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ABSTRACT and identically distributed standard Cauchy random végiab
This paper focuses on the recovery of thelimensional

Recent work on dimensionality reduction using Cauchy raNgparse signal from a reduced setkaheasurements < n
dom projections has emerged for applications whtgrdis- by solving the following problem: ’

tance preservation is preferred. An original sparse signal

b € R" is multiplied by a Cauchy random matr& € Rk b =argmirjc—R'b)| (1)
(k < n), resulting in a projected vectare R¥. Two approa- b t

ches for fast recover ob from the Cauchy vectoe are
proposed. The two algorithms are based on a regularize?
coordinate-descent Myriad regression using gthnd con-
vex relaxation as sparsity inducing terms. The key elemeq:
is to start, in the first iteration, by finding the optimal esti
mate value for each coordinate, and selectively updatihg on
the coordinates with rapid descent in subsequent itemtion
For the particular case of th& regularized approach, an
approximation function for thé,-norm is given due to it is
non-differentiable norm [1]. Performance comparisonseft
proposed approaches to the original regularized coorginat
descent method are included.

here LL denotes the Lorentzian norm, defined as
K olog(K2+2);K > 0 for a vectorz € RX.  The
orentzian error norm is characterized by a re-descendent
nction where the influence of a large outlying sample on
the Lorentzian norm increases up to a point, after which it
starts to decrease (redescend) as the error grows. Thus, the
Lorentzian norm is more robust in regression problems than
the ¢, and /¢, norms and, in fact, it has optimality proper-
ties for Cauchy distributed samples [7]. Exploiting the
priori knowledge about the sparsity of the signal, a convex
relaxation problem is proposed. The main contribution of
this paper is a proposed approach that efficiently computes
the solution to this optimization problem. Thus, the pro-
1. INTRODUCTION posed approach is based on computing an iterative algorithm
Dimensionality reduction using linear random projectionsthat combines the characteristics of the coordinate-aésce
allows the mapping of a set of high dimensional data pointgnethod, that decomposes thalimensional problem into a
into a set of points in low dimension such that pairwisesequence of greedy 1-dimensional coordinate updates, and
distance properties are nearly preserved. Dimensionalitgomputing the rate of decrease of the cost function. At the
reduction is useful in applications such as searchindirst iteration, all the coordinates are estimated by usireg t
for nearest neighbors, data streaming and clustering, oieighted Myriad operator [8], which is optimal for the stan-
classification, where the computational cost can be largelglard Cauchy distribution. In the second and subsequent ite-
reduced. Methods using Gaussian random projections [2ations only those entries with non-zero value previously e
are used to estimate the original pairwiégdistances in timated in the first iteration and those elements that are de-
the high dimensional space using the corresponding creasing most rapidly are re-estimated.
distances in the dimensionally-reduced set of data pointdn order to induce sparse signal reconstruction in (1), the
and the Johnson-Lindenstrauss (JL) lemma [3] providekorentzian problem is regularized by @g-norm. The se-
the performance guarantee. In Cauchy random projectionkgctive iterative coordinate-descent algorithm therefoses
Indyk [4] and Li et. al [5] have shown results analog to theknowledge of the greatest descent rate of the cost func-
Johnson-Lindenstrauss bound, for thenorm. The interest tion, significantly improving the convergence speed and run
in Cauchy random projections arise since thenorm time as compared to the standard iterative coordinateedésc
is more robust to noise, missing data, and outliers, thagStandard-ICD) algorithm.
the /,-norm. Recent work has addressed dimensionality
reduction in/; using Cauchy random projections [5, 6]. 2. SPARSE SIGNAL RECONSTRUCTION:
PROBLEM FORMULATION

; ; ; K : _ Giventhe projected vecterc RK, we seek the reconstruction
dimensionally-reduced data vectoe R is attained by mul of the original sparse data sigriak R". A common criterion

tli)ly'%%xt E eW%r;g;Za;ndtﬁi F;?Iemrz;ﬁz\;vtlitgnz (r)e;r:idnoir: dga;r:((je widely used in the compressive sensing literature is torreco
€ ' P Ntruct the sparse signal by minimizing the norm of a residual

