. CONCLUSIONS
We proposed two fast approaches for compressed signal re-
covery in an iterative coordinate-descent fashion. Estima-

tion is achieved by the Weighted Myriad operator. We use
ℓ0-norm as sparsity inducing terms, and also employ convex
relaxation. The proposed approaches reduce the computa-
tional cost by using a coordinate selection technique given
by the rate of decrease. A small increase in the speed of
convergence is obtained by the proposed approaches since
they need less number of iterations than the standard iterative
method. Significant reduction in execution time is achieved
with our proposed algorithms, while yielding similar recons-
truction accuracy to that obtained with the standard itera-
tive coordinate descent. Similarly, satisfactory resultsare
obtained in reconstruction accuracy and execution time for
the proposed approaches with noise-contaminated data. The
proposed methods are inspired by applications on dimensio-
nality reduction with theℓ1-norm, where computational cost
is a primary concern. Those applications include data stream
computation, information retrieval, learning and data mining
among others.
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