This work was supported in part by the National Science Fatiod ~ ©fTOr subject to the constraint that the signal is sparsef9]
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A linear projection of the sparse signdl € R" into a
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this approach is threshold valueg = 1, ,, otherwise it is considered as a non-
. significant entry and, hence, it is set to zero. It will be seen
b = argmirjlc—R'bl|,, +1|b]|, (2)  shortly how to select this threshold value since this parame
b 0 ter strongly influences the accuracy of the reconstructimh a
. may increase the computational complexity of the algorithm
wherel|.[|, denotes thé, quasi-norm that outputs the num- ¢ thye entry is kept, its F():ontribution is Fr)emox\//ed from Et;he ob-
ber of nonzero components in its argument, and wiiésea  servation vector. At the second iteration only some entries
regularization parameter that balances the two differealsy  are allowed to be re-estimated. In particular, the non-zero
of minimizing the norm of the residual errors while yielding estimate values after the first iteration and entries hatriag
at the same time, a sparse solutionton reatest rate of decrease of the cost function are seldcted.
The proposed reconstruction approach is as follows. Eacérder to choose such coordinates that fulfill this critevia,
element of the vectar can be written as; = 3|_; 1; ;b;, for  compute the gradient of the objective function. As the ob-
i=1,2,--- ,k, wherer, ; are standard i.i.d. Cauchy random jective function is non-differentiable [1], we approxiredhe

varlables Assummg the value gf, is known, or can be re-  £o-norm by the following norm
generated, the elements can be scaled into the observations

= . 7
c 2 A+ b "
L =b,+

n
Yi=1jzibP)
bl
Fie

r :17"'ak' (3)

WA As A — 0, a better approximation (Hb”fo is obtained. This
The above can be thought of as a classical (deterministié3 shown in Fig. 1.

location parameter estimation problem in one dimension,

where we assume that tifeth entry of the sparse vector

(i.e. by) is the one to be estimated while keeping the other 1 ‘ i ‘ ) ‘

fixed. Furthermore, we assume that the other entries are ol = 7= - <. - N/ e-mTTT |
known or have been previously estimated. Thus, given the ’\ ﬁ
observation&; , = = —L each obeying the Cauchy distribution 08 N ’

0.7p
with a common Iocatlon parametgrbut varying scaling fac-
0.61

tory , = z"lr'i*f“ the maximum likelihood estimate &f o5l | s
is the Myriad operator [8]: 04l i
R 0.3f 1
b, = argminQ(b,) = arg mlnzilog - b€)2‘| 0.2t

b,

0.1f

-2 -15 -1 -0.5 0 0.5 1 15 2

= MYRIAD | 1, oZ, |ii=1.k,£=1.n, (4)

2
e Figure 1:¢,-approximation norm for differemt. Solid line: A =

) ) ) ) ) 0.01. Dashed-dotted linet = 0.1. Dotted line:A = 1.
where the dispersion parametgy is estimated by using the

non-linear bias-corrected geometric mean estimator [6 T The descent direction used here is thus:
regularization term in (2) considers two casés:= 0 and

b, # 0 as follows no (Z,-b) N sgn(b,)A
O, = — - (8)
Q00) b —0 ° i; V2 + (2, —by)? i; (A +1b])?
i =
ab,) - { b ©)
4 (4 ! wneresgn Is the sign of the corresponding coordinate
(be) Q(b)+1 ifb,#0 heresgn(b,) is the sign of th ponding coord

) ) S b,. Using the gradient of the objective function, we select
and the solution to thé,-Regularized-L minimization pro-  only those coordinates that produce rapid descent. We then
blem in (2) is given by choose those entries with the greatest negative gradient of

the cost function. Coordinates that do not satisfy the two
. . conditions are considered as not significant and, hence, are
b — { argmin, Q(b,) if Q(0) > Qb)) +1 (6) pulled to zero. Itis important to select the paramatén the
‘ 0 otherwise. {y-approximation since it influences the negative gradient.
If A is too large, some components that must be selected
The iterative algorithm for thé,-regularized approach is as to be re-estimated may be seen as not significant enough.
follows. At the first iteration, the reconstruction algbrit  However ifA is too small, most of the coordinates will have
follows a coordinate descent solution where we hold constara high rate of descent, therefore, most of the entries will be
all but one of the entries of the sparse vedipwe then esti- seen as significant and, will be selected to be re-estimated i
mate the entry that is allowed to vary, and then we move othe next iteration.
to estimate the entry in the next coordinate. The estimatebh the subsequent iterations, selected coordinates that
coordinate is kept if its magnitude is larger than the ihitia are significant enough are re-estimated by the Weighted
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Myriad operator. This process continues until a stoppinghe corresponding weigly, , is sufficiently small.

criterion is reached. It is worth mentioning that a stoppingTo implement both iterative reconstruction algorithmssit
criterion based on the energy of the residual vector, givearitical to properly estimate the regularization parametie

by E = [|c— Rb]|,, could be used to end iterations muchthe first approach and weight of the zero-valued sargple

like in greedy based algorithms. This, however, mayin the second approach, as these parameters govern the spar-
restrict the solution to a subset of signals whose undeglyinsity of the solution. Consider first the design of the regula-
contamination noise has finite second order moments. Als@jzation weightyoj in (9). Note that high values of the regula-

this stopping criterion does not guarantee that the algorit
will reach a global minimum in the optimization problem.
Thus, the iterative algorithm is ended as soon as the rdsidu

energy reach a given threshold (i< E;)).

rization weighty, , implies less influence of the zero-valued

ample on the estimation &f, leading to a weighted My-
lad driven by the observation vectdr, and the weighty; ,.

From the mode-property of the Weighted Myriad [8, 7], the

Figure 2 shows an illustrative example depicting how the'®gularization weighy, , is small enough when
nonzero values of the sparse vector are detected and esti-

mated iteratively by the proposed algorithm. In this exampl
a 9-sparse, 300-dimensional signal is generated. Thesentri
of the projection matrix are random realizations of a stan
dard Cauchy distributed variable. Note that it takes foew it

Vg,z < min{Zﬁg + WZ,Z}H(:l' (10)

The design oft in (6) is determined similarly. Sincm is

rations for the proposed algorithm to detect and estimate aihn€ regularization parameter affectidg, = 0 inside a loga-
the nonzero values of the sparse signal. Note also that the véithm term in (9), and since affectsz, , = 0 directly, it fol-
lues are detecting in order of descending magnitude valuekws that

In the first iteration the larger nonzero values are estithate

and its contribution is removed from the observation vector T=Ty, = |09(VT)- (11)

for the next iteration, therefore, those entries with sraait
plitude are detected in the subsequent iterations.

06

:ZTMT

X = nonzero values

0,¢

Furthermore, after the first iteration, our algorithm graltiu
reduces the value of the regularization parameter with each
iteration by definingt = 7, ,0P, where p refers to the
iteration number, and & p < 1 is a tuning parameter that
controls the decreasing speedrofThis decreasing behavior

of the regularization parameter allows us to quickly detect
at the first iterations, those entries that have large madait
values. As the iteration counter increases, the regulisiza
parameter decreases more slowly allowing us to detect those

entries with small magnitude values since the strongest

R L entries are removed from the observation vector. According

(@) (b) to empirical results, the tuning paramegeiis fixed to Q9
for a suitable regularization.

Figure 2: (a) Test 9-sparse signal. (b) Nonzero entries of sparse ) . . _ .
vector as the iterative algorithm progresses. Dotted lie va-  The iterative algorithm for the convex relaxation approisch

lues. Solid lines: estimated values. as follows. The first iteration is a rough estimate of the aign
obtained through the Weighted Myriad operator. The resul-
2.1 Convex relaxation using Lorentzian norm tant residual signal obtained by subtracting the contidiout

A second approach to induce sparsity in (1) is to approxima of thg estimate of the non-zero value entries_is ust_ad in the es
the /- b that i h ticall tractabl t‘f?matlon.of the sparse vector in subsequent iterationshét t
€fg-norm by a norm thatis mathematically more racClabl€ g o 0 jteration, we update only the coordinates thatlfulfil
Our approach to convex relaxation exploits the logarithm, , conditions. The first condition is to select those estrie
form of the Lorentzian cost function to define the following v =" on-zero value after the first iteration. The second

norm relaxation function condition is to select the coordinates with the greatestoft
1 ) descent. The descent direction used here is

1+ —5(Z,—by)
Yio o~

k
bfLL = ar%gmm;Iog

o - n (Z,-b) (12)

1 2 o i;) V2, +(Z—by)?

+log 1+VT(ZO,€_b£) ’ ’
0.0

Coordinates not satisfying the two conditions are pulled to
_ MYRIAD d 1- % ¢ Zy - T GV R zero. Thus, it is expected that subsequent signal estirbates
' y&é S yﬁg ke closer to the true values and the convergence speed insrease
©) since only those entries considered relevant are allowbd to
re-estimated. This process continues until the residueabgn

where we |e20€ =0and Wherwoé is the We|ght associated stopping criterionE < Eth' is reached. The regularized iter-

to the zero-valued sample. This additional zero-valuedsanftiVé coordinate descent Weighted Myriad algorithm using

ple fed into the estimate will induce sparsity, providedtthaicno_rl‘_gg)l(erflaxaﬂo“ for sparse signal reconstruction is show
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reconstruction is assumed when the algorithm reach an
%nergy of the residual signal less thag, < 1 x 102
Empirical results have led us to set the tuning parameter

Table 1: lterative coordinate descent reconstruction-alg
rithm using convex relaxation regularization.

Inputand | Sparse signab p = 0.9 for a suitable regularization and, = 1 for the

Initialize | Measurement MatriR approximation of the/;-norm. Those parameters are used

Parameterg Observation Vectoe for all the simulations presented next. Results are obdaine
Number of Iteration® by generating 100 independent realizations and averaging
Residual Energ¥,, number of iterations and running times for e&ch

i ion(© = 1140 /(0 0)
Dispersion’ 7{ ¥ 21"“’yr(1,z}

ResidualZi(‘z) _ {rgl _ 1,...,k}, Zy, =0 Results in Table 2 indicate that both algorithms faithfully

recovered the signal, since the stopping criterion is redch

To, = Min{ZZ+ V2 o Both algorithms require slightly the same number of ite-
Initial Estimated Signab(® = 0 rations. More importantly, the execution time used by the
Iteration For/=1,2,...,n compute: Fast-ICD algorithm is highly reduced in comparison to
Step A the execution time for the Standard-ICD algorithm. This
- . ] C—3" g1y B is because only those coordinates with the greatest rate
b, = Myriad < 1; -1, o * £tz H}!g _ th tn
(%) Tie i=0 of descent are update on each iteration in the fast-ICD
_ _on (Z,—b,) algorithm while in the standard-ICD, all the coordinates
%, =~ 2i=0 Vet (2, —0)% have to be updated on each iteration. For example, when
Selectm components with the greateg{ . k = 50, the execution time used by Standard-ICD algorithm
Step B For¢{=1,2,...,mcompute: is up to 8 times the execution time for Fast-ICD and for
k = 100 the execution time used by Standard-ICD algorithm
(P =1, ,pP is 5 times the execution time for Fast-ICD.

(D) _ codk (I) AK . z(P) _ p(P)| (/K
h (3 M 27 =B In order to test the robustness to noise of the proposed

B(P+1) — Myriad (1. 1 OZ_(p)) approaches, the projected signal is now co.ntaminated.with
’ (%5’)) i, noise. Furthermore, assume that the projections are nsisy a
Step C If EP) = ||c—RB(P||, < Ey,, end; Qescrlbedc = RT}o + g, yvheref is th_e noise vector pbey-
else go to Step A. ing a Gaussian distributioN(0, ). Simulations for differ-
Output Recovered sparse sigriaiP) ent noise variances? are shown. Since Cauchy projections

have infinite-variance, the input SNR becomes less meaning-
ful and thus we use the Geometric Signal-to-Noise Ratio (G-

3. COMPUTER SIMULATIONS AND SNR) defined as [12]:

PERFORMANCE COMPARISONS

2
In this Section the performance of the two fast iterative G-SNR= 1 (2 (13)
coordinate-descent (Fast-ICD) approaches are evaluated i 2Cq 3)9

the recovery of a sparse signbl from both a reduced

set of noise free and noise contaminated projections. WehereS,_ is the geometric power of the projected Cauchy

compare first the Fast-ICD using the approximgf@orm  distributed signalg, is the geometric power of the additive
regularization with the standard iterative coordinateedat . i 9 . .
(Gaussian noise anfy = €% ~ 1.78 is the exponential

(Standard-ICD) algorithm proposed in [6]. We then presen .
simulations for the convex relaxation using the LorentziarP! the Euler constant. For each G-SNR 100 independent

norm and compare those results with those obtained by tH&2lizations are generated and timing measures are aderage
Standard-ICD algorithm, also proposed in [6]. In particula o .
we present results of execution times and number of itelable 3 shows the running times achieved by the proposed

rations. Execution times are measured on a 2.3GHz AmDrast-ICD approach and those achieved by the Standard-ICD
Opteron processor. algorithm for different G-SNR. The proposed approach fina-

lizes up to 17 times faster than the original Standard-ICD

3.1 Sparse signal reconstruction performance usng  algorithm, for most G-SNR.

approximate £y,-norm regularization

Table 2: Comparison of number of average iterations and
execution times (in seconds) for the Fast-ICD and Standard-
ICD algorithms using approximatig-norm regularization.

The reconstruction capability of the Fast algorithm pragabs
to solve the approximat&-norm regularization problem is
tested in the recovery of a 6-sparse signal of 300-sample

The original signal is generated by randomly placing the K No. iterations Time (sec.)
location of the non-zero entries by a uniform rando Fast-ICD | Standard-ICD| Fast-ICD | Standard-ICD
distribution and with amplitudes in the interval-1,1). 20 | 65.90 67.20 7.49 104.91
Furthermore, the projection matriXis generated with i.i.d. | 90 | 12.23 10.91 2.25 18.54
draws of a standard Cauchy distributi@{0,1). We are | 100| 3.82 2.88 1.79 8.70
interested in finding the running times and the number of 150 | 2.59 2.71 212 11.95
iterations needed to reconstruct the original signal from 200 | 3.16 2.73 3.07 16.82

a given number of projectionis without noise. An exact
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tion is achieved by the Weighted Myriad operator. We use

Table 3: Comparison of execution times (in seconds) forth@ o as's P ;
X ] . o parsity inducing terms, and also employ convex
Fast-ICD and Standard-ICD algorithms using approximat¢g|axation. The proposed approaches reduce the computa-

¢o-norm regularization for different noise levels. tional cost by using a coordinate selection technique given
G-SNR (dB) | Fast-ICD (sec) Standard-ICD (sec by the rate of decrease. A small increase in the speed of
S 2.17 38.66 convergence is obtained by the proposed approaches since
%g %%g ggg(l) they need less number of iterations than the standardiiterat
20 2137 345 method. Significant reduction in execution time is achieved
25 2.37 31.11 with our proposed algorithms, while yielding similar resen
30 2.37 29.09 truction accuracy to that obtained with the standard itera-

tive coordinate descent. Similarly, satisfactory resalts

3.2 Sparsesignal reconstruction per formanceusing con- obtained in reconstruction accuracy and exe_cution time for

vex relaxation the proposed approaches with noise-contaminated data. The
) . proposed methods are inspired by applications on dimensio-

To test the reconstruction capability of the Fast-ICD apmality reduction with the/;-norm, where computational cost

tion problem, we use the sparse signal and the residugbmputation, information retrieval, learning and dataingn
energy described in Section 3.1. We are interested in fingmong others.

ding the running times and the number of iterations needed
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